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Chapter 1

Introduction

In mathematics, one sometimes lives under the illusion that there is just one
logic that formalizes the correct principles of mathematical reasoning, the so-
called predicate calculus or classical first-order logic. By contrast, in philosophy
and computer science, one finds the opposite: there is a vast array of logics
for reasoning in a variety of domains. We mention intuitionistic logic, sorted
logic, modal logic, description logic, temporal logic, belief logic, dynamic logic,
Hoare logic, specification logic, evaluation logic, relevance logic, higher-order
logic, non-monotonic logic, bunched logic, non-commutative logic, affine logic,
and, yes, linear logic. Many of these come in a variety of flavors.

There are several reasons for these differing views on logic. An important
reason is that in mathematics we use logic only in principle, while in computer
science we are interested in using logic in practice. For example, we can eliminate
sorts from predicate logic by translating them to predicates and relativizing
quantifiers. For example, Vz:s. A(z) can be reformulated as Vz. S(z) D A(z).
This means, in principle, we do not have to bother with sorts when studying
logic. On the other hand, practical reasoning with formulas after sorts have
been eliminated is much more complex than before. An intrinisic property of
an object (¢ has sort s) has now become a proof obligation (S(t) is true). As
a result, some theorem provers such as SPASS instead apply essentially the
opposite transformation, translating monadic predicates into sorts before or
during the theorem proving process.

Another important difference between the mathematical and computational
point of view lies in the conceptual dependency between the notions of proof
and truth. In traditional mathematics we are used to thinking of “truth” as
existing abstractly, independently of anyone “knowing” the truth or falsehood
of a proposition. Proofs are there to demonstrate truth, but truth is really
independent of proof. In computer science, however, we have to be concerned
with computation. Proofs in this context show how to construct (= compute)
objects whose existence is asserted in a proposition. This means that the notions
of construction and proof come before the notion of truth. For example, 3x. A(x)
is true if we can construct a ¢ such that A(t) is true. Implication is another
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9 Introduction

example, where A D B is true if we can construct a proof of B from a proof of

A.

Our approach to linear logic is strongly influenced by both of these points.
First, we identify an important problem domain, namely reasoning with state,
that can be translated into the predicate calculus only with a great deal of
coding which makes simple situations appear complex. Second, we develop
an appropriate logic constructively. This means we explain the meaning of
the connectives via their proof rules, and not by an external mathematical
semantics. This is both philosophically sound and pragmatically sufficient to
understand a logic and how to use it.

Before we launch into examples and informal description of linear logic, we
should point out that our perspective is neither historical (linear logic instead
arose from domain theory) nor the most popular (much of the current work on
linear logic accepts the non-constructive law of excluded middle). On the other
hand, we believe our intuitionistic view of linear logic has its own compelling
beauty, simplicity, and inevitability, following the tradition of Gentzen [Gen35],
Prawitz [Pra65], and Martin-Lo6f [ML96]. Furthermore, intuitionistic linear logic
can directly accomodate most applications that classical linear logic can, but
not vice versa.

The interested reader is referred to the original paper by Girard [Gir87], and
several surveys [Lin92, Sce93, Tro92] for other views on linear logic. A historical
introduction [Dos93] and context for linear and other so-called substructural
logics outside computer science can be found in [SHD93].

As a motivating example for linear logic we consider the so-called blocks
world, which is often used to illustrate planning problems in artificial intelli-
gence. It consists of various blocks stacked on a table and a robot arm that is
capable of picking up and putting down one block at a time. We are usually
given an initial configuration and some goal to achieve. The diagram below
shows typical situation.

—

g‘ m table

We would like to describe this situation, the legal moves, and the problem of
achieving a particular goal in logical form. This example led to an independent
discovery of a fragment of linear logic by Bibel [Bib86] around the same time
that Girard developed linear logic based on a very different foundations.
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on(z,y) block z is on block y
tb(z) block z is on the table
holds(z) robot arm holds block
empty robot arm is empty
clear(z) the top of block z is clear

A state is described by a collection of propositions that are true. For exam-
ple, the state above would be described as

Ay = (empty, th(a), on(b, a), clear(b), tb(c), clear(c))

A goal to be achieved can also be described as a logical proposition such
as on(a,b). We would like to develop a logical system so that we can prove a
goal G from some assumptions A if and only if the goal G can be achieved from
the initial state A. In this kind of representation, plans correspond to proofs.
The immediate problem is how to describe legal moves. Consider the following
description:

If the robot hand is empty, a block x is clear, and = is on y, then we
can pick up the block, that is, achieve a state where the robot hand
holds  and y is clear.

One may be tempted to formulate this as a logical implication.
V. Vy. (empty A clear(z) A on(z,y)) D (holds(z) A clear(y))

However, this encoding is incorrect. With this axiom we can derive contradictory
propositions such as empty Aholds(b). The problem is clear: logical assumptions
persist. In other words, ordinary predicate calculus has no notion of state.

One can try to solve this problem in a number of ways. One way is to
introduce a notion of time. If we OA to denote the truth of A at the next time,
then we might say

V. Vy. (empty A clear(x) A on(z,y)) D O(holds(z) A clear(y))

Now the problem above has been solved, since propositions such as empty A
Oholds(b) are not contradictory. However, we now have the opposite problem:
we have not expressed that “everything else” stays the same when we pick up a
block. Expressing this in temporal logic is possible, but cumbersome. At heart,
the problem is that we don’t really need a logic of time, but a logic of state.

Miraculously, this is quite easy to achieve by changing our rules on how
assumptions may be used. We write

Aqtrue, ..., A, true = C true

to denote that we can prove C' from assumptions Ay, ..., A,, using every as-
sumption ezactly once. Another reading of this judgment is:
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4 Introduction

If we had resources Ay, ..., A, we could achieve goal C.

We refer to the judgment above as a linear hypothetical judgment. The order
in which assumptions are presented is irrelevant, so we freely allow them to be
exchanged. We use the letter A to range over a collection of linear assumptions.

From our point of view, the reinterpretation of logical assumptions as con-
sumable resources is the central insight in linear logic from which all else follows
in a systematic fashion. Such a seemingly small change has major consequences
in properties of the logic and its logical connectives. First, we consider the
laws that are derived from the nature of the linear hypothetical judgment itself,
without regard to any logical connectives. The first expresses that if we have a
resource A we can achieve goal A.

—  hyp
Atrue B A true

Note that there may not be any leftover resources, since all resources must
be used exactly once. The second law in some sense defines the meaning of
linear hypothetical judgments.

If A b= Atrue and A', Atrue = C true then A, A’ 1 C true.

Informally: if we know how to achieve goal A from A, and if we know how
to achieve C from A and A’, then we can achieve C if we have both collections
of resources, A and A’. We write A, A’ as concatentation of the resources. This
law is called a substitution principle, since it allows us to substitute a proof of
A true for uses of the assumption A true in another deduction. The substitution
principle does not need to be assumed as a primitive rule of inference. Instead,
we want to assure that whenever we can derive the first two judgments, we can
already derive the third directly. This expresses that our logical laws have not
violated the basic interpretation of the linear hypothetical judgment: we can
never obtain more from a resource A than is allowable by our understanding of
the linear hypothetical judgment.

Next we introduce a few connectives, considering each in turn.

Simultaneous Conjunction. We write AQ B if A and B are true in the same
state. For example, we should be able to prove A true, Btrue = A ® B true.
The rule for infering a simultaneous conjunction reads
A W A true A’ i B true -
AA - A® B true

Read from the conclusion to the premises:

In order to achieve goal A ® B we divide our resources into A and
A’ and show how to achieve A using A and B using A’.
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This is called an introduction rule, since it introduce a logical connective in
the conclusion. An introduction rule explains the meaning of a connective by
explaining how to achieve it as a goal. Conversely, we should also specify how to
use our knowledge that we can achieve A® B. This is specified in the elimination

rule.
A H A® B true A, Atrue, B true W C true

A, A - C true

®FE

We read an elimination rule downward, from the premise to the conclusion:

If we know that we can achieve AQB from A, we can proceed as if we
had both A and B together with some other resources A’. Whatever
goal C we can achieve form these resources, we can achieve with the
joint resources A and A'.

Intuitively, it should be clear that this is sound from the meaning of linear
hypothetical judgments explained above and summarized in the substitution
principle. We will see later more formally how to check that introduction and
elimination rules for a connective fit together correctly.

Alternative Conjunction. We write A& B if we can goals A and B with the
current resources, but only alternatively. For example, if we have one dollar, we
can buy a cup of tea or we can buy a cup of coffee, but we cannot buy them
both at the same time. For this reason this is also called internal choice. Do not
confuse this with disjunction or “exclusive or”, the way we often do in natural
language! A logical disjunction (also called external choice) would correspond
to a vending machine that promises to give you tea or coffee, but you cannot
choose between them.

The introduction rule for alternative conjunction appears to duplicate the
resources.

A H A true A H—Btme&I
A H A&B true

However, this is an illusion: since we will actually have to make a choice between
A and B, we will only need one copy of the resources. That we are making an
internal choice is also apparent in the elimination rules. If we know how to
achieve A& B we but we have to choose between two rules to obtain either A or
B.

A H A&B true A H A&B true

— &Ky, — &Egr

A K A true A K B true

Note that we do not use alternative conjunction directly in the blocks world
example.

Linear Implication. For our blocks world example, we also need a form of
implication: if we had resource A we could achieve B. This is written as A — B.
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6 Introduction

It expresses the meaning of the linear hypothetical judgment as a proposition.
A, A true H B true
A H A— B true

!

The elimination rule for A — B allows us to conclude that B can be achieved,
if we can achieve A.

A K A—o B true A = A true
A, A" H B true

—o

Note that we need to join the resources, which should be clear from our intuitive
understanding of assumptions as resources.

Without formalizing it, we also assume that we have a universal quantifier
with its usual logical meaning. Then we can express the legal moves in the
blocks world with the following axioms:

geton : Vz.Vy. empty ® clear(x) ® on(x,y) —o holds(z) ® clear(y),
gettb  : Va.empty ® clear(z) ® tb(x) —o holds(z),
puton : Vz.Vy. holds(z) ® clear(y) — empty ® on(zx,y) ® clear(x),
puttb : Vaz. holds(z) — empty ® tb(z) ® clear(x).

Each of these represents a particular possible action, assuming that it can
be carried out successfully. Matching the left-hand side of one these rules will
consume the corresponding resources so that, for example, the proposition empty
with no longer be available after the geton action has been applied.

For a given state A = Ay,..., A, we write A =A4; ®---® A,. Then we
can reach state A’ from state A if and only if we can prove

(R A) —(Q A true

where the axioms for the legal moves may be used arbitrarily many times. The
reader is invited to prove various instances of the planning problem using the
rules above.

This is still somewhat unsatisfactory. First of all, we may want to solve
a planning problem where not the complete final state, but only some desired
aspect of the final state (such as on(a, b)) is specified. Second, the axioms fall
outside of the framework on linear hypothetical judgments: they may be used
in an unrestricted manner, while state is used linearly.

The first problem is easily remedied by adding another logical constant. The
second is more complicated and postponed until the full discussion of natural
deduction.

Top. The goal T can always be achieved, regardless of which resources we
currently have. We can also think of it as consuming all available resources.

— TI
A KT true
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Consequently, we have no information when we know T and there is no elimi-
nation rule. It should be noted that T is the unit of alternative conjunction in
the sense that A&T is equivalent to A.

We can use T in order to specify incomplete goals. For example, if we want
to show that we can achieve a state where block a is no b, but we do not care
about any other aspect of the state, we can ask if we can prove

Ap Fon(a,b)® T

where Ag is the representation of the initial state. There is another form of
trivial goal we discuss next.

Unit. The goal 1 can be achieved if we have no resources.

—1I
- B 1 true

Here we denote the empty collection of resources with “.”. In this case, knowing
1 true actually does give us some information, namely that the resources we have
can be consumed. This is reflected in the elimination rule.

A H 1 true A H C true 1B
A, A - C true

Multiplicative truth is the unit of ® in the sense that A ® 1 is equivalent to A.

Using our intuitive understanding of the connectives, we can decide various
judgments. And, of course, we can back this up with proofs given the rules
above. We only give two examples here.

A—o(B—C)true = (A® B) — C true

Informally we reason as follows:

In order to show (A ® B) — C we assume A ® B and show C.
If we know A ® B true we have both A and B simultaneously.
Using A and A —(B — (') we can then obtain B— C'.

Using B we can now obtain C.

Note that we use every assumption exactly once in this argument—Ilinearity is
preserved.

A ® B true &~ A&B true

This linear hypothetical judgment cannot be true for arbitrary A and B
(although it could be true for some specific A and B). We reason as follows:

Assume A ® B true = A&B true holds for arbitrary A and B.
We know A true, B true + A ® B true.
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Introduction

Therefore, by the substitution principle, A true, B true H A&B true.
We also know A& B true H- A true by the hypothesis rule and &FE7..
Therefore A true, B true H- A true, again by substitution.

But this is a contradiction to the meaning of the linear hypothetical
judgment (B is not used).
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Chapter 2

Linear Natural Deduction

Linear logic, in its original formulation by Girard [Gir87] and many subsequent
investigations was presented as a refinement of classical logic. This calculus of
classical linear logic can be cleanly related to classical logic and exhibits many
pleasant symmetries. On the other hand, a number of applications in logic and
functional programming can be treated most directly using the intuitionistic
version. In this chapter we present a basic system of natural deduction defining
intuitionistic linear logic.

Our presentation is a judgmental reconstruction of linear logic in the style
of Martin-Lof [ML96]. It follows the traditions of Gentzen [Gen35], who first
introduced natural deduction, and Prawitz [Pra65], who thoroughly investigated
its theory. A similar development of modal logic is given in [PDO01]. The way
of combining of linear and unrestricted resources goes back to Andreoli [And92]
and Girard [Gir93] and, in an explicitly intuitionistic version, Barber [Bar96].

2.1 Judgments and Propositions

In his Siena lectures from 1983 (finally published in 1996), Martin-Lof provides
a foundation for logic based on a clear separation of the notions of judgment and
proposition. He reasons that to judge is to know and that an evident judgment
is an object of knowledge. A proof is what makes a judgment evident. In logic,
we make particular judgments such as “A is a proposition” or “A is true”,
presupposing in the latter case that A is already known to be a proposition. To
know that “A is a proposition” means to know what counts as a verification of
A, whereas to know that “A is true” means to know how to verify A. In his
words [ML96, Page 27]:

The meaning of a proposition is determined by [...] what counts as
a verification of it.

This approach leads to a clear conceptual priority: we first need to under-
stand the notions of judgment and evidence for judgments, then the notions of
proposition and verifications of propositions to understand truth.
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10 Linear Natural Deduction

As an example, we consider the explanation of conjunction. We know that
A A\ B is a proposition if both A and B are propositions. As a rule of inference
(called conjunction formation):

A prop B prop

AF
AN B prop

The meaning is given by stating what counts a verification of A A B. We say
that we have a verification of A A B if we have verifications for both A and B.
As a rule of inference:

A true B true Al

AN B true

where we presuppose that A and B are already known to be propositions. This
is known as an introduction rule, a term due to Gentzen [Gen35] who first
formulated a system of natural deduction. Conversely, what do we know if we
know that AA B is true? Since a verification of AA B consists of verifications for
both A and B, we know that A must be true and B must be true. Formulated
as rules of inference (called conjunction eliminations):

A/\Btme/\EL A/\Btme/\ER

A true B true

From the explanation above it should be clear that the two elimination rules
are sound: if we define the meaning of conjunction by its introduction rule then
we are fully justified in concluding that A is true if A A B is true, and similarly
for the second rule.

Soundness guarantees that the elimination rules are not too strong. We
have sufficient evidence for the judgment in the conclusion if we have sufficient
evidence for the judgment in the premise. This is witnessed by a local reduction
which constructs evidence for the conclusion from evidence for the premise.

D &
A true B true
AT
AN B true D
— ANE;, — At
A true rue

A symmetric reduction exists for AEgr. We only consider each elimination im-
mediately preceded by an introduction for a connective. We therefore call the
property that each such pattern can be reduced local soundness.

The dual question, namely if the elimination rules are sufficiently strong,
has, as far as we know, not been discussed by Martin-Lof. Of course, we can
never achieve “absolute” completeness of rules for inferring evident judgments.
But in some situations, elimination rules may be obviously incomplete. For
example, we might have overlooked the second elimination rule for conjunction,
AER. This would not contradict soundness, but we would not be able to exploit
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2.2 Linear Hypothetical Judgments 11

the knowledge that A A B is true to its fullest. In particular, we cannot recover
the knowledge that B is true even if we know that A A B is true.

In general we say that the elimination rules for a connective are locally
complete if we can apply the elimination rules to a judgment to recover enough
knowledge to permit reconstruction of the original judgment. In the case of
conjunction, this is only possible if we have both elimination rules.

D D
AN B true A A B true
- ANEp, ——— AFEpR
D A true B true
A A B true —E AA B true N

We call this pattern a local expansion since we obtain more complex evidence
for the original judgment.

An alternative way to understand local completeness is to reconsider our
meaning explanation of conjunction. We have said that a verification of A A B
consists of a verification of A and a verification of B. Local completeness entails
that it is always possible to bring the verification of A A B into this form by a
local expansion.

To summarize, logic is based on the notion of judgment where an evident
judgment is an object of knowledge. A judgment can be immediately evident
or, more typically, mediately evident, in which case the evidence is provided by
a proof. The meaning of a proposition is given by what counts as a verification
of it. This is written out in the form of introduction rules for logical connectives
which allow us to conclude when propositions are true. They are complemented
by elimination rules which allow us to obtain further knowledge from the knowl-
edge of compound propositions. The elimination rules for a connective should
be locally sound and complete in order to have a satisfactory meaning expla-
nation for the connective. Local soundness and completeness are witnessed by
local reductions and expansions of proofs, respectively.

Note that there are other ways to define meaning. For example, we fre-
quently expand our language by notational definition. In intuitionistic logic
negation is often given as a derived concept, where —A is considered a notation
for A D 1. This means that negation has a rather weak status, as its meaning
relies entirely on the meaning of implication and falsehood rather than having
an independent explanation. The two should not be mixed: introduction and
elimination rules for a connective should rely solely on judgmental concepts and
not on other connectives. Sometimes (as in the case of negation) a connective
can be explained directly or as a notational definition and we can establish that
the two meanings coincide.

2.2 Linear Hypothetical Judgments

So far we have seen two forms of judgment: “A is a proposition” and “A is
true”. These are insufficient to explain logical reasoning from assumptions.
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12 Linear Natural Deduction

For this we need hypothetical judgments and hypothetical proofs, which are

new primitive notions. Since we are primarily interested in linear logic, we

begin with linear hypothetical judgments and linear hypothetical proofs. We will

postpone discussion of (unrestricted) hypothetical judgments until Section 2.4.
We write the general form of a linear hypothetical judgment as

oy dy BT

which expresses “J assuming Jy through J, linearly” or “J under linear hy-
potheses Jy through J,”. We also refer to Ji,...,J, as the antecedents and J
as the succedent of the linear hypothetical judgment. The intent of the qualifier
“linear” is to indicate that each hypothesis J; in the antecedent is to be used
exactly once. The order of the linear hypotheses is irrelvant, so we will silently
allow them to be exchanged.

We now explain what constitutes evidence for a linear hypothetical judg-
ment, namely a linear hypothetical proof. In a hypothetical proof of the judg-
ment above we can use the hypotheses J; as if they were available as resources.
We can consequently substitute an arbitrary derivation of J; for the uses of a
hypothesis J; to obtain a judgment which no longer depends on J;. Thus, at
the core, the meaning of hypothetical judgments relies upon substitution on the
level of proofs, that is, supplanting the use of a hypothesis by evidence for it.

