15-399 Supplementary Notes: The Gödel-Genzen Interpretation of Classical Logic

Robert Harper

February 17, 2004

1 Proof of the Gödel-Gentzen Embedding

The Gödel-Gentzen embedding P^{G} of classical into constructive logic is defined by induction on the structure of propositions as follows:¹

$$
P^{\mathsf{G}} = \neg\neg P \quad (P \text{ atomic})
$$

\n
$$
\bot^{\mathsf{G}} = \bot
$$

\n
$$
\top^{\mathsf{G}} = \top
$$

\n
$$
(P \land Q)^{\mathsf{G}} = P^{\mathsf{G}} \land Q^{\mathsf{G}}
$$

\n
$$
(P \lor Q)^{\mathsf{G}} = \neg(\neg P^{\mathsf{G}} \land \neg Q^{\mathsf{G}})
$$

\n
$$
(P \supset Q)^{\mathsf{G}} = P^{\mathsf{G}} \supset Q^{\mathsf{G}}
$$

This translation expresses the constructive content of classical logic. In classical logic we always have the option of proving a proposition by contradiction (proving $\neg\neg P$, but stating it as a proof of P). Classical logic is also weaker when it comes to disjunction: rather than prove one or the other disjunct, we may instead prove that both cannot fail to hold true. From a constructivist viewpoint the classical proof proves less than it claims. The Gödel-Gentzen translation makes this precise.

From a classical point of view the translation does nothing.

Theorem 1.1 Classically, P and P^{G} are equivalent.

Proof: Proceed by induction on the structure of P , using truth tables to show the equivalence. \Box

From a constructive viewpoint, it "constructivizes" classical logic. We write $\vdash_{class} P$ true to mean that P true is derivable using the rules of constructive logic, plus the law of the excluded middle $(P \vee \neg P \ true$ for every P).

Theorem 1.2 If $\vdash_{class} P$ true, then $\vdash P^{\mathsf{G}}$ true.

Draft of February 17, 2004

¹The course notes write P^N instead of P^{G} .

This means that the constructivist may always reinterpret what the classicist says in constructive terms.

Our aim is to give a proof of this theorem. The proof is a bit tricky in spots, which is why we outline it here.

A proposition P is *stable* iff $\neg\neg P \supset P$ true. Recall that it is easy to show constructively that $P \supset \neg \neg P$ true.

Lemma 1.1 Every negated proposition is stable. That is, if $P = \neg Q$, then $\neg\neg P \supset P$ true.

Proof: Assume $\neg\neg P$ true, that is $\neg\neg Q$ true. We are to show P true, that is $\neg Q$ true. Assume towards a contradiction that Q true. It follows that $\neg\neg Q$ true. But this contradicts the assumption $\neg\neg\neg Q$ true.

An implication is stable if its consequent is stable.

Lemma 1.2 If R is stable, then $Q \supset R$ is stable.

Proof: Assume $\neg \neg (Q \supset R)$ true. To show $Q \supset R$ true, assume Q true. Since R is stable, it is enough to show $\neg\neg R$ true. So assume towards a contradiction that $\neg R$ true. We will show $\neg (Q \supset R)$ true to obtain a contradiction. So assume $Q \supset R$ true. Then since Q true, we have R true, which contradicts the assumption that $\neg R$ true.

Lemma 1.3 For all propositions P , P^{G} is stable.

Proof: By induction on the structure of P.

- 1. If P is atomic, then $P^{\mathsf{G}} = \neg \neg P$, so it is negated. By the Lemma 1.1, it is stable.
- 2. If P is \perp or \top , it is easy to show stability.
- 3. If $P = Q \wedge R$, the result follows by induction, using the fact that $(P \wedge Q)^G =$ $P^{\mathsf{G}} \wedge Q^{\mathsf{G}}$.
- 4. If $P = Q \vee R$, then P^{G} is negated, and hence is stable by Lemma 1.1.
- 5. If $P = Q \supset R$, then by induction R is stable, and hence P is stable by Lemma 1.2.

 \Box

If $\Gamma = P_1$ true, ..., P_n true, then $\Gamma^{\mathsf{G}} = P_1^{\mathsf{G}}$ true, ..., P_n^{G} true.

Theorem 1.3 If $\Gamma \vdash_{class} P$ true, then $\Gamma^{\mathsf{G}} \vdash P^{\mathsf{G}}$ true.

Proof: By induction on the derivation of the assumption.

1. Suppose that $P = Q \vee \neg Q$ and that we have derived P true by applying the law of the excluded middle. We are to show that $\neg(\neg Q^{\mathsf{G}} \wedge \neg \neg Q^{\mathsf{G}})$ true. So assume $\neg Q^{\mathsf{G}} \wedge \neg \neg Q^{\mathsf{G}}$ true. But this is a contradiction!

Draft of February 17, 2004

- 2. Suppose that $P = Q \supset R$, and that we derived P true by implication introduction, assuming Q true and deriving R true. Then by induction we have proved constructively R^G true from the assumption Q^G true, and hence $Q^{\bar{G}} \supset R^G$ true. That is, $(Q \supset R)^G$ true.
- 3. Suppose that we have derived P true from $Q \supset P$ true and Q true. By induction $Q^{\mathsf{G}} \supset P^{\mathsf{G}}$ true and Q^{G} true, so P^{G} true, as required.
- 4. Suppose that $P = Q \vee R$ and that we have derived P true by \vee -introduction (left) from Q true. By induction Q^{G} true, and hence P^{G} true. The symmetric case is handled similarly.
- 5. Suppose that P true is derived from $Q \vee R$ true, P true assuming Q true, and P true assuming R true, using ∨-elimination. By induction $\neg(\neg Q^{\mathsf{G}} \land \neg \mathsf{G})$ $\neg R^{\mathsf{G}}$) true is derivable constructively. Moreover, P^{G} true is derivable constructively from Q^{G} true and also from R^{G} true. We are to show P^{G} true. By Lemma 1.3 it is enough to show $\neg\neg P^{\mathsf{G}}$ true. So assume $\neg P^{\mathsf{G}}$ true, and derive a contradiction. It suffices to prove $\neg Q^{\mathsf{G}} \wedge \neg R^{\mathsf{G}}$. To prove $\neg Q^{\mathsf{G}}$, assume Q^{G} . Then P^{G} follows, which is a contradiction of the assumption $\neg P^{\mathsf{G}}$ true. Similarly, to prove $\neg R^{\mathsf{G}}$, assume R^{G} . Then P^{G} , and hence a contradiction. So $\neg Q^{\mathsf{G}} \wedge \neg R^{\mathsf{G}}$ true, which is a contradiction.