
3.10 Induction 55

We write m =N n. Otherwise we follow the blueprint of the less-than relation.

Γ ` m ∈ nat Γ ` n ∈ nat
=NF

Γ ` m =
N
n prop

=N I0
Γ ` 0 =

N
0 true

Γ ` m =N n true
=N Is

Γ ` s(m) =N s(n) true

no =NE00 elimination rule
Γ ` 0 =

N
s(n) true

=
N
E0s

Γ ` C true

Γ ` s(m) =N 0 true
=NEs0

Γ ` C true

Γ ` s(m) =N s(n) true
=NEss

Γ `m =
N
n true

Note the difference between the function

eq ∈ nat→nat→bool

and the proposition
m =N n

The equality function provides a computation on natural numbers, always re-
turning true or false. The proposition m =N n requires proof. Using induction,
we can later verify a relationship between these two notions, namely that eq nm
reduces to true if m =

N
n is true, and eq nm reduces to false if ¬(m =

N
n).

3.10 Induction

Now that we have introduced the basic propositions regarding order and equal-
ity, we can consider induction as a reasoning principle. So far, we have consid-
ered the following elimination rule for natural numbers:

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natE

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

This rule can be applied if we can derive t ∈ nat from our assumptions and we
are trying to construct a term s ∈ τ . But how do we use a variable or term
t ∈ nat if the judgment we are trying to prove has the form M : A, that is, if
we are trying the prove the truth of a proposition? The answer is induction.
This is actually very similar to primitive recursion. The only complication is
that the proposition A we are trying to prove may depend on t. We indicate
this by writing A(x) to mean the proposition A with one or more occurrences of
a variable x. A(t) is our notation for the result of substituting t for x in A. We

Draft of October 9, 2000



56 Proofs as Programs

could also write [t/x]A, but this is more difficult to read. Informally, induction
says that in order to prove A(t) true for arbitrary t we have to prove A(0) true
(the base case), and that for every x ∈ nat, if A(x) true then A(s(x)) true.

Formally this becomes:

Γ ` t ∈ nat Γ ` A(0) true Γ, x ∈ nat, A(x) true ` A(s(x)) true
natE′

Γ ` A(t) true

Here, A(x) is called the induction predicate. If t is a variable (which is
frequently the case) it is called the induction variable. With this rule, we can
now prove some more interesting properties. As a simple example we show that
m < s(m) true for any natural number m. Here we use D to stand for the
derivation of the third premise in order to overcome the typesetting difficulties.

D =
m ∈ nat, x ∈ nat, x < s(x) true ` x < s(x) true

<Is
m ∈ nat, x ∈ nat, x < s(x) true ` s(x) < s(s(x))

m ∈ nat ` m ∈ nat
<I0

m ∈ nat ` 0 < s(0) D
natE′

m ∈ nat ` m < s(m)

The property A(x) appearing in the induction principle is A(x) = x < s(x). So
the final conclusion is A(m) = m < s(m). In the second premise we have to
prove A(0) = 0 < s(0) which follows directly by an introduction rule.

Despite the presence of the induction rule, there are other properties we
cannot yet prove easily since the logic does not have quantifiers. An example is
the decidability of equality: For any natural numbers m and n, either m =N n
or ¬(m =

N
n). This is an example of the practical limitations of quantifier-free

induction, that is, induction where the induction predicate does not contain any
quantifiers.

The topic of this chapter is the interpretation of constructive proofs as pro-
grams. So what is the computational meaning of induction? It actually corre-
sponds very closely to primitive recursion.

Γ ` t ∈ nat Γ `M : A(0) Γ, x ∈ nat, u(x):A(x) ` N : A(s(x))
natE′

Γ ` ind t of u(0)⇒M | u(s(x))⇒ N : A(t)

Here, u(x) is just the notation for a variable which may occur in N . Note that u
cannot occur in M or in N in any other form. The reduction rules are precisely
the same as for primitive recursion.