The first particular form of linear hypothetical judgment we need here is

ui:Aq true, ..., un:A, true H A true

where we presuppose that A; through A, and A are all propositions. Note that
the propositions A; do not need to be distinct. We therefore label them with
distinct variables u; so we can refer to them unambiguously. We will sometimes
omit the labels for the sake of brevity, but one should keep in mind that

Aj true, ..., A, true H A true

is just a shorthand. We write A for a collection of linear hypotheses of the form
above. The special case of the substitution principle for such hypotheses has
the form

Linear Substitution Principle for Truth
If A = A true and A’, u:A true = C true then A, A K C true.

Here we write A’, A for the concatenation of two collections of linear hypotheses
with distinct labels. We can always rename some labels in A or A’ in order to
satisfy this side condition. We further have the general rule for the use of
hypotheses.

Linear Hypothesis Rule

U
w:A true = A true
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2.3 Propositions in Linear Logic 13

We sometimes write hyp as the justification for the hypothesis rule if the label
u is omitted or irrelevant.

Note that the substitution principle and the linear hypothesis rule together
enforce that assumptions are used exactly once. Viewed from the conclusion,
the substitution principle splits its resources, distributing it to the two premises.
Therefore each assumption in A, A’ will have to be used in either the proof of
A or the proof of C' from A, but not in both. The linear hypothesis rule does
not allow any additional resources among the assumptions besides A, thereby
forcing each resource to be used.

We emphasize that the substitution principle should not be viewed as an
inference rule, but a property defining hypothetical judgments which we use
in the design of a formal system. Therefore it should hold for any system of
connectives and inference rules we devise. The correctness of the hypothesis
rule, for example, can be seen from the substitution principle.

One further notation: [D/u]€ is our notation for the result of an appeal to
the substitution principle. That is,

D & [D/u]E

It A = A true and Al u:A W C true then A, A" 1= C true

2.3 Propositions in Linear Logic

Based on the notion of linear hypothetical judgment, we now introduce the
various connectives of linear logic via their introduction and elimination rules.
We skip, for now, the obvious formation rules for propositions. For each of
the connectives we carefully check the local soundness and completeness of the
rules and verify the preservation of resources. Also for purely typographical
reasons, we abbreviate “A true’ by just writing “A” in the linear hypothetical
judgments.

Simultaneous Conjunction. Assume we have some resources and we want
to achieve goals A and B simultaneously, written as A® B (pronounced “A and
B” or “A tensor B”). We need to split our resources into A and A’ and show
that with resources A we can achieve A and with A’ we can achieve B.

AWA A KB
AA W A®B

®I

Note that the splitting of resources, viewed bottom-up, is a non-deterministic
operation.

The elimination rule should capture what we can achieve if we know that we
can achieve both A and B simultaneously from some resources A. We reason
as follows: If with A, B, and additional resources A’ we could achieve goal C,
then we could achieve C' from resources A and A’.

AKF+AQB A uwA,wB W C
AN C

®FE
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14 Linear Natural Deduction

Note that by our general assumption, u and w must be new hypothesis labels
in the second premise. The way we achieve C' is to commit resources A to
achieving A and B by the derivation of the left premise and then using the
remaining resources A’ together with A and B to achieve C.

As before, we should check that the rules above are locally sound and com-
plete. First, the local reduction

Dy D,
Ay H A Ay + B
: S . [DyulDafule
A, Ay HA®B A uw:A,w:B +C B ALALA K C
®FE
Ay, Ay, A" HC

which requires two substitutions for linear hypotheses and the application of the
substitution principle. The derivation on the right shows that the elimination
rules are not too strong.

For local completeness we have the following expansion.

u w
wA A w:B = B
D ®I
D AKFA®B wA,w:B +-A® B
AwAeB " AW A®B o

The derivation on the right verifies that the elimination rules are strong enough
so that the simultaneous conjunction can be reconstituted from the parts we
obtain from the elimination rule.

Alternative Conjunction. Next we come to alternative conjunction A&B
(pronounced “A with B”). It is sometimes also called internal choice. In its
introduction rule, the resources are made available in both premises, since we
have to make a choice which among A and B we want to achieve.

AKFA A+ B
A H A’B

&l

Consequently, if we have a resource A&B, we can recover either A or B, but
not both simultaneously. Therefore we have two elimination rules.

A H A’B A H A’B

&EL —&ERr
A KA A KB

The local reductions formalize the reasoning above.

D &
A KA A+ B
A H A’B A KA
—&EL
A KA
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2.3 Propositions in Linear Logic 15

D &
A KA A KB
A K A&B A+ B
— &ERr
A+ B

We may recognize these rules from intuitionistic natural deduction, where the
assumptions are also available in both premises. The embedding of unrestricted
intuitionistic logic in linear logic will therefore map intuitionistic conjunction
A A B to alternative conjunction A&B. The expansion is also already familiar.

D D
- A W AB A W A2B
—  &F, ———— &Fy
AW AgB <~ F A A A B
al
A W A&B

Linear Implication. The linear implication or resource implication internal-
izes the linear hypothetical judgment at the level of propositions. We A — B
(pronounced “A linearly implies B” or “A lolli B”) for the goal of achieving B

with resource A.

A, w:A B
R |
A H+A—-oB

If we know A — B we can obtain B from a derivation of A.

AW A—-B A A
A A" B

—o

As in the case for simultaneous conjunction, we have to split the resources,
devoting A to achieving A — B and A’ to achieving A.

The local reduction carries out the expected substitution for the linear hy-
pothesis.

D

A, w:A + B

e £ N [€/w]D

At A—-B A KA B AA W B
—FE

AA B
The rules are also locally complete, as witnessed by the local expansion.

D

—_—w
A H+A—oB wA A
D . oF
At A—-B B A,w:A & B
- I
At A—-B
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16 Linear Natural Deduction

Unit. The trivial goal which requires no resources is written as 1.

—1I
-1

If we can achieve 1 from some resources A we know that we can consume all

those resources.
A1 A C 1

AA K C

E

The rules above and the local reduction and expansion can be seen as a case of 0-
ary simultaneous conjunction. In particular, we will see that 1 ® A is equivalent
to A.

&

—1I
1 A H-C €
£ F AkC
A O

D —1I

D N A -1 S 1
A K1 E 1E

A1

Top. There is also a goal which consumes all resources. It is the unit of
alternative conjunction and follows the laws of intuitionistic truth.

TI
AKT

There is no elimination rule for T and consequently no local reduction (it is
trivially locally sound). The local expansion replaces an arbitrary derivation by
the introduction rule.

E TI
AT AKT

Disjunction. The disjunction A ® B (also called external choice) is charac-
terized by two introduction rules.

AwA AW B
AWwAsB - AAaB

As in the case for intuitionistic disjunction, we therefore have to distinguish two
cases when we know that we can achieve A & B.

A KA B A uA +=C A, w:B I C
AN HC

&)
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2.3 Propositions in Linear Logic 17

Note that resources A’ appear in both branches, since only one of those two
derivations will actually be used to achieve C, depending on the derivation of
A @ B. This can be seen from the local reductions.

D
A KA
SRS 0 & F N [D/u]€
At AdB AN wAWC  A,wB K C E AN HKC
SE
AN C
D
A KB
At+A®B A,u:AHC  A,wB HC E AN KC
SE
AN C
The local expansion is straightforward.
SE— _w
wA A w:B =+ B
D D VI VIR
AW AeB =E AW A®B wA A B w:B +-A®B
VE

AHA® B

Impossibility. The impossibility 0 is the case of a disjunction between zero
alternatives and the unit of @. There is no introduction rule. In the elimination
rule we have to consider no branches.

AHFO0
AA K C

There is no local reduction, since there is no introduction rule. However, as in
the case of falsehood in intuitionistic logic, we have a local expansion.

D
b Ao
A -0 " Awo

Universal Quantification. Quantifiers do not interact much with linearity.
We say Vx. A is true if [a/z]A is true for an arbitrary a. This is an example of
a parametric judgment that we will discuss in more detail in Section 77?.

A Ha/z]A A HVa. A

a

A FVz. A A K [t/z]A

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in A or Vx. A. In other words, the deriva-
tion of the premise must parametric in a. The local reduction carries out the

Draft of January 26, 2002



18 Linear Natural Deduction

substitution for the parameter.

D
A ¥ [a/z]A
o T e [t/a]D
Abrved TR AW (a4
— _WE
A ¥ [t/z]A

Here, [t/a]D is our notation for the result of substituting ¢ for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in Vz. A or A. The local expansion
for universal quantification is even simpler.

D
A Ve A
A HFVz. A A K [a/x]A
A Ve A

Existential Quantification. Again, this does not interact very much with
resources.

A K [t/z]A AHdx. A A wila/z]A = C
|

- 6 ElEa
A W3z A AA HC

The second premise of the elimination rule must be parametric in a, which is
indicated by the superscript a. In the local reduction we will substitute for this
parameter.

D

A W [t/z]A
- & D/ullt/alE
Abaea A, wla/z]A W C =R [A,/A]’[ H/—]C’

JE®
AA O

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]€ have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

> D wla/z]A H [a/z]A -

AWde A —F A4 wla/z]A W 3z, A
A 3z A

JE©

This concludes the purely linear operators. Negation and another version of
falsehood are postponed to Section 7?7, since they may be formally definable, but
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2.4 Unrestricted Hypotheses in Linear Logic 19

their interpretation is somewhat questionable in the context we have established
so far.

The connectives we have introduced may be classified as to whether the re-
sources are split among the premises or distributed to the premises. Connectives
of the former kind are called multiplicative, the latter additive. For example,
we might refer to simultaneous conjunction also as multiplicative conjunction
and to alternative conjunction as additive conjunction. When we line up the
operators against each other, we notice some gaps. For example, there seems to
be only a multiplicative implication, but no additive implication. Dually, there
seems to be only an additive disjunction, but no multiplicative disjunction. This
is not an accident and is pursued further in Exercise 2.4.

2.4 Unrestricted Hypotheses in Linear Logic

So far, the main judgment permits only linear hypotheses. This means that
the logic is too weak to embed ordinary intuitionistic or classical logic, and we
have failed so far to design a true extension. In order to accomodate ordinary
intuitionistic or classical reasoning, we introduce a new judgment, “A is valid”,
written A valid. We say that A is valid if A is true, independently of the any
resources. This means we must be able to prove A without any resources. More
formally:

Validity
A valid if - + A true.

Note that validity is not a primitive, but a notion derived from truth and linear
hypothetical judgments. The judgment - t A trueis an example of a categorical
judgment that asserts independence from hypotheses and also arises in modal
logic [PD01]. We can see that, for example, A — A valid and (A&B) — A valid
for any propositions A and B.

Validity by itself is a completely straightforward judgment. But matters
become interesting when we admit hypotheses about the validity of propositions.
What laws should govern such hypotheses? Let us assume A valid, which means
that - H A true. First note, that obtaining an instance of A can be achieved
without requiring any resources. This means we can generate as many copies
of the resource A as we wish, or we may decide not to generate any copies at
all. In other words, uses of an assumption A wvalid should be unrestricted rather
than linear. If we use “F” to separate unrestricted hypotheses from a judgment
we are trying to deduce, then our main judgment would have the form

By walid, . . ., By, valid b (Ay true, . .., A, true = C true)
which may be read: under the assumption that By, . .., By, are valid and Ay, ..., A,

are true we can prove C. Alternatively, we could say: with inexhaustible re-
sources By, ..., By, and linear resources A, ..., An, we can achieve goal C.
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20 Linear Natural Deduction

Instead, we will stick with a more customary way of writing this dual hypo-
thetical judgment form by separating the two forms of assumption by a semi-
@, ”

colon “;”. As before, we also label assumptions of either kind with distinct
variables.

(v1:By valid, . . ., Uy B, valid); (ug:Aq true, . . ., un: Ay valid) F C true

It is critical to remember that the first collection of assumptions is unrestricted
while the second collection is linear. We abbreviate unrestricted assumptions
by I and linear assumptions by A.

The valid assumptions are independent of the state and can therefore be
used freely when proving other valid assumptions. That is,

Validity under Hypotheses
't Avalidif T;- = A true.

From this definition we can directly derive a new form of the substitution prin-
ciple.

Substitution Principle for Validity
If ;- A true and (', v:Avalid); A F C true then I'; A+ C true.

Note that the same unrestricted hypotheses I' appear in the first two jugments,
which contrasts with the linear substitution principle where the linear hypothe-
ses are disjoint. This reflects the fact that assumptions in I' may be used
arbitrarily many times in a proof. Note also that the first judgment expresses
I' b A walid, which is necessary so we can substitute for the assumption that
Awalid. For a counterexample see Exercise 2.1.

We also have a new hypothesis rule which stems from the definition of va-
lidity: if A is valid than it definitely must be true.

Unrestricted Hypothesis Rule

v
(T, v:Avalid); - - A true

Note that there may not be any linear hypotheses (which would be unused), but
there may be additional unrestricted hypotheses since they need not be used.

We now restate the original substitution principle and hypothesis rules for
our more general judgment. Their form is determined by the unrestricted nature
of the validity assumptions. We assume that comma binds more tightly than
semi-colon, but may still parenthesize hypotheses to make the judgments more
easily readable.

Substitution Principle for Truth

If ;A F A true and T (A, u:Atrue) B C true then T'; (A, A) +
C true.

Draft of January 26, 2002



2.4 Unrestricted Hypotheses in Linear Logic 21

Hypothesis Rule

u
T uw:Atruet A true

All the rules we presented for pure linear logic so far are extended by adding
the unrestricted context to premises and conclusion (see the rule summary on
page 24). At this point, for example, we can capture the blocks work example
completely inside linear logic. The idea is that the proposition stating the legal
moves do not depend on the current state and are therefore given in I'.

Returning to the blocks world example, a planning problem is now repre-
sented as judgment

FQ; AQ - AQ

where I'g represent the rules which describe the legal operations, Ay is the initial
state represented as a context of the propositions which are true, and A is the
goal to be achieved. For example, the initial state considered earlier would be
represented by

Ay = empty, tb(a), on(b, a), clear(d), tb(c), clear(c)

where we have omitted labels for the sake of brevity. The rules are represented
by unrestricted hypotheses, since they may be used arbitrarily often in the
course of solving a problem. We use the following for rules for picking up or
putting down an object. We use the convention that simultaneous conjunction
® binds more tightly than linear implication —o.

r, —
geton : Vz.Vy. empty ® clear(z) ® on(zx,y) —o holds(z) ® clear(y),
gettb : Vz. empty ® clear(z) ® tb(z) —o holds(z),
puton : Vz.Vy. holds(z) ® clear(y) — empty ® on(z,y) ® clear(x),
puttb : Vz. holds(z) — empty ® tb(z) ® clear(x).

Each of these represents a particular possible action, assuming that it can be
carried out successfully. Matching the left-hand side of one these rules will
consume the corresponding resources so that, for example, the proposition empty
with no longer be available after the geton action has been applied.
The goal that we would like to achieve on(a,b), for example, is represented
with the aid of using T.
Ap=on(a,b)® T

Any derivation of the judgment
To; Ao = A

represents a plan for achieving the goal Ag from the initial situation state Ay.

We now go through a derivation of the particular example above, omitting
the unrestricted resources I'y which do not change throughout the derivation.
Our first goal is to derive

empty, tb(a), on(b, a), clear(d), tb(c), clear(c), empty + on(a,b) ® T
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By using ®I twice we can prove
empty, on(b, a), clear(b) F empty ® clear(b) ® on(b, a)

Using the unrestricted hypothesis rule for geton followed by VE twice and — E
we obtain

empty, clear(b), on(b, a) - holds(b) ® clear(a)

Now we use QE with the derivation above as our left premise, to prove our
overall goal, leaving us with the goal to derive

tb(a), tb(c), clear(c), holds(b), clear(a) - on(a,b) ® T

as our right premise. Observe how the original resources Ag have been split
between the two premises, and the results from the left premise derivation,
holds(b) and clear(a) have been added to the description of the situation. The
new subgoal has exactly the same form as the original goal (in fact, the con-
clusion has not changed), but applying the unrestricted assumption geton has
changed our state.

Proceeding in the same manner, using the rule puttb next leaves us with the
subgoal

tb(a), tb(c), clear(c), clear(a), empty, clear(b), tb(b)  on(a,b) ® T

We now apply getth using a for x and proceeding as above which gives us a
derivation of holds(a). Instead of ®E, we now use the substitution principle
yielding the subgoal

tb(c), clear(c), clear(b), tb(b), holds(a) F on(a,b) ® T
With same technique, this time using puton, we obtain the subgoal
tb(c), clear(c), tb(b), empty, on(a, b), clear(a) - on(a,b) ® T

Now we can conclude the derivation with the ®I rule, distributing resource
on(a,b) to the left premise, which follows immediately as hypothesis, and dis-
tributing the remaining resources to the right premise, where T follows by T1I,
ignoring all resources.

Note that different derivations of the original judgment represent different
sequences of actions (see Exercise 2.5).

Even though it is not necessary in the blocks world example, in order to
embed full intuitionistic (or classical) logic into linear logic, we need connectives
that allows us to make unrestricted assumptions. We show two operators of
this form. The first is unrestricted implication, the second a modal operator
expressing validity as a proposition.
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Unrestricted Implication. The proof of an unrestricted implication A D B

allows an unrestricted assumption A valid while proving that B is true.
(T,v:A); A+ B INAFADB I''HA
— 01 DE
I'NAFADB I'AFB

In the elimination we have to be careful to postulate the wvalidity of A rather

than just its truth, expressed by requiring that there are no linear hypotheses.

The local reduction uses the substitution principle for unrestricted hypotheses.

D
(T,v:A); A B
oI € N [€/v]D
I"AFADB I;-FA B IAFB
OE
I"ARB

In Exercise 2.2 you are asked to show that the rules would be locally unsound
(that is, local reduction is not possible), if the second premise in the elimination
rule would be allowed to depend on linear hypotheses. The local expansion
requires “weakening”, that is, adding unused, unrestricted hypotheses.

yod y
(T,v:A);AFADB (T,v:A);-F A
D E
=5 D)
I'NAFADB (T,v:A); A B
— DI
INAFADB

Here, D’ is constructed from D by adjoining the unused hypothesis u to every
judgment, which does not affect the structure of the derivation.

“Of Course” Modality. Girard [Gir87] observed that there is an alternative
way to connect unrestricted and linear hypotheses by internalizing the notion
of validity via a modal operator !A, pronounced “of course A” or “bang A”.

I'-FA

—

I';-H1A
The elimination rule states that if we can derive F !A than we are allowed to
use A as an unrestricted hypothesis.

IARIA (T, v:A); A= C
!
; (A AYEC

This pair of rules is locally sound and complete via substitution for a valid
assumption.

E

D
I'''HA
Ty £ . [D/v]E
I;-F14 (T, v:A); A’ - C EomARC
'E
;A FC
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e
I'v:A);-FHA
D D —( vA) I
T'AkLlA ~—E IARIA (T,v:A);- 14
’ IE
IARLA

Using the of course modality, one can define the unrestricted implication A D B
as (1A) — B. It was this observation which gave rise to Girard’s development of
linear logic. Under this interpretation, the introduction and elimination rules
for unrestricted implication are derived rules of inference (see Exercise 2.3).

We now summarize the rules of intuitionistic linear logic. A very simi-
lar calculus was developed and analyzed in the categorical context by Bar-
ber [Bar96]. It differs from more traditional treatments by Abramsky [Abr93],
Troelstra [Tro93], Bierman [Bie94] and Albrecht et al. [ABCJ94] in that struc-
tural rules remain completely implicit. The logic we consider here comprises
the following logical operators.

Propositions A = P Atoms
| Aj — A | A1 ®@ Ay |1 Multiplicatives
| Al&AQ | T | A1 D A2 | 0 Additives
|Ve. A | Jz. A Quantifiers
|ADB|!A Exponentials

Recall that the order of both linear and unrestricted hypotheses is irrelevant,
and that all hypothesis label in a judgment must be distinct.

