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Introduction Rules Elimination Rules

A true B true
∧I

A ∧B true

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

>I
> true no >E rule

u
A true

...

B true
⊃Iu

A⊃B true

A⊃B true A true
⊃E

B true

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

no ⊥I rule
⊥ true

⊥E
C true

Notational Definitions. We use the following notational definitions.
¬A = A⊃⊥ not A
A≡B = (A⊃B) ∧ (B⊃A) A if and only if B

2.8 A Linear Notation for Proofs

The two-dimensional format for rules of inference and deductions is almost uni-
versal in the literature on logic. Unfortunately, it is not well-suited for writ-
ing actual proofs of complex propositions, because deductions become very un-
wieldy. Instead with use a linearized format explained below. Furthermore,
since logical symbols are not available on a keyboard, we use the following con-
crete syntax for propositions:

A≡B A <=> B A if and only if B
A⊃B A => B A implies B
A ∨B A | B A or B
A ∧B A & B A and B
¬A ~ A not A
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20 Propositional Logic

The operators are listed in order of increasing binding strength, and impli-
cation (=>), disjunction (|), and conjunction (&) associate to the right, just like
the corresponding notation from earlier in this chapter.

The linear format is mostly straightforward. A proof is written as a sequence
of judgments separated by semi-colon ‘;’. Later judgements must follow from
earlier ones by simple applications of rules of inference. Since it can easily be
verified that this is the case, explicit justifications of inferences are omitted.
Since the only judgment we are interested in at the moment is the truth of a
proposition, the judgment “A true” is abbreviated simply as “A”.

The only additional notation we need is for hypothetical proofs. A hypo-
thetical proof

A true
...

C true

is written as [A;...;C].

In other words, the hypothesis A is immediately preceded by a square bracket
(‘[’), followed by the lines representing the hypothetical proof of C, followed by
a closing square bracket (‘]’). So square brackets are used to delimit the scope
of an assumption. If we need more than hypothesis, we nest this construct as
we will see in the example below.

As an example, we consider the proof of (A⊃B) ∧ (B⊃C)⊃(A⊃C) true.
We show each stage in the proof during its natural construction, showing both
the mathematical and concrete syntax, except that we omit the judgment “true”
to keep the size of the derivation manageable. We write ‘...’ to indicate that
the following line has not yet been justified.

...
(A⊃B) ∧ (B⊃C)⊃(A⊃C)

...

(A => B) & (B => C) => (A => C);

The first bottom-up step is an implication introduction. In the linear form,
we use our notation for hypothetical judgments.

u
(A⊃B) ∧ (B⊃C)

...

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

...

A => C ];

(A => B) & (B => C) => (A => C);

Again, we proceed via an implication introduction. In the mathematical
notation, the hypotheses are shown next to each other. In the linear notation,
the second hypothesis A is nested inside the first, also making both of them
available to fill the remaining gap in the proof.
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2.8 A Linear Notation for Proofs 21

u
(A⊃B) ∧ (B⊃C)

w
A

...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

[ A;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

Now that the conclusion is atomic and cannot be decomposed further, we
reason downwards from the hypotheses. In the linear format, we write the
new line A => B; immediately below the hypothesis, but we could also have
inserted it directly below A;. In general, the requirement is that the lines
representing the premise of an inference rule must all come before the conclusion.
Furthermore, lines cannot be used outside the hypothetical proof in which they
appear, because their proof could depend on the hypothesis.

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B w

A
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

[ A;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

Nex we apply another straightforward top-down reasoning step. In this case,
there is no choice on where to insert B;.

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A
⊃E

B
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

[ A;

B;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

For the last two steps, we align the derivations vertically. The are both
top-down steps (conjunction elimination followed by implication elimination).
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22 Propositional Logic

u
(A⊃B) ∧ (B⊃C)

∧ER
B⊃C

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A
⊃E

B
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

B => C;

[ A;

B;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);
In the step above we notice that subproofs may be shared in the linearized

format, while in the tree format they appear more than once. In this case it is
only the hypothesis (A⊃B) ∧ (B⊃C) which is shared.

u
(A⊃B) ∧ (B⊃C)

∧ER
B⊃C

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A
⊃E

B
⊃E

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

B => C;

[ A;

B;

C ];

A => C ];

(A => B) & (B => C) => (A => C);
In the last step, the linear derivation only changed in that we noticed that

C already follows from two other lines and is therefore justified.

Draft of September 7, 2000



2.9 Normal Deductions 23

For other details of concrete syntax and usage of the proof-checking program
available for this course, please refer to the on-line documentation available
through the course home page.