(ind 0 of u(0)⇒M | u(s(x))⇒ N) =⇒ M
(ind s(n) of u(0)⇒M | u(s(x))⇒ N) =⇒
[(ind n of u(0)⇒M | u(s(x))⇒ N)/u(n)] [n/x]N

Draft of October 9, 2000



3.10 Induction 57

We see that primitive recursion and induction are almost identical. The
only difference is that primitive recursion returns an element of a type, while
induction generates a proof of a proposition. Thus one could say that they are
related by an extension of the Curry-Howard correspondence. However, not
every type τ can be naturally interpreted as a proposition (which proposition,
for example, is expressed by nat?), so we no longer speak of an isomorphism.

We close this section by the version of the rules for the basic relations be-
tween natural numbers that carry proof terms. This annotation of the rules is
straightforward.

Γ ` n ∈ nat Γ ` m ∈ nat
<F

Γ ` n < m prop

<I0
Γ ` lt0 : 0 < s(n)

Γ `M : m < n
<Is

Γ ` lts(M) : s(m) < s(n)

Γ `M : m < 0
<E0

Γ ` ltE0(M) : C

no rule for 0 < s(n′)
Γ `M : s(m′) < s(n′)

<Es
Γ ` ltEs(M) : m′ < n′

Γ ` m ∈ nat Γ ` n ∈ nat
=
N
F

Γ ` m =N n prop

=N I0
Γ ` eq0 : 0 =N 0

Γ `M : m =
N
n

=
N
Is

Γ ` eqs(M) : s(m) =N s(n)

no =NE00 elimination rule
Γ `M : 0 =N s(n)

=NE0s
Γ ` eqE0s(M) : C

Γ `M : s(m) =N 0
=NEs0

Γ ` eqEs0(M) : C

Γ `M : s(m) =N s(n)
=NEss

Γ ` eqEss(M) : m =N n

Draft of October 9, 2000



58 Proofs as Programs

Draft of October 9, 2000



Chapter 4

First-Order Logic and Type
Theory

In the first chapter we developed the logic of pure propositions without reference
to data types such as natural numbers. In the second chapter we explained the
computational interpretation of proofs, and, separately, introduced several data
types and ways to compute with them using primitive recursion.

In this chapter we will put these together, which allows us to reason about
data and programs manipulating data. In other words, we will be able to prove
our programs correct with respect to their expected behavior on data. The
principal means for this is induction, introduced at the end of the last chapter.
There are several ways to employ the machinery we will develop. For example,
we can execute proofs directly, using their interpretation as programs. Or we
can extract functions, ignoring some proof objects that have are irrelevant with
respect to the data our programs return. That is, we can contract proofs to
programs. Or we can simply write our programs and use the logical machinery
we have developed to prove them correct.

In practice, there are situations in which each of them is appropriate. How-
ever, we note that in practice we rarely formally prove our programs to be
correct. This is because there is no mechanical procedure to establish if a given
programs satisfies its specification. Moreover, we often have to deal with input
or output, with mutable state or concurrency, or with complex systems where
the specification itself could be as difficult to develop as the implementation.
Instead, we typically convince ourselves that central parts of our program and
the critical algorithms are correct. Even if proofs are never formalized, this
chapter will help you in reasoning about programs and their correctness.

There is another way in which the material of this chapter is directly relevant
to computing practice. In the absence of practical methods for verifying full
correctness, we can be less ambitious by limiting ourselves to program properties
that can indeed be mechanically verified. The most pervasive application of
this idea in programming is the idea of type systems. By checking the type

Draft of October 9, 2000



60 First-Order Logic and Type Theory

correctness of a program we fall far short of verifying it, but we establish a kind of
consistency statement. Since languages satisfy (or are supposed to satisfy) type
preservation, we know that, if a result is returned, it is a value of the right type.
Moreover, during the execution of a program (modelled here by reduction),
all intermediate states are well-typed which prevents certain absurd situations,
such as adding a natural number to a function. This is often summarized in the
slogan that “well-typed programs cannot go wrong”. Well-typed programs are
safe in this respect. In terms of machine language, assuming a correct compiler,
this guards against irrecoverable faults such as jumping to an address that does
not contain valid code, or attempting to write to inaccessible memory location.

There is some room for exploring the continuum between types, as present
in current programming languages, and full specifications, the domain of type
theory. By presenting these elements in a unified framework, we have the basis
for such an exploration.