Hypotheses.
u v
TuwAE A (T,v:A);-H A
Multiplicative Connectives.
;A FA I':AsF B AFA®B T (A uwA wB)FC
®I ®FE
I; (A, u:A) - B I'NAFA—B ;A FA
I'NAFA—B I;(AAY-B
IAR1L ;A FC

1E

11
I;-F1 ; (A AYEC
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Additive Connectives.

I' A+ A&B B

. . — &k
IARA F,AI—B&I T:AF A
I';A+ A&B I'AF AB

——F &ERr
I"ARB

— I
ART no T elimination

INARA
IAFA® B
I"AFB
IAFA9 B

ol AFA®B T (A wA)FC Ty (A, w:B)FC
; (A AYEC

&)

@I

I;ARO
— 0E
no 0 introduction — T;(A,A)YFC

Quantifiers.

AF [a/x]A IiARVz. A

a

N —— VE
IARVZ. A ;AR [t/z]A

;AR [t/z]A IARdz A T (A" wia/z]A) = C
—dI
ARz A ; (A AYEC

JE®

Exponentials.
(T,v:A); A+ B I AFADB I;'FA
—— DI DE
I'NAFADB I'AEB

I;-FA IARIA (T, v:A); A= C
T !
;- 1A ; (A, A) O

E

We close this section with another example that exploits the connectives of
linear logic. The first example is a menu consisting of various courses which can
be obtained for 200 French Francs.
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Menu A: FF 200
Onion Soup or Clear Broth
Honey-Glazed Duck

Peas or Red Cabbage
(according to season)

New Potatoes

Chocolate Mousse
(FF 30 extra)

Coffee
(unlimited refills)

FF(200) —o
((0S&CB)
® HGD

® (P®RC)

® NP

® ((FF(30) — CM)&.1)

®C
® (10))

Note the two different informal uses of “or”, one modelled by an alter-
native conjunction and one by a disjunction. The option of ordering choco-
late mousse is also represented by an alternative conjunction: we can choose
(FF(30) — CM)&1 to obtain nothing (1) or pay another 30 francs to obtain the

mousse.
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2.5 An Example: Finite Automata 27

2.5 An Example: Finite Automata

One of the simplest example of computation with state is provided by finite
automata. In this section we discuss possible ways to model non-deterministic
finite automata in linear logic.

We represent each state of the automaton by a predicate on strings. If the
automaton can go from state p to state ¢ while reading string = then we have
p(z) —o q(€), where € represents the empty string. More generally, we should
have p(z - y) — q(y) for any y, where x - y represent string concatenation. It
is convenient to assume we have a single distinguished start state s and final
state f. If the automaton has more than one accepting state, we can transform
it by adding a new, sole accepting state f and add e-transitions from all the
previously accepting states to f.

Consider a simple automaton to accept binary strings with odd parity.

We can implement this with the following propositions, whose use is unre-
stricted.
9 ¢ Vz.s(0-x)—os(x)
st Va.s(1-2)— f(x)
P 5 Y f0- ) — f(x)
! Vo f(1-z) —os(x)

Even though we do not have the tools to prove this at the moment, we should

keep in mind what we would like to achieve. In this example, we can recognize
strings with odd parity by adding the unrestricted assumption

V. (s(x) — f(€)) —o odd(z).

Now we can prove odd(z) if and only if = is a binary string with odd parity.
More generally, our encoding should satisfy the following adequacy theorem.

Adequacy for Sequential Encoding of Automata.

Given a non-deterministic finite automaton M and its encoding I'.
Then for all states p and ¢ and strings =, p — ¢ if and only if
T+ Yy. p(x - y) —q(y). In particular, if M has initial state s and
final state f, then M accepts x if and only if I'; - F s(z) —o f(e).

The direct representation given above maps every possible single-step tran-
sition p — q to the proposition Vy. p(z - y) —o q(y). Typically, z would be a
character ¢ or the empty string €, but we can also translate automata that can
accept multiple characters in one step.
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Non-deterministic finite automata accept exactly the regular languages as
defined by regular expressions. In addition, regular languages are closed under
some other operations such as intersection or complement. We now consider
how to translate a regular expression into linear logic following a similar strategy
as for automata above. In this case we give the construction of the linear logic
propositions inductively, based on the shape of the regular expression. We write
L(r) for the language of strings defined by a regular expression.

Adequacy for Sequential Encoding of Regular Expressions.

Given a regular expression r and its encoding I with distinguished
predicates s (start) and f (final). Then x € L(r) if and only if

L5 EVy. s(z-y) — f(y)

For each form of regular expression we now go though the corresponding
construction of I'. We write I'(s, f) to identify the distinguished start and final
predicate.

Case: r = q for a character a where £(a) = {a}. Then
L(s, f) = Vy. s(a-y) — f(y)

Case: r =1y - 19 where L(ry - r2) = {x1 22 | 21 € L(r1) and x5 € L(r2)}. Let
T'1(s1, f1) and T'y(s2, f2) be the translations of r1 and 74 respectively. We
construct

I(s,f) = Vz.s(z)—si(x),
I (517 f1)7
Ve fi(2) o 52(2)
Iy (527 f2)7
Vy. fa(y) — f(y)

Case: r =1 where £(1) = {¢}. Then
L(s, f) = Vy. s(y) — f(y)

Case: r = r1+rg where L(r1+72) = L(r1)UL(r2). Let I'y1(s1, f1) and 'y (s2, f2)
be the translations of r; and 7 respectively. We construct

I(s,f) = V. s(z)—(s1
Iy (s1, f1),Ta(
Vy. fi(y) — f(
Vy. f2(y) — f(

Alternatively, we could replace the first rule with the following two:

(z)&s2(x)),
52, f2)7

Y),

Y)

V. s(z) —o s1(z
V. s(z) —o s2(z

);
)
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The first formulation may have the slight advantage that every state p
except the final state has exactly one transition Vz. p(t) — A for some
string ¢ and proposition A. We can also reaplce the last two propositions
by

Vy. (f1(y) @ fa(y)) — f(y)

This may be preferable if we would like to maintain instead the invariant
that every final state has one transition into it. These formulations are
equivalent, since

A—(B&C) -+ (A—B)&(A—C)
(A®B)—-C -+ (A—C)&(B—0C)

and the fact that an unrestricted assumption A&B wvalid is equivalent to
two unrestricted assumptions A valid, B valid.

Case: r = 0 where £(0) = { }.
I(s,f) = Va.s(x)—T

with no rule for f. In analogy with the previous case, we could also simply
not generate any propositions for s and f, or generate the proposition

Vy. 0— f(y)
for f.

Case: r = r] where L(r}) ={z1 - -xn | z; €71 for 1 <i<nandn > 0}. Let
T'1(s1, f1) be the translation of 1. Then we construct

L(s,f) = Vz.s(x)—o(f(z)&s1(z)),
rl(sh f1)7
Vy. f1(y) — s(y)

Alternatively, the first proposition can be broken up into two as in the
case for r; + 2.

Regular languages are closed under intersection (N), the full language (T)
and complementation. At least the first two are relatively easy to implement.

Case: r = r1Nry where L(r1Nre) = L(r1)NL(r2). Let T'1(s1, f1) and T'y(s2, f2)
be the translation of ry and ro. The difficult part of intersection is that
r1 and ro must consume the same initial segment of the input. This can
be achieved using simultaneous conjunction.

I(s, f) = Vz.s(z) —(s1(2) ® s2(2)),
Iy (s1, f1), Ta(s2, f2),
Vy. (f1(y) ® fa(y)) — f(y)

Note how we exploit multiple linear hypotheses and force the synchroniza-
tion of their accepting states on y.

Draft of January 26, 2002



30 Linear Natural Deduction

Case: r = T where L(T) = ¥*, the set of all strings over the alphabet ¥. T
accepts any initial segment of the input string.

[(s,f) = Vo Vy. sz y)— f(y)

Strictly speaking, this proposition could present some problems in that
solving an equation such as a -b-c = = -y has multiple solutions if x
and y both stand for arbitrary strings. If we would like to avoid the
assumption that the logic understands the equational theory of strings,
we could decompose this clause into

L(s,f) = Va.s(@)—f(z),
Va. Yy. s(a - y) —o s(y)

where a ranges only over characters.

Complement appears to be more complicated, and we presently have no
direct and elegant solution. Note that the encoding of T we take some alge-
braic properties of string concatenation for granted without axiomatizing them
explicitly.

In the representation, non-determinism arising from r; + r5 is represented
by an internal choice in

V. s(z) —o(s1(z)&s2(x)).

That is, in the course of the proof itself we have to guess (internal choice)
whether s;(x) or so(z) will lead to success.

An alternative model of computation would try all successor states essen-
tially concurrently. The corresponds to the idea for transforming non-deterministic
automata into deterministic ones: we keep track of all the possible states we
might be in instead of guessing which transition to make. While in the encoding
above, we have essentially one linear hypothesis (the current state, applied to
the remaining input string), here we will have multiple ones. The adequacy for
this kind of representation is more difficult to formulate precisely, because the
additional threads of computation.

Adequacy of Concurrent Encoding of Automata.

Given a non-deterministic finite automaton M and its concurrent
encoding T'. Then for all states p and ¢ and strings =, p — q if
and only if T';- - Vy. p(z - y) —(¢(y) ® T). In particular, if M has
initial state s and final state f, then M accepts = if and only if
T;- b s(z) —o(f(e) @ T).

While this expresses correctness, it does not explicitly address the concur-
rency aspects. For example, even our prior encoding would satisfy this require-
ment even though it does not encode any concurrency. We omit the hypothesis
labels in this encoding.
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Cases: r=aorr =17y -rp or r = 1. As before.

Case: r =1y + ro. Let I'1(s1, f1) and I'y(s2, f2) be the translations of 71 and
ro respectively. We construct

I(s,f) = Vz.s(xz)—o(s

Now there is no alternative formulation of the first rule.

Case: r = 0 where £(0) = { }.

with no rule for f.

Case: r = rj where L(r]) = {z1---zn | ©; € L(r1) for 1 <i <n and n > 0}.
Let T'y(s1, f1) be the translation of r;. Then we construct

L(s,f) = Vz.s(x)—(f(z) ®s1(x)),
rl(sh f1)7
Vy. f1(y) — s(y)

Cases: " =71 Nre and r; = T. As before.

This form of concurrent encoding requires some consideration of scheduling
the processes represented by linear hypotheses. For example, if we have a regular
expression €* - a we have to be careful not to schedule the process corresponding
to €* indefinitely without scheduling the process for a, or we may never accept
the string a.

These issues foreshadow similar considerations for more complex concurrent
systems in linear logic later on. Note that computation in this setting corre-
sponds to a kind of forward-chaining proof search. Other models of computation
are also possible and often appropriate. In particular, we may describe com-
putation via backward-chaining search, or by proof reduction. We close this
section by showing a backward-chaining implementation of finite automata and
regular expressions.

Recall the simple automaton to accept binary strings with odd parity.
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In the coding we now simply reverse all the arrows.

0

s V. s(0 - z) o— s(x)
st V. s(1-x)o— f(x)
o Ve 0 )0 f(2)
I V. f(1-x)o—s(z)

Then, the automaton accepts z if and only if we can prove

f(e) —e s(),

again reversing the arrow from the previous statement where we prove s(x) —o f(¢)
instead.

Adequacy for Backward-Chaining Encoding of Automata.

Given a non-deterministic finite automaton M and its encoding I'.
Then for all states p and ¢ and strings x, p — ¢ if and only if
T;- + Vy. q(y) — p(z - y). In particular, if M has initial state s and
final state f, then M accepts  if and only if T'; - F f(e) —o s(x).

For completness, we now give the backward-chaining encoding of regular
expressions.

Case: r = ¢ for a character ¢. Then
L(s, f) = Vy. s(c-y) o= f(y)

Case: r =1y -19. Let I'1(s1, f1) and I'a(s2, f2) be the translations of r; and ro
respectively. We construct

(s, f) V. s(z) o— s1(x),
rl(shfl):
Vz. f1(z) o— s2(2),
r2(527f2)7

Vy. f2(y) o= f(y)

Case: r =1 where £(1) = {¢}. Then
L(s, f) = Vy. s(y) o= f(y)

Case: r =1y +72. Let I'1(s1, f1) and I'y(s2, f2) be the translations of 1 and
ro respectively. We construct

(s, f)

V. s(z) o—(s1
Iy (s1, f1), Ta(
Vy. fi(y) o— f(
Vy. fa(y) o— f(

(z) @ s2(x)),
527f2)7

Y),

Y)
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Interestingly, the internal choice s1(x)&s2(z) is turned into an external
choice s1(x) @ s2(x) when we turn a forward chaining to a backward chain-
ing implementation. Again, there are some alternatives. For example, the
last two propositions can be combined into

Vy. (fr(y)&f2(y)) o— f(y)

Case: r = 0 where £(0) = { }.
I(s,f) = Vz.s(xz)o—0
with no rule for f. Again, alternatives are possible.

Case: r =r}. Let I'1(s1, f1) be the translation of r;. Then we construct

L(s,f) = Vz.s(x)o-(f(z) ®s1(x)),
rl(sh f1)7
Vy. f1(y) o= s(y)

Case: r =r1Nra. Let T'1(s1, f1) and I'y(s2, f2) be the translation of 1 and rs.
This case appears to be quite tricky, because of the lack of any natural
concurrency in the backward-chaining model.!

Case: r = T. Then
L(s, f) = Ya.Vy. s(z-y)o— f(y)

We now return to our first encoding of regular expressions. How can we
prove the adequacy of the representation? Recall the statement of the adequacy
theorem.

Adequacy for Encoding of Regular Expressions.

Given a regular expression r and its encoding I' with distinguished
predicates s (start) and f (final). Then x € L(r) if and only if

L5 =y s(x-y) — f(y).

We first prove that if z € L£(r), then I'(s, f);- F Vy. s(z - y) — f(y). In all
cases we reduce this to proving

L(s, f)s(z-y) = f(y)

for a new parameter y. The adequacy follows from this in two steps by —I
and VI. The proof is now by induction on the structure of r. We restate the
translations, this time giving explicit labels to assumptions so we can refer to
them in the proof.

1Suggestions welcome!
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Case: r = q for a character a where £(a) = {a}. Then

[(s, f) = vs : Vy. s(a-y) — f(y)

So we have to show

vy 1 VY. s(a-y) — f(y);s(a-y) F fy)

which follows in three steps.

vs : VY. s(a-y) — f(y);s(a-y) F s(a-y) Linear hypothesis
vs : VY. s(a-y) — f(y);- FVy. s(a-y)— f(y) Unrestricted hypothesis
vs 2 Vy. s(a-y) — f(y);- - s(a-y) — f(y) By rule VE
vs 2 Vy. s(a-y) — f(y);s(a-y) - fly) By rule —E

Case: r =1y - o where L(r1 - 12) = {1 22 | 21 € L(r1) and z2 € L(r2)}. Let
T'1(s1, f1) and T'y(s2, f2) be the translations of r1 and 74 respectively. We
construct

I(s,f) = ws:Vz. s(x)—os1(x),
rl(shfl):
vy, 2 Vz. fi(z) — s2(2),
r2(527f2)7
vp, 2 VY. fa(y) — f(y)
We have to show

L(s, f);s(@1-z2-y) F f(y)

for a new parameter y.

(s, f)ys(x1-xa-y) Fs(wy -2 y) Linear hypothesis
L(s, f)is(x1-x2-y) Fsi(x1-x2-y) From vs by VE and —E
(s, f);s(z1-z2-y) b fi(ze - y) By i.h. on 71, weakening and subst.
(s, f);s(x1 - 22 -y) F sa(wa - y) From vy, by VE and —E
L(s, f);s(z1-z2-y) F fa(y) By i.h. on 7, weakening and subst.
(s, f);s(xr-z2-y) F f(y) from vy, by VE and —E

Case: r =1 where £(1) = {¢}. Then
[(s, f) = v : Vy. s(y) — f(y)
This case is trivial, since € -y = y.

L(s, f);s(e-y) = s(e-y) Linear hypothesis
(s, f);s(e-y) - fy) From vs by VE, —oE since e -y =y

Case: r = r1+rg where L(r1+72) = L(r1)UL(r2). Let I'1(s1, f1) and 'y (s2, f2)
be the translations of 1 and 79 respectively. We construct

L(s,f) = ws: V. s(x)—o(s1(x)&s2(x)),
Iy (s1, f1), Ta(s2, f2),
£ VY- fi(y) — f(y),
21 VY. f2(y) — f(y)
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Let € L(r). Then there are two subcases. We show the case where
x € L(r1); the other subcase is symmetric.

(s, f);s(z-y) F s(z-y) Linear hypothesis
L(s, f);s(z-y) b si(z-y)&s2(z - y) From vs by VE, — E
(s, f);s(z-y) b si(z-y) By rule &EL
(s, f);s(z-y) F fily) By i.h. on r1, weakening and subst.
(s, f);s(z-y) F f(y) From vy, by VE, —E

Case: r = 0 where £(0) = { }.
I(s,f) = ws:Vo.s(x)—T

with no rule for f. Then the conclusion follows trivially since there is no
x € L(0).

Case: r = r} where L(r}) = {x1--2p | z; € L(r1) for 1 <i < nand n > 0}.

M) = v (: \m}s)@) —o(f(w)&s1 (),
£ Ve f1(y) —o 5()

Assume x = z1---2, € L(r]) where each z; € 71 for 1 < i < n. We
conduct an auxiliary induction on n.

Subcase: n = 0. Then, by definition, z1 -- -z, = €.

(s, f);s(e-y) Fs(e-y) Linear hypothesis
(s, f);s(e-y) F fy)&si(z) From vs by VE, — E
L(s, f);s(e-y) = f(y) By rule &E,

Subcase: n > 0. Then

U(s,f);s(xy-xpn-y) F sz xn-y) Linear hypothesis
F(Syf)QS(l“l Tt y) F f(l“l Tn -y)&sl(ml c Ty y) From vy
(s, f),s(x1---xn-y) Fsi(zr---xn-y) By rule &Egr
L(s,f),s(x1an-y) F fi(za-- 20 -y) By i.h. since 1 € L(rq)
U(s,f),s(x1-an-y) Fs(za - xn-y) From vy,
I(s, f),s(x1---zn-y) F fly From i.h.onn—1

We now also show the correctness for the encoding of intersection and all
strings.

Case: r = r1Nry where L(r1Nre) = L(r1)NL(r2). Let T'1(s1, f1) and T'y(s2, f2)
be the translation of r; and rs.

I(s,f) = ws:Vz. s(z)—o(s1(z) ® s2(x)),
I'i(s1, f1),T2(s2, f2),
Vi 2 VY (1(y) @ fa(y)) — f(y)

Assume x € L£(r1) N L(r2). Then
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(s, f);s(z-y) Fs(z-y) Linear hypothesis
T(s, f);s(z-y) Fsi(z-y) ®se(x-y) From v,
L(s, f);si(z-y) - fr(y) From i.h. since z € L(rq)
(s, f);s2(z-y) F f2(y) From i.h. since z € L(rs)
L(s, f);si(z-y),s2(x-y) F fi(y) ® f2(y) By ®I
L(s, fl;s(z-y) F fi(y) @ f2(y) By ®E
F(S7f)7s(m y) ( ) From Vf1a

Case: r = T where L(T) = X*, the set of all strings over the alphabet X.

L(s, f) = wvs:VYa. Vy. s(z-y)— f(y)

Let = by an arbitrary string. Then

(s, f);s(x-y) Fs(x-y) Linear hypothesis
L(s, f);s(z-y) F f(y) From vy

The other direction is much harder to prove. Assume we have a regular
expression r, its encoding I'(s, f), and a deduction of T'; -¥y. s(x - y) — f(y). We
need to show that z € L(r). In order to do this, we need to analyse the structure
of the given deduction. In some sense, we are showing that the deduction we
gave in the other direction above are “inevitable”. To illustrate the difficulty,
consider, for example, the —o rule.