2.9 Normal Deductions

The strategy we have used so far in proof search is easily summarized: we reason
with introduction rules from the bottom up and with elimination rules from the
top down, hoping that the two will meet in the middle. This description is
somewhat vague in that it is not obvious how to apply it to complex rules such
as disjunction elimination which involve formulas other than the principal one
whose connective is eliminated.

To make this precise we introduce two new judgments
A ↑ A has a normal proof
A ↓ A has a neutral proof

We are primarily interest in normal proofs, which are those that our strategy
can find. Neutral proofs represent an auxiliary concept (sometimes called an
extraction proof ) necessary for the definition of normal proofs.

We will define these judgments via rules, trying to capture the following
intuitions:

1. A normal proof is either neutral, or proceeds by applying introduction
rules to other normal proofs.

2. A neutral proof proceeds by applying elimination rules to hypotheses or
other neutral proofs.

By construction, every A which has a normal (or neutral) proof is true. The
converse, namely that every true A has a normal proof also holds, but is not at
all obvious. We may prove this property later on, at least for a fragment of the
logic.

First, a general rule to express that every neutral proof is normal.

A ↓
↓↑

A ↑

Conjunction. The rules for conjunction are easily annotated.

A ↑ B ↑
∧I

A ∧B ↑
A ∧B ↓

∧EL
A ↓

A ∧B ↓
∧ER

B ↓

Truth. Truth only has an introduction rule and therefore no neutral proof
constructor.

>I
> ↑
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24 Propositional Logic

Implication. Implication first fixes the idea that hypotheses are neutral, so
the introduction rule refers to both normal and neutral deductions.

u
A ↓
...

B ↑
⊃Iu

A⊃B ↑

A⊃B ↓ A ↑
⊃E

B ↓

The elimination rule is more difficult to understand. The principal premise
(with the connective “⊃” we are eliminating) should have a neutral proof. The
resulting derivation will once again be neutral, but we can only require the
second premise to have a normal proof.

Disjunction. For disjunction, the introduction rules are straightforward. The
elimination rule requires again the requires the principal premise to have a
neutral proof. An the assumptions introduced in both branches are also neutral.
In the end we can conclude that we have a normal proof of the conclusion, if we
can find a normal proof in each premise.

A ↑
∨IL

A ∨B ↑
B ↑

∨IR
A ∨B ↑ A ∨B ↓

u
A ↓
...

C ↑

w
B ↓

...

C ↑
∨Eu,w

C ↑

Falsehood. Falsehood is analogous to the rules for disjunction. But since
there are no introduction rules, there are no cases to consider in the elimination
rule.

⊥ ↓
⊥E

C ↑

All the proofs we have seen so far in these notes are normal: we can easily
annotate them with arrows using only the rules above. The following is an
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2.9 Normal Deductions 25

example of a proof which is not normal.

w
¬A true

u
A true

w
¬A true

∧I
A ∧ ¬A true

∧EL
A true

⊃E
⊥ true

⊃Iw
¬A⊃⊥ true

⊃Iu
A⊃¬A⊃⊥ true

If we follow the process of annotation, we fail at only one place as indicated
below.

w
¬A ↓

u
A ↓

w
¬A ↓

∧I
A ∧ ¬A ?

∧EL
A ↓
↓↑

A ↑
⊃E

⊥ ↓
↓↑

⊥ ↑
⊃Iw

¬A⊃⊥ ↑
⊃Iu

A⊃¬A⊃⊥ ↑

The situation that prevents this deduction from being normal is that we
introduce a connective (in this case, A ∧ ¬A) and then immediately eliminate
it. This seems like a detour—why do it at all? In fact, we can just replace this
little inference with the hypothesis A ↓ and obtain a deduction which is now
normal.

w
¬A ↓

u
A ↓
↓↑

A ↑
⊃E

⊥ ↓
↓↑

⊥ ↑
⊃Iw

¬A⊃⊥ ↑
⊃Iu

A⊃¬A⊃⊥ ↑

It turns out that the only reason a deduction may not be normal is an
introduction followed by an elimination, and that we can always simplify such
a derivation to (eventually) obtain a normal one. This process of simplification
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26 Propositional Logic

is directly connected to computation in a programming language. We only
need to fix a particular simplification strategy. Under this interpretation, a
proof corresponds to a program, simplification of the kind above corresponds
to computation, and a normal proof corresponds to a value. It is precisely this
correspondence which is the central topic of the next chapter.

2.10 Exercises

Exercise 2.1 Show the derivations for the rules ≡I, ≡EL and ≡ER under the
definition of A≡B as (A⊃B) ∧ (B⊃A).
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[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of September 7, 2000