We begin this chapter with a discussion of the universal and existential
quantifiers, followed by a number of examples of inductive reasoning with data
types.

4.1 Quantification

In this section, we introduce universal and existential quantification. As usual,
we follow the method of using introduction and elimination rules to explain
the meaning of the connectives. First, universal quantification, written as
∀x∈τ. A(x). For this to be well-formed, the body must be well-formed under
the assumption that x is a variable of type τ .

τ type Γ, x∈τ ` A(x) prop
∀F

Γ ` ∀x∈τ. A(x) prop

For the introduction rule we require that A(x) be valid for arbitrary x. In other
words, the premise contains a parametric judgment.

Γ, x∈τ ` A(x) true
∀I

Γ ` ∀x∈τ. A(x) true

If we think of this as the defining property of universal quantification, then a
verification of ∀x∈τ. A(x) describes a construction by which an arbitrary t ∈ τ
can be transformed into a proof of A(t) true.

Γ ` ∀x∈τ. A(x) true Γ ` t ∈ τ
∀E

Γ ` A(t) true

We must verify that t ∈ τ so that A(t) is a proposition. We can see that the
computational meaning of a proof of ∀x∈τ. A(x) true is a function which, when

Draft of October 9, 2000



4.1 Quantification 61

given an argument t of type τ , returns a proof of A(t). If we don’t mind over-
loading application, the proof term assignment for the universal introduction
and elimination rule is

Γ, x∈τ `M : A(x)
∀I

Γ ` λx∈τ. M : ∀x∈τ. A(x)

Γ `M : ∀x∈τ. A(x) Γ ` t ∈ τ
∀E

Γ `M t : A(t)

The computation rule simply performs the required substitution.

(λx∈τ. M) t =⇒ [t/x]M

The existential quantifier ∃x∈τ. A(x) lies at the heart of constructive math-
ematics. This should be a proposition if A(x) is a proposition under the as-
sumption that x has type τ .

τ type Γ, x∈τ ` A(x) prop
∃F

Γ ` ∃x∈τ. A(x) prop

The introduction rule requires that we have a witness term t and a proof that
t satisfies property A.

Γ ` t ∈ τ Γ ` A(t) true
∃I

Γ ` ∃x∈τ. A(x) true

The elimination rule bears some resemblance to disjunction: if we know that
we have a verification of ∃x∈τ. A(x) we do not know the witness t. As a result
we cannot simply write a rule of the form

Γ ` ∃x∈τ. A(x) true
∃E?

Γ ` t ∈ τ

since we have no way of referring to the proper t. Instead we reason as follows:
If ∃x∈τ. A(x) is true, then there is some element of τ for which A holds. Call
this element x and assume A(x). Whatever we derive from this assumption
must be true, as long as it does not depend on x itself.

Γ ` ∃x∈τ. A(x) true Γ, x∈τ, A(x) true ` C true
∃E

Γ ` C true

The derivation of the second premise is parametric in x and hypothetical in
A(x), that is, x may not occur in Γ or C.

The proof term assignment and computational contents of these rules is not
particularly difficult. The proof term for an existential introduction is a pair

Draft of October 9, 2000



62 First-Order Logic and Type Theory

consisting of the witness t and the proof that t satisfies the stated property. The
elimination rule destructs the pair, making the components accessible.

Γ ` t ∈ τ Γ `M : A(t)
∃I

Γ ` 〈t,M〉 : ∃x∈τ. A(x)

Γ `M : ∃x∈τ. A(x) Γ, x∈τ, u:A(x) ` N : C
∃E

Γ ` let 〈x, u〉 = M in N : C

The reduction rule is straightforward, substituting both the witness and the
proof term certifying its correctness.

let〈x, u〉 = 〈t,M〉 in N =⇒ [M/u] [t/x]N

As in the case of the propositional connectives, we now consider various
interactions between quantifiers and connectives to obtain an intuition regarding
their properties. We continue to denote a proposition A that depends on a
variable x by A(x).