F; (Al,AQ)FB

— K

If we are trying to prove B from I' and A, two problems arise. First, we have
to decide how to split A into A; and As. More importantly, however, how do
we choose A?

If we look back at the development of our logic, we introduced this rule to
answer the question “How do we use the knowledge that A—o B true”. Above,
however, we think about how to prove B. It is this mismatch which makes rules
like — E intractable.

In the next section we will introduce a restriction on the application of
the inference rules whereby introduction rules are only applied bottom-up while
elimination rules are applied only top-down. With this restriction it will be pos-
sible to show to prove the more difficult direction of adequacy for the encoding
of regular expressions.

2.6 Normal Deductions

The judgmental approach to understanding propositions and truth defines the
meaning of the connectives by giving the introduction and elimination rules. We
claim, for example, that A& B trueif A trueand B true. We see this as a defining
property for alternative conjunction (once the hypotheses have been added to
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the rule). But does our final deductive system validate this interpretation of
alternative conjunction? For example, it could be the case C' —o(A&B) true and
C true but there is no direct way of deriving A true and B true without the
detour through C.

Local soundness and completeness are important tools to verify the cor-
rectness of our system. They verify that if we introduce and then immediately
eliminate a connectives, this detour can be avoided. This is a local property of a
derivation. However, it is possible that we introduce a connective and eliminate
it at some later point in a proof, but not immediately. For example,

D £
A B W C AB W+ D
hyp &l
A B +A®B A, B # C&D
®E

A® B F C&D
— 8K,

A®B HC

This deduction contains a detour, since we first introduce C&D and then
later eliminate it. In a derivation of this form, we cannot carry out a local
reduction because C'&D is introduced above and eliminated below the applica-
tion ®E. In this case it is easy to see how to correct the problem: we move the
application of &E to come above the application of ®E, and then carry out a
local reduction.

D &
A B HC A B YD
&l
A B+ C&D
hyp — &Ep
AR B W+ A®B A B HC
RE
AR B W+ C
This then reduces to
hyp D
A®B +A®B A B HC
RE
AR B W+ C

What we eventually want to show is global soundness and completeness.

Global soundness states that every evident judgment I'; A + A true has a
derivation in which we only apply introduction rules to conclusions that we
are trying to prove and elimination rules to hypotheses or consequences we
have derived from them. We all such derivations normal. Normal derivations
have the important subformula property: every judgment occurring in a normal
derivation of I'; A + A true refers only to subformulas of I'; A, and A. This
means our definition of truth is internally consistent and well-founded. It also
means that our connectives are orthogonal to each other: we can understand
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each connective in isolation, falling back only on judgmental notions in their
definition.

Global completeness means that every evident judgment I'; A - A true has
a derivation in which every conclusion is eventually inferred by an introduction
rule. For this to be the case, the elimination rules need to be strong enough
so we can decompose our hypothesis and reassemble the conclusion from the
atomic constituents, where a proposition is atomic if it doesn’t have a top-level
logical connective. We call such a derivation a long normal derivation, because
it corresponds to the notion of long normal form in A-calculi.

In order to prove these properties for our logic, we need to define more
formally what normal and long normal deductions are. We postpone the dis-
cussion of long normal derivation and just concentrate on normal derivations in
this section. We express this by two mutually recursive judgments that reflect
the nature of hypothetical reasoning with introduction and elimination rules.

A7 A has a normal derivation
Al A has an atomic derivation

The idea that an atomic derivation is either a direct use of a hypothesis
(either linear or unrestricted), or the result of applying an elimination rule to
an atomic derivation. We therefore consider only hypotheses of the form A
(for linear hypotheses) and A |/, (for unrestricted hypotheses). Thus, we consider
hypothetical judgments linear in A | and unrestricted in A JJ.

(v1:B1 Uy o cvm:Bm W); (uiAr - untAp L) F AT
(v1:B1 oo cvm:Bm W); (uiAr - cuntAp L) F AL

We abbreviate the unrestricted hypotheses with I' and linear hypotheses
with A, but we should keep in mind that they stand for assumptions of the
form A || and A |, respectively.

These formalize an intuitive strategy in constructing natural deductions is
to apply introduction rules backwards to break the conclusion into subgoals and
to apply elimination rules to hypotheses until the two meet. These judgments
are defined by the following inference rules.

Hypotheses.

u v
TyuwAlFAL (T,v:Al);- AL

Multiplicative Connectives.

®I

IMAFA®B] T (A wAl,w:Bl)FC1
(A AYEC

®FE
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I;(Au:Al)FB1 INAFA—oB) ;A AT
INAFA—oB? ;A A'FBY
IARLY ;A FCH
—1I 1E
I;-F11 ;(AAYFC

Additive Connectives.

AR A&B -

T;AFAT I;A+B1 BN
ol T;AF AL
INAFAsB Y T;Al A&B |
I"AFBY

— 71
AT No T elimination rule

AR AR I'"AFB?T

— el — oy
T;AFA@B1 T;AFA®BY

AFAe Bl ;A wA)FCt T;(Aw:Bl)FC 1t
(A AYEC 7

oF

I;ARO)
— 0E
No 0 introduction rule (A A C 7

Quantifiers.
;AF [a/z]AT IARVz. A
—VI® — VE
IAREV2. A ;AR [t/x]A]
;AR [t/x]AT IAFdz. A I (A wifa/z]AL) F C 7
—— 3
AR 3z A r; (A, A)FC 7
Exponentials.
(T,v:All); A+ B? INAFADBY r;--A7T
oI DE
I'NAFADBY INARBY
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I;-FA?t IARIAL (T,v:AlL); A"HC 7
— I 'E
I;--141 r; (A, A)FC 1t
Coercion.
IARAL
—
AR AR

The coercion |1 states that all atomic derivations should be considered nor-
mal. From the point of view of proof search this means that we can complete
the derivation when forward and backward reasoning arrive at the same propo-
sition. We obtain long normal derivation if we restrict the coercion rule to
atomic propositions. It easy to see that these judgments just restrict the set of
derivations.

Property 2.1 (Soundness of Normal Derivations)
1. IfT;AF A1 then T, A A
2. IfT; A A thenT; A A.

Proof: By simultaneous induction on the given derivations. The computational
contents of this proof are the obvious structural translation from N :: (T; A F
AP to N~ = I5AF A) and from A :: (T;AF A Q) to A 2 (T;A F A).
Note that the coercion |T disappears, since the translation of the premise and
conclusion are identical. ad

The corresponding completeness theorem, namely that I'; A - A implies
I'; A F AT, also holds, but is quite difficult to prove. This is the subject
of the Normalization Theorem 3.10. Together with the two judgments about
atomic and normal derivations, we have refined substitution principles. Since
hypotheses are atomic, they permit only the substitution of atomic derivations
for hypotheses.?

Lemma 2.2 (Substitution Principles for Atomic Derivations)
1. If T AR AL and T (A, wAL) F C 1 then T (A, A) F C 1.
2. IfTAF AL and T (A, u:Al) F C | then then T'; (A, A") F C |.
3. IfT;-F Al and (T,v:Al}); AFC 1 and then T; AF C 1.
4. IfT;-F Al and (T,v:Al); AFC | and then T; A C .

Proof: By straightforward inductions over the structure of the derivation we
substitute into, appealing to weakening and exchange properties. ad

2We have not formally stated the substitution principles for natural deduction as theorems
of the complete system. They can be proven easily by induction on the structure of the
derivation we substitute into.
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2.7 Exercises

Exercise 2.1 Give a counterexample that shows that the restriction to empty
linear hypotheses in the substitution principle for validity is necessary.

Exercise 2.2 Give a counterexample which shows that the elimination DE
would be locally unsound if its second premise were allowed to depend on linear
hypotheses.

Exercise 2.3 If we define unrestricted implication A D B in linear logic as an
abbreviation for (1A) —o B, then the given introduction and elimination rules
become derived rules of inference. Prove this by giving a derivation for the con-
clusion of the DE rule from its premises under the interpretation, and similarly
for the DI rule.

For the other direction, show how !A could be defined from unrestricted
implication or speculate why this might not be possible.

Exercise 2.4 Speculate bout the “missing connectives” of multiplicative dis-
junction, multiplicative falsehood, and additive implication. What would the
introduction and elimination rules look like? What is the difficulty? any ideas
for how these difficulties might be overcome?

Exercise 2.5 In the blocks world example, sketch the derivation for the same
goal Ay and initial situation Ag in which block b is put on block ¢, rather than
the table.

Exercise 2.6 Model the Towers of Hanoi in linear logic in analogy with our
modelling of the blocks world.

1. Define the necessary atomic propositions and their meaning.

2. Describe the legal moves in Towers of Hanoi as unrestricted hypotheses
T’y independently from the number of towers or disks.

3. Represent the initial situation of three towers, where two are empty and
one contains two disks in a legal configuration.

4. Represent the goal of legally stacking the two disks on some arbitrary
other tower.

5. Sketch the proof for the obvious 3-move solution.
Exercise 2.7 Consider if ® and & can be distributed over @ or wice versa.
There are four different possible equivalences based on eight possible entail-

ments. Give natural deductions for the entailments which hold.

Exercise 2.8 In this exercise we explore distributive and related interaction
laws for linear implication. In intuitionistic logic, for example, we have the
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following (AAB)DC 4 AD(BD>C)and AD(BAC)4- (ADB)A(ADC),
where —F is mutual entailment as in Exercise ?7.

In linear logic, we now write A 4+ A’ for linear mutual entailment, that
is, A’ follows from linear hypothesis A and wvice versa. Write out appropriate
interaction laws or indicate none exists, for each of the following propositions.

1. A—~(BC)
. (A®B)—C)
LAl
194
. A—o(B&C)

2

3

4

5

6. (A&B)—C
7.A—T

8. T—A

9. A—~(B®C)
10. (A® B)—C
11. A—0

12. 0o A

13. A—o(B—C)
14. (A—oB)—C

Note that an interaction law exists only if there is a mutual linear entailment—
we are not interested if one direction holds, but not the other.

Give the derivations in both directions for one of the interaction laws of a
binary connective ®, &, @, or —o, and for one of the interaction laws of a logical
constant 1, T, or 0.

Exercise 2.9 Consider three forms of equivalence of propositions in linear logic.
e A o—o B which should be true if A linearly implies B and vice versa.

e A ~ B which should be true if, independently of any linear hypotheses, A
linearly implies B and vice versa.

e A = B which should be true if A implies B and B implies A, where both
implications are unrestricted.

1. For each of the these connectives, give introduction and elimination rules
and show local soundness and completeness of your rules. If it is not
possible, argue why. Be careful that your rules do not refer to other
connectives, but rely entirely on judgmental concepts.
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2. Discuss if the specification above is unambiguous or if interpretations es-
sentially different from yours may be possible.

3. Using your rules, prove each linear entailment A op; B true K A op,
B true that holds where op,; are equivalence operators.

4. [Extra Credit] Give counterexamples for the entailments that do not hold.

Exercise 2.10 Consider the non-deterministic finite automaton

where s is the start state and f is the final (accepting) state. Represent this au-
tomaton in linear logic according to two strategies: one where non-deterministic
choice is modeled as internal choice (&), and one where non-deterministic choice
is modeled as concurrency (®). Show the proof corresponding to the accepting
computation for the string 0-1-1-1 in both encodings.
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Chapter 3

Sequent Calculus

In the previous chapter we developed linear logic in the form of natural de-
duction, which is appropriate for many applications of linear logic. It is also
highly economical, in that we only needed one basic judgment (A true) and
two judgment forms (linear and unrestricted hypothetical judgments) to ex-
plain the meaning of all connectives we have encountered so far. However, it is
not immediately well-suited for proof search, because it involves mixing forward
and backward reasoning even if we restrict ourselves to searching for normal
deductions.

In this chapter we develop a sequent calculus as a calculus of proof search
for normal natural deductions. We then extend it with a rule of cut that allows
us to model arbitrary natural deductions. The central theorem of this chapter
is cut elimination which shows that the cut rule is admissible. We obtain the
normalization theorem for natural deduction as a direct consequence of this
theorem. It was this latter application which led to the original discovery of
the sequent calculus by Gentzen [Gen35]. There are many useful immediate
corollaries of the cut elimination theorem, such as consistency of the logic, or
the disjunction property.

3.1 Cut-Free Sequent Calculus

In this section we transcribe the process of searching for normal natural deduc-
tions into an inference system. In the context of sequent calculus, proof search
is seen entirely as the bottom-up construction of a derivation. This means that
elimination rules must be turned “upside-down” so they can also be applied
bottom-up rather than top-down.

In terms of judgments we develop the sequent calculus via a splitting of the
judgment “A is true” into two judgments: “A is a resource” (A res) and “A
is a goal” (A goal). Ignoring unrestricted hypothesis for the moment, the main
judgment

wy:Ag res, . .., wy: A, res = C goal
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expresses

Under the linear hypothesis that we have resources Ay, ..., A, we
can achieve goal C'.

In order to model validity, we add inexhaustible resources or resource factories,
written A fact. We obtain

(v1:By fact, ..., Um: B, fact); (w1:Ayq res, . .., wn: Ay, res) = C goal,
which expresses

Under the unrestricted hypotheses that we have resource factories
By, ..., By, and linear hyptheses that we have resources A1, ..., 4,,
we can achieve goal C.

As before, the order of the hypothesis (linear or unrestricted) is irrelevant, and
we assume that all hypothesis labels v; and w; are distinct.

Resources and goals are related in that with the resource A we can achieve
goal A. Recall that the linear hypothetical judgment requires us to use all linear
hypotheses exactly once. We therefore have the following rule.

inity,
I w:A res = A goal

We call such as sequent initial and write init. Note that, for the moment,
we do not have the opposite: if we can achieve goal A we cannot assume A as
a resource. The corresponding rule will be called cut and is shown later to be
admissible, that is, every instance of this rule can be eliminated from a proof. It
is the desire to rule out cut that necessitated splitting truth into two judgments.

Note that the initial rule does not follow directly from the nature of linear
hypothetical judgments, since A res and A goal are different judgments. In-
stead, it explicitly states a connection between resources and goals. A rule that
concludes I'; A res = A res is also evident, but is not of interest here since we
never consider the judgment A res in the succedent of a sequent.

We also need a rule that allows a factory to produce a resource. This rule is
called copy and sometimes refered to as dereliction.

T, v:A fact); (A, w:A res) = C goal
(
(T, v:A fact); A = C goal

copy,

Note how this is different from the unrestricted hypothesis rule in natural de-
duction. Factories are directly related to resources and only indirectly to goals.

The remaining rules are divided into right and left rules, which correspond to
the introduction and elimination rules of natural deduction, respectively. The
right rules apply to the goal, while the left rules apply to resources. In the
following, we adhere to common practice and omit labels on hypotheses and
consequently also on the justifications of the inference rules. The reader should
keep in mind, however, that this is just a short-hand, and that there are, for
example, two different derivations of (A, A);- = A, one using the first copy of
A and one using the second.
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Hypotheses.

T, A); (A 4) = C
——init copy
A=A T,Aj;A=C

Multiplicative Connectives.

INAJA— B LiAL=— A A0, B=—C
F,A:>A—OB F;Al,AQ,A—OB:>C
A= A I'As— B INAJA,B=—C

®R QL
F;Al,A2:>A®B F,A,A@B:>C

IA=~C
—— 1R ——F 1L
=1 hAl1l=C
Additive Connectives.
IAA=C .
. . &Ly
A=A LA=B & I;A, A&B = C
I'A = A&B ;A B—C

&Lo
;A A2B — C

— TR
A= T No T left rule

A=A R
— " . .
A= A&B A A= C F,A,B=>C@L
I'A—s B A AGB—C
A’  :
INA=— A@B

—— 0L
No 0 right rule A 0= C
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Quantifiers.
I''A = [a/z]A A t/z]A=C
—VRG
A= Vz. A A Ve, A= C
A = [t/z]A A la/z]A=C
—F R dLe
A= 3dz. A A . A= C
Exponentials.
(TA; A= B I — A A B=C
—— DR DL
INA=— ADB ITAJADB=C
I.— A T,Aj;A=C
| |

- R —
I =14 T; (A, 14) = C

To obtain a normal deduction from a sequent derivation we map instances
of right rules to corresponding introduction rules. Left rules have to be turned
“upside-down”, since the elimination rule corresponding to a left rule works
in the opposite direction. This reverse of direction is captured in the proof
of the following theorem by appeals to the substitution property: we extend
a natural deduction at a leaf by substituting a one-step deduction for the use
of a hypothesis. Note that the terse statement of this theorem (and also of
the completeness theorem below) hide the fact that the judgments forming the
assumptions I and A are different in the sequent calculus and natural deduction.

Theorem 3.1 (Soundness of Sequent Derivations)
IfT;A = A thenT;AF AT,

Proof: By induction on the structure of the derivation S of I'; A = A. Initial
sequents are translated to the |1 coercion, and use of an unrestricted hypothesis
follows by a substitution principle (Lemma 2.2). For right rules we apply the
corresponding introduction rules. For left rules we either directly construct a
derivation of the conclusion after an appeal to the induction hypothesis (®L,
1L, ®L, OL, JL, 'L) or we appeal to a substitution principle of atomic natural
deductions for hypotheses (— L, &Lj, &La, VL, DL). We should four cases in
detail. We write out explicit judgments in some cases for the sake of clarity.

Case: S ends in init.
8 =
I, Ares = A goal

init

IVALFAL Linear hypothesis
IVALFAT By rule |1
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Case: S ends in copy.

S
(I, B fact); (A, Bres) = A goal
S= copy
(I, B fact); A = A goal

I, B fact); (A, Bres) = A goal Subderivation
I",Bll);(A,BL)F At By ih. on &
I",Bll);-+- Bl Unrestricted hypothesis
I"Bl);AFA?T By substitution property (2.2)

P

Case: S ends in ®R.

S1 So
F;A1:>A1 F;A2:>A2
S = &R
I (A1, Ag) = A1 ® A
A EA T By i.h. on S;
A0k As By i.h. on &
I (A, Ag) F Ay @ Ap 1 By rule ®I
Case: S end in &Ly
S
F; A, B — A
§= &Ly
T A, Bi&By, — A
A, BiFAT By i.h. on S;
I'; B1&By - B1&Bs | Linear hypothesis
I'; Bi&Ba - By | By rule &Er,
A, Bi&Bs AT By substitution property (2.2)

O

The completeness theorem reverses the translation from above. In this case
we have to generalize the induction hypothesis so we can proceed when we en-
counter a coercion from atomic to normal derivations. It takes some experience
to find the generalization we give below. Fortunately, the rest of the proof is
then straightforward.

Theorem 3.2 (Completeness of Sequent Derivations)
1. IfT'; A+ A1 then there is a sequent derivation of I'; A = A, and

2. if T;A F A | then for any formula C and derivation of T; A", A — C
there is a derivation of T'; (A', A) = C.
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Proof: By simultaneous induction on the structure of the derivations of A/ of
AR At and Aof I'; A Al We show a few representative cases.

Case: AN ends in 1.

A
IARAL

N=—— it
IARAD

' A/, A= C implies T'; A/, A = C for any A’ and C By i.h. on A
A=A By rule init
I A=A From i.h. using A’ =-and C = A

Case: A ends in &FEy,.
Ay
I'AF A&B

=——&FEL
IARAL

I'; A’ A&B = C implies I'; A/, A = C for any A’ and C By i.h. on A,

I'; A/, A= C for some A’ and C New assumption
A A&B = C By rule &FEg,
;A'A=C From i.h. using A’ = A’ and C =C

Case: A is an appeal to a linear hypothesis.

