Constructive Logic

Frank Pfenning
Carnegie Mellon University

Draft of January 9, 2003

Material for the course Constructive Logic at Carnegie Mellon University, Fall
2000. Material for this course is available at
http://www.cs.cmu.edu/ fp/courses/logic/.

Please send comments to fp@cs.cmu.edu

This material is in rough draft form and is likely to contain errors. Furthermore,
citations are in no way adequate or complete. Please do not cite or distribute
this document.

This work was supported in part by the University Education Council at Carnegie
Mellon University and by NSF Grant CCR-~9619684.

Copyright (© 2000, Frank Pfenning

ii

Draft of January 9, 2003

Contents

1 Introduction

2 Propositional Logic

2.1 Judgments and Propositionso
2.2 Hypothetical Judgments L.
2.3 Disjunction and Falsehood
2.4 Notational Definition
2.5 Derived Rules of Inference
2.6 Logical Equivalences
2.7 Summary of Judgments oL
2.8 A Linear Notation for Proofs
2.9 Normal Deductions
2.10 Exercises e e e
3 Proofs as Programs
3.1 Propositions as Types
3.2 Reduction
3.3 Summary of Proof Terms
3.4 Properties of Proof Terms
3.5 Primitive Recursion L0
3.6 Booleans.
3.7 Lists e
3.8 Summary of Data Types
3.9 Predicates on Data Types
3.10 Induction
4 First-Order Logic and Type Theory
4.1 Quantification
4.2 First-Order Logic
4.3 Arithmetic.
4.4 Contracting Proofs to Programs
4.5 Structural Induction L
4.6 Reasoning about Data Representations
4.7 Complete Induction

Draft of January 9, 2003

11
14
16
17
18
19
23
26

27
27
31
34
36
43
48
49
51
52
95

iv CONTENTS
4.8 Dependent Types oo 97
4.9 Data Structure Invariants 103

5 Decidable Fragments 111
5.1 Quantified Boolean Formulas 112
5.2 Boolean Satisfiability oo 114
5.3 Constructive Temporal Logic 115

Bibliography 119

Draft of January 9, 2003

Chapter 1

Introduction

According to the Encyclopeedia Britannica, logic is the study of propositions and
their use in argumentation. From the breadth of this definition it is immediately
clear that logic constitutes an important area in the disciplines of philosophy
and mathematics. Logical tools and methods also play an essential role in the
design, specification, and verification of computer hardware and software. It
is these applications of logic in computer science which will be the focus of
this course. In order to gain a proper understanding of logic and its relevance
to computer science, we will need to draw heavily on the much older logical
traditions in philosophy and mathematics. We will discuss some of the relevant
history of logic and pointers to further reading throughout these notes. In this
introduction, we give only a brief overview of the contents and approach of this
class.
The course is divided into four parts:

I. Basic Concepts

IT. Constructive Reasoning and Programming
III. Automatic Verification
IV. Properties of Logical Systems

In Part I we establish the basic vocabulary and systematically study propo-
sitions and proofs, mostly from a philosophical perspective. The treatment will
be rather formal in order to permit an easy transition into computational appli-
cations. We will also discuss some properties of the logical systems we develop
and strategies for proof search. We aim at a systematic account for the usual
forms of logical expression, providing us with a flexible and thorough founda-
tion for the remainder of the course. Exercises in this section will test basic
understanding of logical connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat

Draft of January 9, 2003

2 Introduction

surprising that many proofs in mathematics today are not constructive in this
sense. Concretely, we find that for a certain fragment of logic, constructive
proofs correspond to functional programs and vice versa. More generally, we
can extract functional programs from constructive proofs of their specifications.
We often refer to constructive reasoning as intuitionistic, while non-constructive
reasoning is classical. Exercises in this part explore the connections between
proofs and programs, and between theorem proving and programming.

In Part III we study fragments of logic for which the question whether a
proposition is true of false can be effectively decided by an algorithm. Such
fragments can be used to specify some aspects of the behavior of software or
hardware and then automatically verify them. A key technique here is model-
checking that exhaustively explores the truth of a proposition over a finite state
space. Model-checking and related methods are routinely used in industry, for
example, to support hardware design by detecting design flaws at an early stage
in the development cycle.

In Part IV we look more deeply at properties of logical system of the kind
we developed and applied in Parts I-1II. Among the questions we consider is
the relation between intuitionistic and classical reasoning, and the soundness
and completeness of various algorithms for proof search.

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive logic
and its relation to computation. This includes the translation of informally
specified problems to logical language, the ability to recognize correct proofs
and construct them. The skills further include writing and inductively proving
the correctness of recursive programs.

The second goals concerns the transfer of this knowledge to other kinds of
reasoning. We will try to illuminate logic and the underlying philosophical and
mathematical principles from various points of view. This is important, since
there are many different kinds of logics for reasoning in different domains or
about different phenomena', but there are relatively few underlying philosoph-
ical and mathematical principles. Our second goal is to teach these principles
so that students can apply them in different domains where rigorous reasoning
is required.

A third goal relates to specific, important applications of logic in the practice
of computer science. Examples are the design of type systems for programming
languages, specification languages, or verification tools for finite-state systems.
While we do not aim at teaching the use of particular systems or languages,
students should have the basic knowledge to quickly learn them, based on the
materials presented in this class.

These learning goals present different challenges for students from different
disciplines. Lectures, recitations, exercises, and the study of these notes are all
necessary components for reaching them. These notes do not cover all aspects
of the material discussed in lecture, but provide a point of reference for defini-

Ifor example: classical, intuitionistic, modal, second-order, temporal, belief, non-
monotonic, linear, relevance, authentication, ...

Draft of January 9, 2003

tions, theorems, and motivating examples. Recitations are intended to answer
students’ questions and practice problem solving skills that are critical for the
homework assignments. Exercises are a combination of written homework to
be handed at lecture and theorem proving or programming problems to be sub-
mitted electronically using the software written in support of the course. An
introduction to this software is included in these notes, a separate manual is
available with the on-line course material.

Draft of January 9, 2003

118 Introduction

Draft of January 9, 2003

Bibliography

[CGP99] E.M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT

[CR36]

[Dav96]

[Gen35]

[Har95)]

[How80]

[HR00]

[MLS0]

[MLO6]

Press, Cambridge, Massachusetts, 1999.

Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472-482, May
1936.

Rowan Davies. A temporal logic approach to binding-time analysis.
In E. Clarke, editor, Proceedings of the FEleventh Annual Symposium
on Logic in Computer Science, pages 184-195, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

Gerhard Gentzen. Untersuchungen iiber das logische Schlielen. Math-
ematische Zeitschrift, 39:176-210, 405-431, 1935. English translation
in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68-131, North-Holland, 1969.

John Harrison. Binary decision diagrams as a HOL derived rule. The
Computer Journal, 38:162-170, 1995.

W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479-490.
Academic Press, 1980. Hitherto unpublished note of 1969, rearranged,
corrected, and annotated by Howard.

Michael R.A. Huth and Mark D. Ryan. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge University Press,
2000.

Per Martin-Lof. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages
153-175. North-Holland, 1980.

Per Martin-Lof. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11-60, 1996.

Draft of January 9, 2003

120 BIBLIOGRAPHY

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of
Functional Programming, 9(4):471-477, July 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI’98), pages 249-257, Montreal, Canada, June 1998. ACM Press.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In A. Aiken, editor, Conference Record of the 26th Sym-
posium on Principles of Programming Languages (POPL’99), pages
214-227. ACM Press, January 1999.

Draft of January 9, 2003