Our first example states that universal quantification distributes over con-
junction. In order to make it fit on the page, we have abbreviated u:∀x∈τ. A(x)∧
B(x) by u:−. Furthermore, we named the parameter introduced into the deriva-
tion a (rather than x), to emphasize the distinction between a bound variable
in a proposition and a parameter which is bound in a derivation.

u
a∈τ, u:− ` ∀x∈τ. A(x) ∧B(x) true

a
a∈τ, u:− ` a ∈ τ

∀E
u:−, a∈τ ` A(a) ∧B(a) true

∧EL
u:−, a∈τ ` A(a) true

∀Ia
u:− ` ∀x∈τ. A(x) true

⊃Iu
` (∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) true

The lists of hypotheses of the form x∈τ and u:A in each line of a natural
deduction can be reconstructed, so we will use the following abbreviated form
familiar from the early development of propositional logic.

u
∀x∈τ. A(x) ∧B(x) true

a
a ∈ τ

∀E
A(a) ∧B(a) true

∧EL
A(a) true

∀Ia
∀x∈τ. A(x) true

⊃Iu
(∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) true

From this deduction it is easy to see that

(∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) ∧ (∀x∈τ. B(x)) true

Draft of October 9, 2000



4.1 Quantification 63

By annotating the derivation above we can construct the following proof term
for this judgment (omitting some labels):

` λu. 〈λx∈τ. fst (u x), λx∈τ. snd (u x)〉
: (∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) ∧ (∀x∈τ. B(x))

The opposite direction also holds, which means that we can freely move the
universal quantifier over conjunctions and vice versa. This judgment (and also
the proof above) are parametric in τ . Any instance by a concrete type for τ
will be an evident judgment. We show here only the proof term (again omitting
some labels):

` λp. λx∈τ. 〈(fst p) x, (snd p) x〉
: (∀x∈τ. A(x)) ∧ (∀x∈τ. B(x))⊃(∀x∈τ. A(x) ∧B(x))

The corresponding property for the existential quantifier allows distributing
the existential quantifier over disjunction.

(∃x∈τ. A(x) ∨B(x)) ≡ (∃x∈τ. A(x)) ∨ (∃x∈τ. B(x))

We verify one direction.

u
∃x∈τ. A(x) ∨B(x) true

D
(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

∃Ea,w
(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

⊃Iu
(∃x∈τ. A(x) ∨B(x))⊃(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

where the deduction D is the following

w
A(a) ∨B(a) true

a
a ∈ τ

v1

A(a) true
∃I

∃x∈τ. A(x) true
∨IL

(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true
...
∨Ev1,v2

(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

The omitted derivation of the second case in the disjunction elimination is sym-
metric to the given case and ends in ∨IR.

It is important to keep in mind the restriction on the existential elimination
rule, namely that the parameter must be new in the second premise. The
following is an incorrect derivation:

a?
a ∈ nat

natIs
s(a) ∈ nat

u
∃x∈nat. A(s(x)) true

w
A(s(a)) true

∃Ea,w?
A(s(a)) true

∃I
∃y∈nat. A(y) true

⊃Iu
(∃x∈nat. A(s(x)))⊃∃y∈nat. A(y) true

Draft of October 9, 2000



64 First-Order Logic and Type Theory

The problem can be seen in the two questionable rules. In the existential in-
troduction, the term a has not yet been introduced into the derivation and its
use can therefore not be justified. Related is the incorrect application of the ∃E
rule. It is supposed to introduce a new parameter a and a new assumption w.
However, a occurs in the conclusion, invalidating this inference.

In this case, the flaw can be repaired by moving the existential elimination
downward, in effect introducing the parameter into the derivation earlier (when
viewed from the perspective of normal proof construction).

u
∃x∈nat. A(s(x)) true

a
a ∈ nat

natIs
s(a) ∈ nat

w
A(s(a)) true

∃I
∃y∈nat. A(y) true

∃Ea,w
∃y∈nat. A(y) true

⊃Iu
(∃x∈nat. A(s(x)))⊃∃y∈nat. A(y) true

Of course there are other cases where the flawed rule cannot be repaired. For ex-
ample, it is easy to construct an incorrect derivation of (∃x∈τ. A(x))⊃∀x∈τ. A(x).

Draft of October 9, 2000



Bibliography

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages 153–
175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of October 9, 2000