A=—— — w
TwAlFA]

I'; A/, A= C for some A’ and C New assumption
(A", A)= (A, A) since A = A This case

Case: A is an appeal to an unrestricted hypothesis.

A= v
(I v:All);-FAL
(I",A); A’ A = C for some A’ and C New assumption
(I A AN =C By rule copy
'=(T,A)and A =- This case
O
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3.2 Another Example: Petri Nets

In this section we show how to represent Petri nets in linear logic. This example
is due to Marti-Oliet and Meseguer [MOM91], but has been treated several times
in the literature.

A Petri net is defined by a collection of places, transitions, arcs, and to-
kens. Every transition has input arcs and output arcs that connect it to places.
The system evolves by changing the tokens in various places according to the
following rules.

1. A transition is enabled if every place connected to it by an input arc
contains at least one token.

2. We non-deterministically select one of the enabled transitions in a net to
fire.

3. A transition fires by removing one token from each input place and adding
one token to each output place of the transition.

Slightly more generally, an arc may have a weight n. For an input arc this means
there must be at least n tokens on the place to enable a transition. When the
transition fires, n tokens are removed from the token at the beginning of an arc
with weight n. For an output arc this means that n new tokens will be added
to the place at its end. By default, an arc with no listed weight has weight
one. There are other variations and generalizations of Petri nets, but we will
not consider them here. Figure 3.1 displays some typical Petri net structures.

It is quite easy to represent a Petri net in linear logic. The idea is that the
fixed topology of the net is represented as a collection of unrestricted propo-
sitions I'.  The current state of the net as given by the tokens in the net is
represent as collection of resources A. We can reach state A; from state Ay
iff Ty F (@ Ag) —(@ A1). That is, provability will correspond precisely to
reachability in the Petri net. We formulate this below in a slightly differently,
using the sequent calculus as a tool.

To accomplish this, we represent every place by an atomic predicate. If there
are k tokens on place p, we add k copies of p into the representation of the state
A. For every transition we add arule p1 ® -+ - Q@ Py, —¢q1 ® - - - ® g, to ', where
P1,---,Pm are the places at the beginning of the input arcs and ¢; ® - - - ® g, are
the places at the end of the output arcs. If an arc has multiplicity k£, we simply
add k copies of p to either the antecedent or the succedent of the corresponding
linear implication representing the transition. As an example, consider the
following Petri net (used in [Cer95]).
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Conflict Concurrency
Sequence
O
]
Synchronization Merging
O Place o Token
] Transition — Arc

Figure 3.1: Some Petri Net Structures
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ready to release counter ready to consume

r nn rc

produce release

rp ra
ready to produce ready to acquire

Note that arc form the buffer to the acquire transition has weight two, so
two tokens in the buffer are converted to one token to be in the place ready to

consume.
The representation of this Petri net consists of the following unrestricted

rule in I and the initial state in Ag.
I' = P:rp—orr
R:rr—orp®nn® bb
A:bb®bb®ra—rc
C:rc—ora
Ag = rr,nn,nn, bb,bb,bb,ra

Informally, it is quite easy to understand that the propositions above rep-
resent the given Petri nets. We now consider a slightly different from of the
adequacy theorem in order exploit the sequent calculus

Adequacy for Encoding of Petri Nets.

Assume we are given a Petri net with places P = {p1, ..., pn}, transi-
tions T' = {t1,...,tm}. We represent the transitions as unrestricted
assumptions I' as sketched above, and a token assignment as a col-
lection of linear hypotheses A = (g¢1,...,qx) where ¢; are places,
possibly containing repetitions. Then the marking A; is reachable
from marking Ay if and only if

F,A1:>C
F,A0:>C

for an arbitrary proposition C'.

Considered bottom up, this claims that, for any C', we can reduce the prob-
lem of proving I'; Ag - C to the problem of proving I'; A; - C.
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3.3 Deductions with Lemmas

One common way to find or formulate a proof is to introduce a lemma. In the
sequent calculus, the introduction and use of a lemma during proof search is
modelled by the rules of cut, cut for lemmas used as linear hypotheses, and cut!
for lemmas used as factories or resources. The corresponding rule for intuition-
istic logic is due to Gentzen [Gen35]. We write I'; A = A for the judgment
that A can be derived with the rules from before, plus one of the two cut rules
below.

IA=5 A T;(A,4) == C I == A (IA);A == C
cut cut!
;A A =2 ¢ ;A =% ¢

Note that the linear context in the left premise of the cut! rule must be empty,
because the new hypothesis A in the right premise is unrestricted in its use.

From the judgmental point of view, the first cut rule corresponds to the
inverse of the init rule. Ignoring extraneous hypotheses, the init rule states
Ares = A goal. To go the opposity way means that we are allowed to assume
A res if we have shown A goal. This is exactly what the cut rule expresses. The
cut! expresses that if we can achieve a goal A without using any linear resources,
we can manufacture as many copies of the resource A as we like.

On the side of natural deduction, these rules correspond to substitution
principles. They can be related to normal and atomic derivations only if we allow
an additional coercion from normal to atomic derivations. This is because the
left premise corresponds to a derivation of I'; A - A 1 which can be substituted
into a derivation of I'; A’, A | + C 1 only if we have this additional coercion. Of
course, the resulting deductions are no longer normal in the sense we defined
before, so we write I'; A F~ A and I'; A F* A4, These judgments are defined
with the same rules as I'; A+ A1 and I'; A+ A, plus the following coercion.

[AF At
AF AL

It is now easy to prove that arbitrary natural deductions can be annotated
with 1 and |, since we can arbitrarily coerce back and forth between the two
judgments.

Theorem 3.3 IfT;AF A thenT; AFT At and T; A A
Proof: By induction on the structure of D :: (I'; A+ A). |

Theorem 3.4
1. IfT;AF At then T; A+ A.
2. IfT;AF Al thenT; A+ A.
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Proof: My mutual induction on A :: (T; A F A1) and A:: (T;AH A). O

It is also easy to relate the cut rules to the new coercions (and thereby to
natural deductions), plus four substitution principles.

Property 3.5 (Substitution)
1 IfT; A AL and T5 (A, wA ) F C 1 then T; (A, A") 1 C 1.
2 IfT;AF AL and T; (A, wAL) F C | then T; (A, A F C .
3. IfT;-F Al and (T,v:AU); A'F C 1 then T; A’ H C' 1.
4. IfT;-H A | and (T,v:AlL); A’ F C | then T; A H C .
Proof: By mutual induction on the structure of the given derivations. ]

We can now extend Theorems 3.1 and 3.2 to relate sequent derivations with
cut to natural deductions with explicit lemmas.

Theorem 3.6 (Soundness of Sequent Derivations with Cut)
IfT; A =5 A then T; AF A1

Proof: As in Theorem 3.1 by induction on the structure of the derivation of

;A =t A. An inference with one of the new rules cut or cut! is translated into
an application of the 1| coercion followed by an appeal to one of the substitution
principles in Property 3.5. g

Theorem 3.7 (Completeness of Sequent Derivations with Cut)
1. IfT; A F" A1 then there is a sequent derivation of T'; A £ A, and
2. if ;A A then for any formula C' and derivation of T'; (A!, A) = c
there is a derivation of T'; (A', A) = C.

Proof: As in the proof of Theorem 3.2 by induction on the structure of the
given derivations. In the new case of the 1] coercion, we use the rule of cut.
The other new rule, cut!, is not needed for this proof, but is necessary for the
proof of admissibility of cut in the next section. We show the new case.

Case: A ends in 1.

N
A At
A=—""7"—"
AF A
A=t A By i.h. on N
I;ALA =t C for some A’ and C New assumption
;A A == C By rule cut

O
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3.4 Cut Elimination

We viewed the sequent calculus as a calculus of proof search for natural de-
duction. The proofs of the soundness theorems 3.2 and 3.7 provide ways to
translate cut-free sequent derivations into normal natural deductions, and se-
quent derivations with cut into arbitrary natural deductions.

This section is devoted to showing that the two rules of cut are redundant
in the sense that any derivation in the sequent calculus which makes use of the
rules of cut can be translated to one that does not. Taken together with the
soundness and completeness theorems for the sequent calculi with and without
cut, this has many important consequences.

First of all, a proof search procedure which looks only for cut-free sequent
derivations will be complete: any derivable proposition can be proven this way.
When the cut rule

A=A T; (A, A) == C

cut
;A A=L C

is viewed in the bottom-up direction the way it would be used during proof
search, it introduces a new and arbitrary proposition A. Clearly, this introduces
a great amount of non-determinism into the search. The cut elimination theorem
now tells us that we never need to use this rule. All the remaining rules have
the property that the premises contain only instances of propositions in the
conclusion, or parts thereof. This latter property is often called the subformula
property.

Secondly, it is easy to see that the logic is consistent, that is, not every
proposition is provable. In particular, the sequent -;- = 0 does not have a
cut-free derivation, because there is simply no rule which could be applied to
infer it! This property clearly fails in the presence of cut: it is prima facie quite
possible that the sequent -; - = 0 is the conclusion of the cut rule.

Along the same lines, we can show that a number of propositions are not
derivable in the sequent calculus and therefore not true as defined by the natural
deduction rules. Examples of this kind are given at the end of this section.

We prove cut elimination by showing that the two cut rules are admissible
rules of inference in the sequent calculus without cut. An inference rule is
admissible if whenever we can find derivations for its premises we can find a
derivation of its conclusion. This should be distinguished from a derived rule of
inference which requires a direct derivation of the conclusion from the premises.
We can also think of a derived rule as an evident hypothetical judgment where
the premises are (unrestricted) hypotheses.

Derived rules of inference have the important property that they remain
evident under any extension of the logic. An admissible rule, on the other hand,
represents a global property of the deductive system under consideration and
may well fail when the system is extended. Of course, every derived rule is also
admissible.
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Theorem 3.8 (Admissibility of Cut)
1. fT; A= A and T; (A', A) = C then T; (A, A') = C.
2. IfT;- = A and T, A); A’ = C thenT; A/ = C.

Proof: By nested inductions on the structure of the cut formula A and the
given derivations, where induction hypothesis (1) has priority over (2). To state
this more precisely, we refer to the given derivations as D :: (I A = A),
D= A),E:(I(AA) = C),and & :: (T',A); A’ F C). Then we
may appeal to the induction hypothesis whenever

a. the cut formula A is strictly smaller, or

b. the cut formula A remains the same, but we appeal to induction hypothesis
(1) in the proof of (2) (but when we appeal to (2) in the proof of (1) the
cut formula must be strictly smaller), or

c¢. the cut formula A and the derivation £ remain the same, but the derivation
D becomes smaller, or

d. the cut formula A and the derivation D remain the same, but the deriva-
tion £ or £ becomes smaller.

Here, we consider a formula smaller it is an immediate subformula, where [t/z]A
is considered a subformula of Vx. A, since it contains fewer quantifiers and logical
connectives. A derivation is smaller if it is an immediate subderivation, where
we allow weakening by additional unrestricted hypothesis in one case (which
does not affect the structure of the derivation).

The cases we have to consider fall into 5 classes:

Initial Cuts: One of the two premises is an initial sequent. In these cases the
cut can be eliminated directly.

Principal Cuts: The cut formula A was just inferred by a right rule in D and
by a left rule in £. In these cases we appeal to the induction hypothesis
(possibly several times) on smaller cut formulas (item (a) above).

Copy Cut: The cases for the cut! rule are treated as right commutative cuts
(see below), except for the rule of dereliction which requires an appeal to
induction hypothesis (1) with the same cut formula (item (b) above).

Left Commutative Cuts: The cut formula A is a side formula of the last
inference in D. In these cases we may appeal to the induction hypotheses
with the same cut formula, but smaller derivation D (item (c) above).

Right Commutative Cuts: The cut formula A is a side formula of the last
inference in £. In these cases we may appeal to the induction hypotheses
with the same cut formula, but smaller derivation £ or £ (item (d) above).

We show one case from each category.
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Case: Initial cut where D is initial and £ is arbitrary.

D=————,init
A=A

A=A This case
L AVA=C Derivation £

Case: Principal cut, where D ends in ®R and £ end in QL.

D1 Do
F;A1|_A1 F,AQFAQ
D= QR
AL, A2 A ® Ay
and
&
A AL Ay — C
&= QL
A A ® Ay = C
A AL Ay — C By i.h. on Ay, Dy and &;
A AL Ay = C By i.h. on As, D> and above

Case: Copy cut, where D is arbitrary and £ ends in copy.

&
(I, A); (A" A) = C
&= copy
(I A); A" = C
I,— A Derivation D
I';(AA) = C By i.h.(2) on A, D and &
' A'=C By i.h.(1) on A, D and above

Case: Left commutative cut, where D ends in &L and £ is arbitrary.

Dy
F; Al, B — A
D= aly
F; Al, B1&By — A
I AVA=C Derivation £
;A AL B = C By ih.on A, Dy and &
A Ay, Bi&By — C By rule &1,

Case: Right commutative cut, where D is arbitrary and £ ends in ®&R;.

&
A A— O

S:
A A= C1® C,

SR
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A=A Derivation D
DA A = C By i.h. on A, D and &
A= Ci a0, By rule R4

O

Using the admissibility of cut, the cut elimination theorem follows by a
simple structural induction.

Theorem 3.9 (Cut Elimination)
IfT;A =5 C thenT; A = C.

Proof: By induction on the structure of D :: (I'; A =t (). In each case except
cut or cut! we simply appeal to the induction hypothesis on the derivations of the
premises and use the corresponding rule in the cut-free sequent calculus. For the
cut and cut! rules we appeal to the induction hypothesis and then admissibility
of cut (Theorem 3.8) on the resulting derivations. 0

3.5 Consequences of Cut Elimination

The first and most important consequence of cut elimination is that every nat-
ural deduction can be translated to a normal natural deduction. The necessary
construction is implicit in the proofs of the soundness and completeness theo-
rems for sequent calculi and the proofs of admissibility of cut and cut elimina-
tion. In Chapter 6 we will see a much more direct, but in other respects more
complicated proof.

Theorem 3.10 (Normalization for Natural Deductions)
IfT;AF A thenT; AR AT,

Proof: Directly, using theorems from this chapter.

AR A Assumption
AF A By Theorem 3.3
;A =+ A By completeness of sequent derivations with cut (Theorem 3.7)
A=A By cut elimination (Theorem 3.9)
AR A By soundness of cut-free sequent derivations (Theorem 3.1)

O

As a second consequence, we see that linear logic is consistent: not every
proposition can be proved. A proof of consistency for both intuitionistic and
classical logic was Gentzen’s original motivation for the development of the
sequent calculus and his proof of cut elimination.

Theorem 3.11 (Consistency of Intuitionistic Linear Logic)
.- 0 true is not derivable.
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Proof: If the judgment were derivable, by Theorems 3.3, 3.7, and 3.9, there
must be a cut-free sequent derivation of -;- = 0. But there is no rule with
which we could infer this sequent (there is no right rule for 0), and so it cannot
be derivable. |

A third consequence is called the disjunction property. Note that in ordinary
classical logic this property fails.

Theorem 3.12 (Disjunction Property for Intuitionistic Linear Logic)
If ;- A® B true then either -;-F A true or -;- F B true.

Proof: Assume -;-+ A® B true. Then, by completeness of the cut-free sequent
calculus, ;- = A@B. But there are only two rules that end with this judgment:
@R, and ®Rs. Hence either ;- = A or -;- = B. Therefore, by soundness of
the sequent calculus, ;- F A true or -; -+ B true a

Note that these theorems are just special cases, and many other properties
of the connectives follow from normalization and cut elimination.

As another kind of example, we can show that various propositions are not
theorems of linear logic. Consider

4A—o(B®C)F (A—B)® (A—C)

Intuitively, this should clearly not hold for arbitrary A, B, and C (although it
could be true for some specific ones). But if we know the completeness of the
cut-free sequent calculus this is easy to show. Consider

3A—o(B(C)=— (A—B)®(A— ().

There are only two possible rules that could have been used to deduce this
conclusion, — R and ®R.
In case the last rule is —o R, one of the premises will be

which is not provable for arbitrary A. In case the last rule is ®R, the linear
hypothesis must be propagated to the left or right premise. Assume it goes to
the left (the other case is symmetric). Then the right premise must be

o= A—C
which could only be infered by — R, which leaves

A= C.

Again, unless we know more about A and C no rule applies. Hence the judgment
above has no proof.
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3.6 Another Example: The n-Calculus

The w-calculus was designed by Milner as a foundational calculus to investigate
properties of communicating and mobile systems [Mil99]. The first formulation
below differs slightly from Milner’s in the details of specification, but one can
also give a completely faithful representation as shown in our second version.!
The basic syntactic categories in the mw-calculus are mames, actions, and
processes. Names are simply written as variables z, y or a. They serve simul-
taneously as communication channels and the data that is transmitted along
the channels. They constitute the only primitive data objects in the m-calculus,
which makes it somewhat tedious to write non-trivial examples. In this sense it
is similar to Church’s pure A-calculus, which was designed as a pure calculus of
functions in which other data types such as natural numbers can be encoded.
Action prefizes m define the communication behavior of processes. We have

T x(y) receive y along z
Z(y) send y along
-

unobservable (internal) action

Process expressions P define the syntax of processes in the m-calculus. They
rely on sums M, which represent a non-deterministic choice between processes
waiting to perform an action (either input, output, or an internal action).

P = M sum
| 0 termination
| Pi| P composition
| newaP restriction
| P replication
M | M;+ M, choice
| w P guarded process

Milner now defines a structural congruence that identifies process expressions
that are only distinguished by the limitations of syntax. For example, the
process composition operator P | @ should be commutative and associative
so that a collection of concurrent processes can be written as Py | --- | Pp.
Similarly, sums M + N should be commutative and associative. 0 is the unit of
composition so that a terminated process simply disappears.

Names require that we add the renaming of bound variables to our structural
congruence. In particular, new a P binds a in P and z(y). P binds y in P. Note
that, conversely, Z(y). P does not bind any variables: the name y is just sent
along x. The order of consecutive bindings by new a may be changed, and we
can extend or contract the scope of a new a binder across process composition
as follows:

newz (P| Q)= P | (new z Q)

L[None of the material in this example has been proven correct at this time. Nor have we
carefully surveyed the literature such as [BS92, Mil92].]
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provided z is not among the free names of P. This law of scope extrusion (read
right to left) is important this it means a process can propagate a local names
to its environment.

Finally, we have a rule of replication |P = P | |P. Read from left to right it
means a process | P can replicate itself arbitrarily many times. From right to left
the rule is of somewhat questionable value, since it would require recognizing
structural equivalence of two active process expressions and then contracting
them.

We will not formally model structural equivalence, because its necessary
aspects will be captured by properties of the linear context A that contains
active process expressions. Instead of repeating Milner’s formal definition of
the reaction rules, we explain them through their encoding in linear logic. The
idea is the state of a process is represented by two proposition proc(P) for a
process P and choice(M) for a sum M. A linear context

A = proc(Py), ..., proc(P,), choice(My), . . ., choice( My, )

represents a state where processes P; are executing concurrently and choices M;
are waiting to be made. Furthermore an unrestricted context

I'= PVOC(Ql)y ey prOC(QP)

represents processes () that may replicate themselves an arbitrary number of
times. Informally, computation is modelled bottom-up in the sequent calculus,

so that
'y, Ty A= C

rﬂ')ro; A0 == C

if we can transition from state Ay with replicating processes I'g to a state A;
with replicating processes I';. Here, C' is arbitrary (in some sense, computation
never stops) and I'; are the rules describing the legal reactions of the m-calculus
as given below.

Process Composition (P | Q). This just corresponds to a fork operation
that generates two concurrently operating processes P and Q.

fork : proc(P | @) —o proc(P) ® proc(Q)

Termination 0. This just corresponds to an exit operation, elimination the
process.
exit : proc(0) — 1

Restriction new a P(a). The notation P(a) represents a process P with some
arbitrary number of occurrences of the bound variable a. We then write P(z)
for the result of substituting = for all occurrences of a in P. The new operation
simply creates a new name, x, substitutes this for a in P(a), and continues with
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P(z). The freshness condition on x can be enforced easily by the corresponding
condition on the left rule for the existential quantifier L in the sequent calculus.

gen : proc(new a P(a)) — Jx. proc(P(z))

While this is not completely formal at present, once we introduce the concept of
higher-order abstract syntaz in Section 7?7 we see that it can easily be modeled
in linear logic.

Replication !P. This just moves the process into the unrestricted context so
that as many copies of P can be generated by the use of the copy rule as needed.

promote : proc(!P) —o Iproc(P)
Coincidentally, this is achieved in linear logic with the “of course” modality

that is also written as “!”.

Sum M. A process expression that is a sum goes into a state where it can
perform an action, either silent (7) or by a reaction between input and output
processes.

suspend : proc(M) —o choice(M)

It is now very tempting to define choice simply as internal choice. That is,
?choose : choice(M; + M) —o choice(M7)&«choice(Mz)

However, this does not correspond to semantics of the w-calculus. Instead,
My + - - -+ M, can perform an action if

1. either one of the M; can perform a silent action 7 in which case all alter-
natives M; for j # ¢ are discarded,

2. or two guarded actions z(y). P(y) and Z(z). @ react, leaving processes
P(z) and @ while discarding all other alternatives.

We model this behavior with two auxiliary predicates react(M, N, P, Q)) which
is true if sums M and N can react, leaving processes P and @, and silent(M, P)
which is true if M can make a silent transition to P. These are invoked non-
deterministically as follows:

external : choice(M) ® choice(N) ® !react(M, N, P, Q) — proc(P) ® proc(Q)
internal : choice(M) ® !silent(M, P) —o proc(P)

Note the use of “!” before the react and silent propositions which indicates that
proofs of these propositions do not refer to the current process state.
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Reaction. Basic reaction is synchronous communication along a channel z.
This is augmented by a rule to choose between alternatives.

synch : react(z(y). P(y),Z(z). Q, P(2),Q)
choose; : react(M, N, P, Q) —o (react(M + My, N, P,Q)
&react(My + M, N, P, Q)
&react(M, N + Ny, P, Q)
&react(M, No + M, P, Q))

Note that the synchronization rule synch again employs our notation for substi-
tution.

Silent Action. A basic silent action simply discards the guard 7. This is
augmented by a rule to choose between alternatives.

tau : silent(r. P, P)
choose; : silent(M, P) —o(silent(M + My, P)&silent(My + M, P))

That’s it! To model Milner’s notion of structural equivalence faithfully we
would need at least one other rule

?collect : Iproc(P) ® proc(P) —o Iproc(P)

but this is of questionable merit and rather an artefact of overloading the notion
of structural congruence with too many tasks.

As a related example, we consider the asynchronous w-calculus without
choice [HT91]. In this calculus we make two simplifications when compared
to the (synchronous) m-calculus: (1) the sender of a message can proceed im-
mediately without waiting for the receiver, and (2) there is no input choice
construct. We therefore eliminate the syntactic category of sums. In addition,
a message becomes like an independent process that can react with a guarded
process waiting for input. Therefore we add a process expression Z(y) and code
Z(y). P as T(y) | P.

P Z(y) message
z(y). P input action
T. P silent action

|
|
| 0 termination
| Pi| P composition
| newa P restriction
| P replication

The encoding of the asynchronous m-calculus retains the rules fork, exit, gen
and promote remain exactly as before. We replace the choice predicate entirely
with two simple new rules: one rule for reaction (which is now essentially an
input) and one rule for silent action.
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fork : proc(P | Q) —o proc(P) ® proc(Q)
exit : proc(0)—
gen : proc(new a P( )) —o 3. proc(P(z))
promote : proc(!P)—o!proc(P)
(T
(

input : proc(z(z)) ® proc(z(y). P(y)) — proc(P(z))
silent : proc(r. P)—oproc(P)

A variant of this encoding replaces input and silent by the following:

input’ : proc(z(y). P(y)) —o(7y. proc(zZ(y)) — proc(P(y)))
silent’ :  proc(r. P)—o(1 —oproc(P))

In this representation, actions are not explitly part of the encoding. In particu-
lar, all linear implications have exactly one antecedent. Instead, we use the left
rule for linear implication —o L in the sequent calculus to carry out the necessary
steps. For more on this style of encoding, see Exercise 3.6.

One of the generalization that are generally needed for non-trivial examples
is the polyadic m-calculus where an arbitrary number of names can be passed at
once. The details of the encoding for the polyadic m-calulcus depend on details in
the language of terms that we purposely glossed over in the presentation above.
Many other variations have also been considered, such as the asynchronous -
calulcus with choice [ACS98] (see Exercise 3.7).
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3.7 Exercises

Exercise 3.1 Consider if ® and & can be distributed over @& or wvice versa.
There are four different possible equivalences based on eight possible entail-
ments. Give sequent derivations for the entailments that hold.

Exercise 3.2 Prove that the rule
(T, A&B, A, B); A = C
(T, A&B); A = C

&L!

is admissible in the linear sequent calculus. Further prove that the rule
(T,A® B,A,B);A = C
T,A® B);A = C

®L!

is not admissible.

Determine which other connectives and constants have similar or analogous
admissible rules directly on resource factories and which ones do not. You do
not need to formally prove admissibility or unsoundness of your proposed rules.

Exercise 3.3 In the proof of admissibility of cut (Theorem 3.8) show the cases
where

1. D ends in —o R and £ ends in —o L. and we have a principal cut.
2. D is arbitrary and £ ends in —o L and we have a a right commutative cut.
3. D ends in 'R and £ and in !L and we have a principal cut.

Exercise 3.4 Reconsider the connective A o— B from Exercise 2.9 which is
true if A linearly implies B and vice versa.

e Give sequent calculus rules corresponding to your introduction and elim-
ination rules.

e Show the new cases in the proof of soundness of the sequent calculus
(Theorem 3.1).

e Show the new cases in the proof of completeness of the sequent calculus
(Theorem 3.2).

e Show the new cases for principal cuts in the proof of admissibility of cut
(Theorem 3.8).

Exercise 3.5 An extension of the notion of Petri net includes inhibitor arcs as
inputs to a transition. An inhibitor arc lets a transition fire only if the place it
is connected to does not contain any tokens. Show how to extend or modify the
encoding of Petri nets from Section 3.2 so that it also models inhibitor arcs.
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Exercise 3.6 The second representation of the asynchronous 7w-calculus used
the clauses

input’ : proc(z(y). P(y)) —o(7y. proc(Z(y)) — proc(P(y)))
silent’ :  proc(r. P)—o(1 —oproc(P))

to represent actions. Instead of representing the w-calculus by a single predicate
proc and a number of unrestricted propositions that axiomatize transitions, this
suggests a direct embedding of the asynchronous w-calculus in linear logic. Here
is a start for this kind of embedding, denoted by ( )*.

© = 1
(PlQ) = PoQ"
(IP)* = 1P*

Complete this embedding by giving translations of the remaining constructs of
the asynchronous 7-calculus as propositions in linear logic. Carefully state the
adequacy theorem for your representation. [Extra Credit: Prove the adequacy
theorem. |

Exercise 3.7 Extend one of the encodings of the asynchronous m-calculus to
allow input choice as present in the synchronous w-calculus.
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Chapter 4

Proof Search

Linear logic as introduced by Girard and presented in the previous chapter is a
rich system for the formalization of reasoning involving state. It conservatively
extends intuitionistic logic and can therefore also serve as the logical basis for
general constructive mathematics. Searching for proofs in such an expressive
logic is difficult, and one should not expect silver bullets.

Depending on the problem, proof search in linear logic can have a variety of
applications. In the domain of planning problems (see Section 2.4) searching for
a proof means searching for a plan. In the domain of concurrent computation
(see Petri nets in Section 3.2 or the m-calculus in Section 3.6) searching for
a proof means searching for possible computations. In the domain of logic
programming (which we investigate in detail in Chapter 5), searching for a
proof according to a fixed strategy is the basic paradigm of computation. In
the domain of functional programming and type theory (which we investigate
in Chapter 6), searching for a proof means searching for a program satisfying a
given specification.

Each application imposes different requirements on proof search, but there
are underlying basic techniques which recur frequently. In this chapter we take
a look at some basic techniques, to be exploited in subsequent chapters.

4.1 Bottom-Up Proof Search and Inversion

The literature is not in agreement on the terminology, but we refer to the process
of creating a derivation from the desired judgment on upward as bottom-up proof
search. A snap-shot of a bottom-up search is a partial derivation, with undecided
judgments at the top. Our goal is to derive all remaining judgments, thereby
completing a proof.

We proceed by selecting a judgment which remains to be derived and an
inference rule with which it might be inferred. We also may need to determine
exactly how the conclusion of the rule matches the judgment. For example,
in the ®R rule we need to decide how to split the linear hypotheses between
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the two premises. After these choices have been made, we reduce the goal of
deriving the judgment to a number of subgoals, one for each premise of the
selected rule. If there are no premises, the subgoal is solved. If there are no
subgoals left, we have derived the original judgment.

One important observation about bottom-up proof search is that some rules
are invertible, that is, the premises are derivable whenever the conclusion is
derivable. The usual direction states that the conclusion is evident whenver the
premises are. Invertible rules can safely be applied whenever possible without
losing completeness, although some care must be taken to retain a terminating
procedure in the presence of unrestricted hypotheses. We also separate weakly
invertible rules, which only apply when there are no linear hypotheses (besides
possibly the principal proposition of the inference rule). For example, we cannot
apply the rule 1R whenever the judgment is I'; A - 1, although it is safe to do
so when there are no linear hypotheses. Similarly, we cannot use the initial
sequent rule to infer I'; A, A = A unless A = -. Strongly invertible rules apply
regardless of any other hypotheses.

Theorem 4.1 (Inversion Lemmas) The following table lists invertible, weakly
invertible, and non-invertible rule in intuitionistic linear logic.

Strongly Invertible Weakly Invertible Not Invertible

—R —o L,
®L, 1L 1R ®R
&R, TR &Ly, &L2
L, OL ®R1, BRe
VR, dL VL, R
DR, 'L 'R DL

We exclude the init and copy rules, since they are neither proper left nor proper
right rules.

Proof: For invertible rules we prove that each premise follows from the conclu-
sion. For non-invertible rules we give a counterexample. The two sample case
below are representative: for invertible rules we apply admissibility of cut, for
non-invertible rules we consider a sequent with the same proposition on the left
and right.

Case: —R is invertible. We have to show that I'; (A, A) = B is derivable
whenver I'; A = A — B is derivable, so we assume I'; A =— A — B.
We also have I'; A, A— B =—> B, which follows by one — L rule from
two initial sequents. From the admissibility of cut (Theorem 3.8) we then
obtain directly I'; (A, A) = B.

Case: —oL is not invertible. Consider -; A— B =—> A — B for parameters A
and B. There is only one way to use — L to infer this, which leads to
s+ = A and -; B = A —o B, neither of which is derivable. Therefore
—o LL is not invertible in general.
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O

As a final, general property for bottom-up proof search we show that we
can restrict ourselves to initial sequents of the form I'; P = P, where P is an

atomic proposition. We write I'; A = A for the restricted judgment whose
rules are as for I'; A = A, except that initial sequents are restricted to atomic

propositions. Obviously, if I'; A = A then I'; A = A.

Theorem 4.2 (Completeness of Atomic Initial Sequents) If ;A — A
then T'; A = A.

Proof: By induction on the the structure of D :: (I'; A = A). In each case
except initial sequents, we appeal directly to the induction hypothesis and infer

I'; A = A from the results. For initial sequents, we use an auxiliary induction
on the structure of the proposition A. We show only one case—the others
are similar in that they follow the local expansions, translated from natural
deduction to the setting of the sequent calculus. If local completeness did not
hold for a connective, then atomic initial sequents would be incomplete as well.

Case: A = A; ® Ay. Then we construct

Dy Do
F;A1:_>A1 F,A2:_>A2

®R
F;Al,AQ :_> A1 ® A2
QL

F;A1®A2 :_>A1®A2
where Dy and D5 exist by induction hypothesis on A; and As.

O

The theorems in this section lead to a search procedure with the following
general outline:

1. Pick a goal sequent to solve.
2. Decide to apply a right rule to the consequent or a left rule to a hypothesis.

3. Determine the remaining parameters (either how to split the hypotheses,
or on the terms which may be required).

4. Apply the rule in the backward direction, reducing the goal to possibly
several subgoals.

A lot of choices remain in this procedure. They can be classified according to
the type of choice which must be made. This classification will guide us in
the remainder of this chapter, as we discuss how to reduce the inherent non-
determinism in the procedure above.
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Conjunctive choices. We know all subgoals have to be solved, but the order
in which we attempt to solve them is not determined. In the simplest case,
this is a form of don’t-care non-determinism, since all subgoals have to be
solved. In practice, it is not that simple since subgoals may interact once
other choices have been made more deterministic. Success is a special case
of conjunctive choice with no conjuncts.

Disjunctive choices. We don’t know which left or right rule to apply.
Invertible rules are always safe, but once they all have been applied, many
possibilities may remain. This is a form of don’t-know non-determinism,
since a sequence of correct guesses will lead to a derivation if there is one.
In practice, this may be solved via backtracking, for example. Failure is a
special case of a disjunctive choice with zero alternatives.

Resource choices. We do not know how to divide our resources in the
multiplicative rules. This is a special case of don’t-know non-determinism
which can be solved by different techniques collectively referred to as “re-
source managment”. Resource management interacts tightly with other
disjunctive and conjunctive choices.

Universal choices. In the VR and JL rules we have to choose a new pa-
rameter. Fortunately, this is a trivial choice, since any new parameter will
work, and its name is not important. Hence this is a form of don’t-care
non-determinism.

Existential choices. In the JR and VL rules we have to choose a term ¢
to substitute for the bound variable. Since there are potentially infinitely
many terms (depending on the domain of quantification), this is a form
of don’t-know non-determinism. In practice, this is solved by unification,
discussed in Section 4.3.

4.2 Focusing

Focusing combines two basic phases in order to reduce non-determinism in proof
search while remaining sound and complete.

1. (Inversion) Strongly invertible rules are applied eagerly. The order of these

rule applications does not matter, so this is an instance of don’t-care non-
determinism.

. (Focusing) After some steps we arrive at a sequent where all applicable

rules with the exception of copy or init are non-invertible. Now we fo-
cus, either on a particular hypothesis or on the conclusion and apply a
sequence of non-invertible rules until we have exposed an invertible princi-
ple connective. At this point in the proof search we return to the inversion
phase.
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We refer to this strategy as focused proof search. The idea and method are
due to Andreoli [And92]; it is closely related to logic programming and the
notion of uniform proof [MNPS91] as we will see in Chapter 5.

Just like the sequent calculus followed inevitably from natural deduction,
focused proof search seems to follow inevitably from the sequent calculus. It
is remarkably robust in that in our experience, any logic that admits a clean
sequent calculus also admits a similarly clean focusing calculus. This is true
even for logics such as classical logic for which good natural deduction systems
that arise from judgmental considerations are elusive.

While the basic intuition is simple, giving an unambiguous specification of
focusing is a non-trivial task. Both the proper representation of the don’t-care
non-determinism and the notion of focus proposition for phase (2) require some
experience and (eventually) lengthy correctness proofs.

In order to aid the description of the rules, we define some classes of propo-
sitions. We say A is right asynchronous if the top-level connective of A has
a strongly invertible right rule. Similarly, A is left asynchronous if the top-
level connective of A has a strongly invertible left rule. The intuition is that
of asynchronous communication, where a sending process can proceed immedi-
ately without waiting for receipt of its message. Dually, a proposition is right or
left synchronous is its top-level connective has a non-invertible or only weakly
invertible right or left rule, respectively.

Atomic P
Right Asynchronous A; — As, A1&As, T, A1 D Ay, V. A
Left Asynchronous A; ® As,1, A1 @ A3,0,!A4,3x. A
Right Synchronous A; ® Az, 1, A; ® A3,0,!A,3x. A
Left Synchronous Aj; — A, A1&As, T, A1 D Ag,Va. A

Note that the left asynchronous and right synchronous propositions are iden-
tical, as are the right asynchronous and left synchronous. We therefore really
need only two classes of propositions, but this tends to be very confusing.

Inversion. The first phase of proof search decomposes all asynchronous con-
nectives. This means there is a lot of don’t-care non-determinism, since the
order in which the rules are applied is irrelevant. We build this into our system
by fizing a particular order in which the asynchronous connectives are decom-
posed: first the succedent, then the antecedents from right to left. This means
we need a new form of hypothetical judgment, an ordered hypothetical judg-
ment, since otherwise we cannot prescribe a fixed order. We thoroughly treat
this judgment form in Chapter ?7. We write

A0=— A1
where

I are unrestricted hypotheses (which may be arbitrary),
A are linear hypotheses that may not be left asynchronous,
) are ordered hypotheses (which may be arbitrary),

A is the goal (which may be arbitrary).
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The first set of rules treats all right asynchronous connectives.

A0 A= B AQ0=— A1 A Q= B
—R
IAQ0=— A—-B1 A Q= A&B 1

&R

INA A Q= B
—— TR DR
AQ=Tq 00— ADB1

A Q= [a/z]A 1
4
A Q= Va. Ap

Ra

Once the goal proposition is no longer asynchronous, we proceed with the
hypotheses in 2, decomposing all left asynchronous propositions in them. We
write

L,NQr—=C

where
I’ are unrestricted hypotheses (arbitrary)
A are linear hypotheses (not left asynchronous)
Q2 are ordered hypotheses (arbitrary)
C is the goal (not right asynchronous)

First, we have the rule to transiton to this judgment.

A Q1) = C, C not right asynchronous
A= C1

Next we have rules to decompose the left asynchronous proposition in €2 in
order, that is, at the right end of the ordered hypotheses.

A0ABY—C . A= C
& 1L
AQ0AQB = C L0010 =C
LAQAY=C L;00BYy=C
@L oL
L AQA BYy=C ;A Q0= C
DA A Q= C | A0, [a/z]Ay = C
L L
L,ANANY=C A0 A= C

When we encounter a proposition that is not left asynchronous, we move it
into A so that we can eventually eliminate all propositions from 2.

A A; Q0 = C, A not left asynchrounous
LAQAY=C
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Decision. When we start from I';-;Q = A 1, searching backwards, we can
always reach a situation of the form I''; A’; - ff = C for each leaf where C is not
right asynchronous and A’ contains no propositions that are left asynchronous.
At this point we need to decide which proposition to focus on. Note that we

always focus on a single proposition. First the case we focus on the right. For
this we need a new judgment

A= Al

where
I are unrestricted hypotheses (arbitrary),
A are linear hypotheses (not left asynchronous),
A is the focus proposition (arbitrary).

If we focus on the left, we need an analogous judgment.
LAA=C

where
I are unrestricted hypotheses (arbitary),
A are linear hypotheses (not left asynchronous),
A is the focus proposition (arbitrary),
C' is the succedent (not right asynchronous)

The decision is between the following rules that transition into these two
jugments.

IA;-= C |, C not atomic

decideR
A= C
LAA=C NAAAl = C
decideL decideL!
AA - = C TAA - = C

Note that decideL! is justified by the copy rule.

Focusing. Once we have decided which proposition to focus on, we apply a
succession of non-invertible rules.

A= Al A= Az )

— 1R
F;Al,AQ;':>A1®A2li F,,:>1li
A= Al IA;-= B
DR ®R2
A — A B A= A B

LA - = [t/z]Al)

no right rule for 0 A — 3Jx. Al
I = Af
——— R
;- =14
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The last rule is a somewhat special case: because R is weakly right invertible,
we immediately transition back to break down the right asynronous connectives
in A. In the other weakly right invertible rule, 1R, we conclude the proof so no
special provision is necessary.

The corresponding left rules are as follows:

INAy, Bl = C A= Al

—o L,
F,Al,AQ,A—OBli:>C
LA A= C I;A;Bl=C
&Ly &La2
A AB L = C A AB | = C

;ABl = C - = A1
no left rule for T INA;AD Bl = C

DL

;A [t/2]A) = C
AV Al = C

Eventually we must break down the focus proposition to the point where it
is no longer synchronous. If it is atomic, we either succeed or fail in our overall
proof attempt. In other cases we switch back to the inversion judgment.

———init
I;oPl=P

I'A; A= C A not atomic and not left synchronous
LAA=C

A= Aq

JR
A= Al

The soundness of these rules is relatively easy to establish, since, in the
end, the system just represents a restriction on the application of the usual
left, right, initial and copy rules. Completeness of the corresponding system for
classical linear logic has been proven by Andreoli [And92] and is lengthy. The
completeness of the rules above has not yet been considered, but Andreoli’s
techniques would seem to apply fairly directly.’

In order to state soundness formally, we use convention that A, Q joins the
contexts A and €2, ignoring the order of the hypotheses in €.

Theorem 4.3 (Soundness of Focusing)
1. IfT;A;Q = A1 then T; (A, Q) = A.
2. IfT; Q0 = C then T (A, Q) = C.

Y[ This might make an interesting class project.]
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3 IfT5A;-— Al thenT; A = A.
4. IfT; A A) = C then T; (AA) = C

Proof: By straightforward simultaneous induction on the structure of the given
deductions. O

Focusing eliminates a lot of non-determinism regarding the choices among
possible inference rules. We summarize again the essential improvements over
the plain sequent calculus.

Inversion. Invertible rules are applied eagerly without considering alterna-
tives. This does not jeopardize completeness precisely because these rules are
(strongly) invertible. The introduction of ordered hypotheses 2 allows elimi-
nates the don’t-care non-determinism arises from the choice of invertible rule
by fixing an order. It is an important property of the focusing system that in
fact the order is irrelevant in the end, i.e., exchange between ordered hypotheses
is admissible for the focusing calculus.

Focusing. Once a non-invertible rule has been selected, a sequence of non-
invertible rules is applied to the focus proposition. This may involve don’t-
know non-deterministic choices, such as the question which side of a disjunction
may be proven. However, other choices (such as interleaving left rules between
independent linear hypotheses) are eliminated from consideration.

Initial Sequents. When we focus on a hypothesis, we break down the prin-
cipal connective of the focus proposition until is has been reduced to either
invertible or atomic. In case it is atomic, it must match an atomic goal—
otherwise we fail. This improvement will be particularly important under the
logic programming interpretation of linear logic.

As listed at the end of the last section, this still leaves a significant amount of
non-determinism which needs to be controlled during proof search. Instead of
piling these improvements on top of each other, we consider each one separately.
In a realistic application, such as general theorem proving, logic programming,
model checking, many of these high-level optimizations may need to be applied
simultaneously and their interaction considered.

4.3 Unification

We begin with a discussion of unification, a technique for eliminating existential
non-determinism. When proving a proposition of the form Jz. A by its right
rule in the sequent calculus, we must supply a term ¢t and then prove [t/z]A.
The domain of quantification may include infinitely many terms (such as the
natural numbers), so this choice cannot be resolved simply by trying all possible
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terms ¢. Similarly, when we use a hypothesis of the form Vz. A we must supply
a term t to substitute for x.

Fortunately, there is a better technique which is sound and complete for
syntactic equality between terms. The basic idea is quite simple: we postpone
the choice of ¢t and instead substitute a new existential variable (often called
meta-variable or logic variable) X for x and continue with the bottom-up con-
struction of a derivation. When we reach initial sequents we check if there is a
substitution for the existential variables such that the hypothesis matches the
conclusion. If so, we apply this instantiation globally to the partial derivation
and continue to search for proofs of other subgoals. Finding an instantiation
for existential variables under which two propositions or terms match is called
unification. It is decidable if a unifying substitution or unifier exists, and if so,
we can effectively compute it in linear time. Moreover, we can do so with a
minimal commitment and we do not need to choose between various possible
unifiers.

Because of its central importance, unification has been thoroughly investi-
gated. Herbrand [Her30] is given credit for the first description of a unification
algorithm in a footnote of his thesis, but it was not until 1965 that it was
introduced into automated deduction through the seminal work by Alan Robin-
son [Rob65, Rob71]. The first algorithms were exponential, and later almost
linear [Hue76, MMS82] and linear algorithms [MM?76, PW78] were discovered. In
the practice of theorem proving, generally variants of Robinson’s algorithm are
still used, due to its low constant overhead on the kind of problems encountered
in practice. For further discussion and a survey of unification, see [Kni89]. We
describe a variant of Robinson’s algorithm.

Before we describe the unification algorithm itself, we relate it to the problem
of proof search. For this we use a general method of residuation. It should be
kept in mind that this is mostly a foundational tool and not necessarily a direct
path to an implementation. We enrich the judgment I'; A = A by a residual
proposition F' such that

1. if A = Athen I'; A= A\ F and F is true, and

2. f A= A\ F and F is true then I'; A = A.

Generally, we cannot prove such properties directly by induction, but we need
to generalize them, exhibiting the close relationship between the derivations of
the sequents and residual formulas F'.

Residual formulas F' are amenable to specialized procedures such as unifi-
cation, since they are drawn from a simpler logic or deductive system than the
general propositions A. In practice they are often solved incrementally rather
than collected throughout a derivation and only solved at the end. This is
important for the early detection of failures during proof search. Incremental
solution of residual formulas is the topic of Exercise 77.

What do we need in the residual propositions so that existential choices and
equalities between atomic propositions can be expressed? The basic proposition
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is one of equality between atomic propositions, P, = P,. We also have conjunc-
tion F} A F5, since equalities may be collected from several subgoals, and T if
there are no residual propositions to be proven. Finally, we need the existen-
tial quantifier dz. F' to express the scope of existential variables, and Vx. F' to
express the scope of parameters introduced in a derivation. We add equality
between terms, since it is required to describe the unification algorithm itself.
We refer to the logic with these connectives as unification logic, defined via a
deductive system.

Formulas F = Pi=Py|ti =ty | i ANFy| T |3z F|Vz. F
The main judgment “F is valid”, written = F, is defined by the following

rules, which are consistent with, but more specialized than the rules for these
connectives in intuitionistic natural deduction (see Exercise 77).

—pP=p =t
=R =

N — 1
= Fy APy =T
= [t/2]F = [a/2)F
—d —VI®
Edz. F EVe F

The VI rule is subject to the usual proviso that a is a new parameter not
occurring in Vx. F. There are no elimination rules, since we do not need to
consider hypotheses of the form = F, which is the primary reason for the
simplicity of theorem proving in the unification logic.

We enrich the sequent calculus with residual formulas from the unification
logic, postponing all existential choices. Recall that in practice we merge resid-
uation and solution in order to discover unprovable residual formulas as soon as
possible. This merging of the phases is not represented in our system.

Hypotheses. Initial sequents residuate an equality between its principal propo-
sitions. Any solution to the equation will unify P’ and P, which means that this
will translate to a correct application of the initial sequent rule in the original
system.

o (T, A); (A, A) = C\ F
init copy
F;P’:_>P\P’£P ([VA); A= C\ F

Propositional Connectives. We just give a few sample rules for the con-
nectives which do not involve quantifiers, since all of them simply propagate or
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combine unification formulas, regardless whether they are additive, multiplica-
tive, or exponential.

F,A:_>A—OB\F F;Al,AQ,A—OB:_>C\F1/\F2
A= C\F
— 1R 1L
I = 1\T A 1= C\F

Quantifiers. These are the critical rules. Since we residuate the existential
choices entirely, the 9R and VL rules instantiate a quantifier by a new parameter,
which is existentially quantified in the residual formula in both cases. Similarly,
the VR and JL rule introduce a parameter which is universally quantified in the
residual formula.

A = [a/z]A\ [a/z]F A [a/z]A= C \ [a/z|F
VR*

vLe

A= Vz. A\ Vz. F AV, A= C\ Jz. F

I''A = [a/z]A\ [a/z]F A la/z]A = C\ [a/z]|F
JR* JLe
A= 2. A\ Jz. F DAz, A= C\Vz. A

The soundness of residuating equalities and existential choices in this manner
is straightforward.

Theorem 4.4 (Soundness of Equality Residuation) If ;A — A \ F
and = F then T; A = A.

Proof: By induction on the structure of R :: (I’ A = A\ F'). We show the
critical cases. Note how in the case of the IR rule the proof of = Jx. F provides
the essential witness term t.

Case: R = B L
I;P' = P\P =P
We know by assumption that = F which reads = P’ = P. By inver-
sion therefore P’ = P (since = I is the only rule which applies to this

judgment), and I'; P" = P is a valid initial sequent.

R1
A = |a/z] AL\ [a/x]Fy

Case: R = — dR®.
A= 2. A\ Jz. Iy

By assumption, we have = Jz. Fy. By inversion, |= [t/z]F; for some t. By
the proviso on the JR® rule, R, is parametric in a, so we can substitute
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t for a in this derivation an obtain [t/a]Rq :: (I'; A = [t/x] AL\ [t/z] FY1).
Applying the induction hypothesis to [¢t/a] R4 yields a Dy and we construct

D,
A = [t/x] Ay
JR
A= dz. A
R1
A = [a/z] A1\ [a/z]Fy
Case: R = VR

A= Vz. Ay \Vz. Iy

By assumption, we have = Vz. Fy. By inversion, = [b/z]F; for a new
parameter b, and therefore also |= [a/x]F; by substitution. Hence we can
apply the induction hypothesis to obtain a D; and construct

D,
A = [a/x] 4
VR*

A= Vz. Ay

The opposite direction is more difficult. The desired theorem:
IfT;A = A then I; A = A\ F for some F with = F

cannot be proved directly by induction, since the premises of the two derivations
are different in the JR and VL rules. However, one can be obtained from the
other by substituting terms for parameters. Since this must be done simultane-
ously, we introduce a new notation.

Parameter Substitution p == -|p,t/a
We assume all the parameters a substituted for by p are distinct to avoid ambi-

guity. We write [p]A, [p]F, and [p|T, for the result of applying the substitution
p to a proposition, formula, or context, respectively.

Lemma 4.5 If I;A = A and [p|A’ = A, [p]A" = A, and [p]I" =T, then
;A" = A’ \ F for some F and |= [p]F.

Proof: The proof proceeds by induction on the structure of D :: (['; A = A).
We show only three cases, the second of which required the generalization of
the induction hypothesis.
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Case: D = ~ I
rP—=P
and [p|]IY =T, [p|]A’ = P, and [p|A’ = P. Therefore A’ = P” with
[p]P" = P and A’ = P’ with [p]P’ = P and we construct

I .
=1
'sP'= pP\pP'"=P and | [p|P" = [p] P’

D,
I'TA = [t/x]As
Case: D = B JR.
A= Jx. A
We assumed [p]A’ = Fz. Ay, so A’ = Jz. A} and [p,t/a]([a/z]A}) =
[t/x]Aq for a new parameter a. Since a is new, [p,t/a]l” = [p]IV and

similarly for A’, so we can apply the induction hypothesis to D; to obtain
R1 and U; and construct

R1

_ U
I A= a/2] A7\ [a/x]Fy Re = [p, t/a]([a/z] F})
I A= Jz. A} \ Jz. Fy and E [p]3z. Fy
Dy
I''A = [a/z]As
Case: D = B VR
A= Vz. A

We assume [p]A’ = V. Ay, so A = Va. A} and [p,a/d’]([d’/2]A]) =
[a/x]A; for an o’ new in IV, A’ and Vx. A]. We can then appeal to the
induction hypothesis on D; to obtain R; and U; and construct

Ra ”
[ A" = [d/ /2] A7\ [d /2] Fy - = [p, a/a’)([d /] Fy)
I'';A' = Vz. A\ Vz. Fy and E [p]Vz. Fy

O

Theorem 4.6 (Completeness of Equality Residuation) IfT'; A = A then
A= A\ F for some F and = F.

Proof: From Lemma 4.5 with A’ = A, A’ = A, IV = T, and p the identity
substitution on the parameters in I, A, and A. |

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in
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the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways for describing unification algorithms in the liter-
ature. We describe the computation of the algorithm as the bottom-up search
for the derivation of a judgment. We restrict the inference rules such that they
are essentially deterministic, and the inference rules themselves can be seen as
describing an algorithm. This algorithm is in fact quite close to the implemen-
tation of it in ML which is available together with these notes.?

In order to describe the algorithm in this manner, we need to introduce
existential variables (often called meta-variables or logic variables) which are
place-holders for the terms to be determined by unification. We use X to stand
for existential variables.

The second concept we need is a continuation, which arises from the intro-
duction rule for conjunction. This rule has two premises, which leaves the choice
on how which premise to prove first when we work in a bottom-up fashion. Our
algorithm commits to do the first conjunct first, but it has remember that the
second conjunct remains to be proved. Equational formulas which have been
postponed in this way are accumulated in the continuation, which is activated
when there are no further equations to be solved. For now, a continuation is
simply another formula denoted by S. Initially, we use T for S. Thus our main
judgment describing the algorithm has the form “F is satisfiable with continu-
ation S”, written as = F'/ S.

Continuations. The following rules introduce and manage the continuations.
R/ FBAS =F/S
—— Al —TIT — TIA
EFRANF/S ET/T ET/FAS
Existential Quantification. Existential variables are introduced for existen-
tial quantifiers. They must be new not only in F' but also in S.

E[X/z]F/S Xnotin F or S
Edz. F/S

Ell

Despite the requirement on X to be new, the derivation of the premise is not
parametric in X. That is, we cannot substitute an arbitrary term ¢ for X in
a derivation of the permiss and obtain a valid derivations, since the vr, rv, vv,
and vv’ rules below require one or both sides of the equation to be an existential
variable. Substituting for such a variables invalidates the application of these
rules.

Predicate and Function Constants. An equation between the same func-
tion constant applied to arguments is decomposed into equations between the
arguments. Unification fails if different function symbols are compared, but this

2[perhaps at some point]
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is only indirectly reflected by an absence of an appropriate rule. Failure can also
be explicitly incorporated in the algorithm (see Exercise 77).

’:tlisl/\---/\tnisn/S ’:tlisl/\---/\tnisn/S
pPp T
Ep(t,...,tn) =p(s1,...,8.) / S Ef(t,. . tn) = f(s1,-.-,81) /S

These rules violate orthogonality by relying on conjunction in the premises for
the sake of conciseness of the presentation. When f or p have no arguments,
the empty conjunction in the premise should be read as T.

T

Existential Variables. There are three rules for variables. We write r for
terms of the form f(¢,...,t,). Existential variables always range over terms
(and not propositions), so we do not need rules for equations of the form X = P
or P=2X.
ET/[r/X]S X notinr ET/[r/X]S X notinr
vr

EX=r/S Er=X/8

rv

These two rules come with the proviso that the existential variable X does
not occur in the term ¢. This is necessary to ensure termination of these rules
(when viewed as an algorithm) and to recognize formulas such as Jz. © = f(x)
as unprovable. This leaves equations of the form X = Y with to existential
variables. We write two rules for this case to simplify the analysis.

=T/ [Y/X]S =TS

vV _— v/

EX=Y/S EX=X/S

We now analyze these rules when viewed as an algorithm specification. First
we observe that all rules have either no or one premise. Furthermore, for any
judgment |= F / S at most one rule is applicable, and in only one way (the
choice of the new existential variable name X is irrelevant). Therefore these
rules, when viewed as instructions for construction a derivation of a judgment
E F / T are deterministic, but may fail, in which case the formula is not
provable.

Furthermore, the bottom-up search for a derivation of = F / S in this

system will always terminate. The termination ordering involves five measures,
ordered lexicographically as follows:

1. the number of free and quantified existential variables,
2. the number of predicate and function symbols,

3. the total number of logical symbols A, T, 3 in F and S,
4. the number of logical symbols in F,

5. the number of equations.
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This measure decreases in each rule:
AI does not change (1)—(3) and decreases (4),
TIT completes the search,

TIA does not change (1)—(2) and decreases (3),

—(2
—(2) and decreases (3),

(1)
31 does not change (1)
pp does not change (1) and decreases (2),
rr does not change (1) and decreases (2),
vr decreases (1) since X does not occur in 7,
rv decreases (1) since X does not occur in 7,
vv decreases (1), and

vv’ does not change (1)—(4) and decreases (5).

In some of these cases it is also possible that a measure of higher priority de-
creases (but never increases), preserving the strict decrease along the lexico-
graphic ordering.

We also note that the continuation S is not completely general, but follows
the grammar below.

Continuations S == TI|FAS

In other words, it may be viewed as a stack of formulas. In the ML implemen-
tation, this stack is not represented explicitly. Instead we use the call stack of
ML itself.

The desired soundness and completess theorems for this algorithm requires
some generalizations based on substitutions for existential variables.

Ground Substitutions 6 == -|0,t/X

We always assume that the terms ¢ we assign to variables in substitutions do not
contain existential variables. This assumption is reasonable, since we only use
substitutions here to connect derivations for = F' (which contains to existential
variables) with derivations of = F’ / S’ (which contains existential variables).

Lemma 4.7 (Soundness Lemma for Unification) If = F / S then there
exists a ground substitution for the existential variables in F' and S such that
E [0]F and = [6]S.

Proof: By induction on the structure of F :: (= F / S). ]

The soundness theorem follows easily from this lemma.
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Theorem 4.8 (Soundness of Unification) If = F / T and F contains no
existential variables, then |= F'.

Proof: From Lemma 4.7 for S =T and 0 = -. O

Lemma 4.9 (Completeness Lemma for Unification) If = F and = S,
then for any formulas F', continuations S’ and substitutions 6 for the existential
variables in F' and S’ such that F = [0]F' and S = [0]S’ we have = F ] S.

Proof: By nested inductions on F :: (= F) and S :: (E S). This means that
when we appeal to the induction hypothesis on a subderivation of F, S may be
larger. We distinguish cases for F.

Case: F =—TI.
ET

The we distinguish two subcases for §. If § is TI, the result is trivial by
TIT. Otherwise

Fi So
EFR = S2
S= Al
E Fi ASy
where S = F} A Sy for some F; and S3. Then
Fia(EFL/S2) By ind. hyp. on F; and S»
F (BT /FiAS) By TIA
Fi Fa
=R = F
Case: F = AL
= Fy AP
Foe(EFy/ S By ind. hyp. on 7> and S
Sy (FFAS) By Al from F> and S8
Fiu(EF ] FNS) By ind. hyp. on F; and S»
F 2 (EFINF}]S) By Al from Fj.
Fi
= [t/z]Fy
Case: F =——— 1.
’: dz. Fl

F' =3z. F{ and [0](3x. FY) = 3z. Fy

By assumption

[0,t/ X]([X/x]F)) = [t/z]F} for X not in F' or S’

6,t/X]S" =S
Fi (= [X/alFy ) S7)
Fu(E3Jx. F /S
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Case: F =—— =1.

==t

Here we proceed by an auxiliary induction on the structure of t. By
assumption [0]F’ = (t = t), so we have ¢ and ¢’ such that [0]t' = [0]t" = t.
We distinguish cases on ¢’ and t”, showing three. The remaining ones are
similar.

Subcase: t' = f(t},...,t) and ¢ = f(t{,...,t!)),s0alsot = f(t1,...,tn).

=t =tr/S By ind. hyp. on t,, and S
Snii(Fth =th AS) By Al from =1 and S
Et, =t )t =t NS By ind. hyp. on ¢,_1 and S,,.
Et =t Jth=thNn-- At =t NS As above
Et =t ANty =tdN-- Nt =t ]S by Al
Eft,... ) =f,....t1) /S by rr.

Subcase: ¢ = X and t” = r but contains X. This is impossible, since
we assumed [0]t' = [0]t" = t¢.

Subcase: t' = X and t” = r does not contain X. Then [0]([r/X]S") =
[0]S" = S since [f]r = [A]X =t and 0 is a ground substitution. By
distinguishing cases for § as for F' = T above, we conclude

=T/ [r/X]s
EX=r/S% By rule vr

O

The completeness theorem follows easily from this lemma.

Theorem 4.10 (Completeness of Unification) If = F (where F contains
no existential variables) then = F | T.

Proof: From Lemma 4.9 with S=T, 58 =T, F/ = F and § = -. a

The generalization of the algorithm above to account for universal quanti-
fiers and parameters is not completely straightforward. The difficulty is that
Vz. Jy. y = z is valid, while Jy. Vz. y = z is not. We show an attempt to derive
the latter which must be ruled out somehow.

— TIT
=T /le/YIT
EYZa/T
EVe.Y=z/T

Edy.Ve.y=z/T

In this derivation, the application of TIT is correct since [a/Y]T = T. The
problem lies in the fact a is new in the application of the VI® rule, but only

a

Ell

Draft of January 26, 2002



88 Proof Search

because we have not instantiated Y with a yet, which is necessary to complete
the derivation.

There are two ways to solve this problem. More or less standard in theorem
proving is Skolemization which we pursue in Exercise ??. The dual solution
notes for each existential variable which parameters may occur in its substitution
term. In the example above, Y was introduced at a point where a did not yet
occur, so the substitution of a for Y should be rejected.

In order to describe this concisely, we add a parameter context ¥ to the
judgment which lists distinct parameters.

Parameter Context ¥ == -|U,q

This step is analogous to the localization of the hypotheses and should be con-
sidered merely a change in notation, not an essential change in the judgment
itself. We annotate each judgment with the parameter context and introduce
the new judmgnet “t is closed with respect to U”, written as ¥ = tterm. It is
defined by the following rules.

Uty term --- Wk t, term

parm root
Uy, a,¥s - aterm U f(ty,...,t,) term

We modify the validity judgment for unification formulas to guarantee this con-
dition.
U+ ¢ term VU |= [t/z|F U, af=[a/z]F
|
U Edz F U =Vz. F

When an existential variable X is introduced during the search for a deriva-
tion of a unification formula, we annotate it with the parameter context so we
keep track of the admissible substitutions for X.

U = [Xg/z]F /S Xgnotin ForS
V=32 F/S

Ell

Parameters are introduced in the rule for universal quantifiers as before.
U.a=la/z]F /S
U =Ve. F/S

An equation Xy¢ = ¢ could now be solved immediately, if all parameters of
t are contained in ¥ and X does not occur in t. However, there is one tricky
case. Consider the judgment

aEX = f(Y)AY,=a/T

where X cannot depend on any parameters and Y can depend on a. This
should have no solution, since X. would have to be equal to f(a), which is not
permissible. On the other hand,

aEX = f(Y)ANY,=c/T
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for a constant c has a solution where Y, is ¢ and X. is f(c). So when we process
an equation Xy = t we need to restrict any variable in ¢ so it can depend only
on the parameters in W. In the example above, we would substitute Y for Y.

In order to describe the algorithm, we internalize the judgment ¥ + ¢ term
as a new formula, written as t |y. We define it as follows.

VET/S ifain¥ U=t g A Aty |w/ S
Vl=aly/ S ¢ U= f(t,. . tn) |/ S
UV =T/ [Yo,nw, /Ye,]S
UV =Yy, v,/ S

Here, U1 N ¥, denotes the intersection of the two contexts. In the rules for
variables, this is invoked as follows.

| £

| v

V' =71 |/ [r/Xe]S where Xg not in r
\I// ’: X\p = T / S

vr

V' =rly/ [r/Xe]S where Xy not inr
o’ ’: r=Xyg / S

where r stands for a term f(¢1,...,t,) or a parameter a. The variable rules are
modified similarly.

14 ’:Y‘PQ |‘P1/ [Y‘PQ/X‘Pl]S 14 ’: T / S
vv vV
\I/”:X\pliY%/S ql/m’:X\Ij:X\IJ/S

vr

The use of continuations introduces on final complication. Consider the case
of (Vz. Fy) A Fy. Since we linearize bottom-up search the parameter context
U will contain the parameter introduced for x when F5 is finally considered
after F; has been solved. This introduces spurious dependencies. To prohibit
those, we build closures consisting of a formula and its parameter context on
the continuation stack.

Continuations S == T |{T,F}AS
The rules for continuations are modified as follows.
\I/|:F1/{\I/,F2}/\S \I/’:F/S
N TIT TIA
VE=FAF/S TET/T V=T /{U,FIAS

The termination argument is only slightly more difficult, since the restriction
operation is a structural recursion over the term r and does not increase the
number of variables or equations.

The soundness and completeness theorems from above extend to the problem
with parameters, but become more difficult. The principal new notion we need
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is an admissible substitution 6 which has the property that for every existential
variable Xy, ¥t [0] Xy term (see Exercise ?77).

The ML implementation takes advantage of the fact that whenever a vari-
able must be restricted, one of the two contexts is a prefix of the other. This
is because every equation in a formula F' lies beneath a path of possibly al-
ternating quantifiers, a so-called mized quantifier prefic. When we apply the
rules above algorithmically, we instantiate each existentially quantified variable
with a new free existential variable which depends on all parameters which were
introduced for the universally quantified variables to its left. Clearly, then, for
any two variables in the same equation, one context is a prefix of the other. Our
ML implementation does take advantage of this observation by simplifying the
intersection operation.

We can take this optimization a step further and only record with an integer
(a kind of time stamp), which parameters an existential variable may depend on.
This improves the efficiency of the algorithm even further, since we only need
to calculate the minimum of two integers instead of intersecting two contexts
during restriction. In the ML code for this class, we did not optimize to this
extent.
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Chapter 5

Linear Logic Programming

When we think of logic we generally first consider it as a discipline concerned
with the study of propositions, truth, and inference. This may appear at first
to be independent from any notion of computation. However, there are two
immediate connections: proofs as programs and proof search as computation.

In constructive logic (and our approach has been constructive) we can view
a proof as defining a construction (algorithm, program). For example, a proof
of AD B shows how to achieve goal B when given the resource A. Carrying out
such a construction when we actually have obtained resource A the corresponds
to computation. This notion of computation is most closely related to functional
programming, but because of the state-aware nature of linear logic it also has
some imperative flavor. We will discuss a computational interpretation of linear
logic along these lines in Chapter 6.

Another computational interpretation is closer to the way we have been
using linear logic so far. Reconsider, for example, the encoding of Petri nets in
linear logic. Each possible computation step of the Petri net is modeled by a
corresponding inference step in linear logic. As a result, reachability in a Petri
net corresponds to provability in its linear encoding. More importantly, each
possible computation of a Petri net corresponds to a proof, and carrying out a
computation corresponds to the construction of a proof. In other words, proof
search in linear logic corresponds to computation.

This leads to the question if we can exploit this correspondence in order
to design a programming language based on linear logic where computation is
indeed proof search. The result of computation then is a particular proof, or
possibly a collection or enumeration of proofs depending on the characteristics
of the language. A program in this setting is simply a collection of propositions
that, through their form, will lead the proof search engine down a particular
path, thereby achieving a particular computation. In order to make this both
feasible from the point of view of an implementation and predictable to the
programmer, we need to full linear logic. We would like to emphasize that
even on this fragment (called LHHF for Linear Hereditary Harrop Formulas),
not every specification is executable, nor is it intended to be. We hope the
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development and the examples in this chapter will clarify this point.

5.1 Logic Programming as Goal-Directed Search

Our first approach to logic programming is via the notion of goal-directed search.
It turns out that this view diverges from our earlier examples because it does
not incorporate any concurrency. However, some of our earlier encodings can
be rewritten to fit into the language given below.

Assume we are trying to prove Iy A = A where I' are the unrestricted
hypotheses (which correspond to the program), A are the linear hypotheses
(which correspond to current state) and A which corresponds to the goal. The
idea of goal-directed search is that we always first break down the structure
of the goal A until it is atomic (P). At that point we focus on one of the
hypotheses in I or A and apply consecutive left rules until the focus formula
matches P and we can solve the subgoals generated during this process. This
phase of the computation corresponds to a procedure call, where the generated
subgoals correspond to the procedure body which is then executed in turn.

In order to have a satisfactory logical interpretation of the program (in ad-
dition to the computational one above), we would like this search procedure
to be sound and non-deterministically complete. Soundness simply means that
we only find valid proof, which is easy to accomplish since we only restrict
the applications of ordinary sequent rules. Completeness means that for every
derivation for the original judgment there is a sequence of choices according to
the strategy above which finds this derivation. As we have seen in the develop-
ment of focusing (Section 4.2), the goal-directed strategy above is generally not
complete. However, it is complete if we restrict ourselves to right asynchronous
connectives, because focusing is complete and all the connectives are orthogonal
to each other.

This fragment (with some irrelevant, minor deviations) is called the system
of linear hereditary Harrop formulas (LHHF).

A = P|A1—OA2|A1&A2|T|A13A2|V$A

We obtain the foundation for its operational semantics simply from the focus-
ing system, restricted to the above connectives. Since they are all right asyn-
chronous, we only need two of the four judgments. We call this a system of
uniform proofs [MNPS91]. For the case of linear, this system has first been pro-
posed by Hodas and Miller [HM94, Hod94], although similar ideas for classical
linear logic had been developed independently by Andreoli [AP91, And92].

Goal-Directed Search. This corresponds to the inversion phase of the fo-
cusing system. Because all right asynchronous propositions are left synchronous,
we do not need to collect them into an ordered context €2 but add them directly
to the left synchronous hypotheses in A. We write

A= Af
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From the focusing system we obtain the following rules.

IAJA=— B 1 A= Af A= B R
—R &
I'NA=— A—- B A= A&B 1
I'N'A; A= B
— TR DR
A= T4 INA=— ADBY

A = [a/z]A D
A= V. A

Procedure Call. This corresponds to the focusing phase of the focusing sys-
tem. In this case we can carry over the judgment directly

AAl = P

where A is the focus formula and P is always atomic. This judgment is also
called immediate entailment because A must decompose to directly yield P as
can be seen from the rules below.

This phase is triggered by a decision, if the goal formula is atomic.

AAl =P NAANA)= P
———— decideLL decideL!
IAJA=— P A A= Pq

During this phase, we simply carry out the left rules on the focus formula.
Since we can never obtain a left asynchronous proposition (there are none among
the linear hereditary Harrop formulas), we can only succeed if we obtain an
atomic proposition equal to P.

— init
IioPy=P
IAi;BYy=—P A, — A9
—o L,
F,Al,AQ,A—OBli:>P
AAl =P ;A;Bl =P
&Ly &La2
A AB |} =— P A A&B | =— P

;A;Bl =P I — Af
no left rule for T IAADB = P

DL

;A [t/2]A) = P
A Ve, A= P

Some of the premises of these rules refer back to goal-directed search. The
collection of these premises for a particular focusing step (that is, procedure

Draft of January 26, 2002



94 Linear Logic Programming

call) corresponds to the procedure body. Operationally, they will be solved only
after we know if the init rule applies at the end of the sequence of focusing steps.

It is easy to see that uniform proofs are sound and complete with respect to
the sequent calculus via the soundness and completeness of focusing.!

5.2 An Operational Semantics

The system of uniform proofs from the previous section is only the basis of an
actual operational semantics for LHHF. There are still a number of choices left
and we have to specify how they are resolved in order to know precisely how a
query

A= Af

executes. We organize this discussion into the forms of the non-deterministic
choices that remain. We are not formal here, even though a formal description
can certainly be given.?

Existential Non-Determinism. This arises in the choice of the term ¢ in
the VL rule during the focusing phase. This is resolved by substituting instead a
logic variable X, where it is explicitly remember which parameters a the variable
X may depend on. For initial sequents

———init

I;oPl=P

we instead allow the hypothesis P and goal P’ and unify them instead of testing
them for equality. Since we can always find a most general unifier, this involves

no unnecessary overcommitment and we do not have to backtrack in order to
retain completeness.

Conjunctive Non-Determinism. If several subgoals arise during focusing,
or because we have a goal A;& Ay, we have to solve all subgoals but the order
presents a form of conjunctive non-determinism. We resolve this by always
solving the premises in the uniform proof rules from left to right. This has the
desirable effect that we only attempt to solve a subgoal once we have unified
the atomic goal P with the proposition P’ at the end of the focus formula.

Disjunctive Non-Determinism. Disjunctive non-determinism arises in the
choice of the focus formula once the goal is atomic, and in the choice of the
left rule if the focus formula is an alternative conjunction. This is resolved via
depth-first search and backtracking. For the decision how to focus, we use the
following order:

{add more formal statement]
2[several citations]

Draft of January 26, 2002



5.2 An Operational Semantics 95

1. First the linear or unrestricted hypotheses that were introduced during
proof search, where we try the most recently made assumption first (right-
to-left, in our notation).

2. Then we try the unrestricted assumptions that were fixed at the beginning
of the search (the program), trying the propositions from first to last (left-
to-right in our notation).

For alternative conjunctions as the focus formula, we first try the left conjunct
and then the right conjunct.

Resource Non-Determinism. Resource non-determinism arises in the —o L
rule, where we have to split assumptions between the premises. Conceptually,
this can be resolved by introducing Boolean constraints [HP97] and solving
them eagerly. In order to gain a better intuition what this means operationally,
equivalent systems that avoid explicit creation of constraints have been devel-
oped [CHP00]. We will give some intuition in Section 5.3 where we introduce
the input/output model for resource management.

Unfortunately, the way we treate disjunctive non-determinism via depth-
first search and backtracking means that there may be proofs we never find
because the interpreter following our operational semantics does not terminate.
Many attempts have been made to alleviate this difficulty, but none are entirely
satisfactory. Depth-first search seems to be critical to obtain a simple and
understandable operational semantics for programs that allows algorithms to
be implemented efficiently in a logic programming language.

Even though the interpreter is incomplete in this sense, the non-deterministic
completeness of the uniform proof system is still very important. This is because
we would like to be able to interpret failure as unprovability. Since the uniform
proof system is non-deterministically complete, we know that if the interpreter
fails finitely and reports no proof can be found because all choices have been
exhausted, then there cannot be a proof of the original goal.

To summarize, the interpreter may exhibit three behaviors.

1. Succeed with a proof. By soundness, the goal is provable. If we backtrack
further, we may get other proofs.

2. Fail. By non-deterministic completeness, the goal is unprovable and hence
not true in general.

3. Run. In this case we have no information yet. We cannot observe if the
interpreter will run forever, so we have to let it run and hope for eventual
termination, either with success or failure.

Note that these are exactly the same even if our interpreter were complete in
the strong sense. The only difference would be that if there is a proof, the
running interpreter would eventually succeed. It cannot always fail if there
is no proof, because of the undecidability of this fragment (which is easy to
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verify, see Exerciseexc:lhhf-undec). One should note, however, that even simple
decidable fragments may exhibit non-terminating behavior.

This observation reminds us that linear logic programming does not provide
a general theorem prover. It is not possible to write an arbitrary specification
(even in the LHHF fragment) and obtain a reasonable program. Instead, it
is often possible to write programs at a very high level of abstraction, and
sometimes even possible to few specification directly as programs, but just as
often this is not the case. Some examples below should help to clarify this.

5.3 Deterministic Resource Management

In order to use linear hereditary Harrop formulas effectively as a logic pro-
gramming language, we need to understand how resource non-determinism is
resolved. This can be understood in three stages—we give here only the first
and most important one.

The only rule where we have to consider how to split resources is the —o L
rule.

Ay By=P A = A9
F,Al,AQ,A—OBli:>P

— L

Note that the left premise will be solved first and then the right premise. The
way we resolve this choice is that we pass all the resources to the left premise
and keep track which ones were actually needed in the proof of B | = P.
The remaining ones are passed to the second premise once the first premise has
succeeded. This strategy only make sense because we have already committed
to solve conjunctive non-determinism by left-to-right subgoal selection.

This describes the input/output model of resource management. We reuse
some of the notation introduced to describe Boolean constraints, by writing
w:A[1] for a linear hypothesis that is there, and u:A[0] for a linear hypothesis
that has been consumed somewhere. No other Boolean expression arise here.
The main judgments are now

F; A[\AO — A ﬂ
[AN\Ag; All = P

where Aj stands for the input resources that may be consumed and Ao stands
for the output resources that were not consumed. Note that the judgment is
hypothetical in Aj but not in Agp. First, the goal-directed phase of search.
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;A uwA[l\Ao, uw:Al0] = B {
T A[\AO — A—oB ﬂ

—R

IANAo = AT T;A1\Apo= B

&R
T A[\AO — A&B 1
A[QAO F,A;A[\AO:>BTT
TR DR
F;A[\AO:>TTT F;A[\AO:>ADBTT

IS ANAo = [a/z]A
T A[\AO — Vx. A T

The right rule for linear implication requires that the linear assumption be
consumed (A[0]). For T we have to allow an arbitrary subset of the input
hypotheses to be consumed. This relation is defined by

Ar2 Ao
. A, u:A[0] 2 Ao, u:A[0]

A D Ao Ar2 Ao
Ar,u:A[l] 2 Ao, u:A[l] Ar,u:A[l] 2 Ao, u:Al0]

The non-determinism that arises in this rule has to be eliminated in a second
step (see [CHP00]).?

Second, the transition between the phases. Note that linear hypotheses are
consumed here, and not at the rules for initial sequents.

F;A[\Ao;Ali:>P F,A;A[\Ao;AﬁﬁP
decideL decideL!
;A wA[l\Ap, w:Al0) = P f DA AN\NA = P 1

Third, the focusing phase. The critical rule is the one for — L. where re-
sources are passed through from left to right with Ajs representing the hy-
potheses that have not been consumed in the proof of the first premise. Also
note that for initial sequent we simply pass through all linear hypothesis rather
than checking if they are empty. This is because we are no longer required,
locally, that all linear assumptions are used, since some pending subgoal may
consume it later.

3[maybe reformulate and add here]
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init
LANAB Pl =P

F;A[\AM;Bl}:>P F,AM\AO:>ATT

I;ANAG;A—B |l — P -
[ANAg A= P I[A\Ag; B =P
&Ly &Lo
F; A[\Ao; A& B l} = P F; A[\Ao; A& B l} = P

;AN\Ag; Bl =P I — A
no left rule for T IANAg;ADBI =P

DL

I ANAg; [t/2z]A ) = P
;AN\Ap; V2. A = P

In order to execute a query I'; A = A we instead execute
[ AINA[0] = A1

where (u1:41,...,un:Ap)[b] is shorthand for ui:Aq[b],. .., un:A,[b]. This guar-
antees that all linear hypotheses have indeed be consumed.

In the statement of soundness and completeness, however, we need to be
more general to account for intermediate states. The idea of soundness is that if
I'; A\Ap = A 1) then if we delete all hypotheses from Aj that are still in A,
we should have a uniform proof from the resulting hypotheses. We therefore
define subtraction, A; — Ap = A, where A; and Ap have Boolean annotations
and A does not.

Ar—Ao=A
P (A, wA[L]) — (Ap,w:A[0]) = (A, u:A)
Ar—Ap=A Ar—Ap=A
(Ar,wAll]) = (Ar,wAll]) = A (Ar, wA[0]) — (Ar, w:A0]) = A

We can then prove soundness directly.

Theorem 5.1 (Soundness of I/O Resource Management)
1. Ifr;A[\AO = Af then A; — Ao =A and ;A = A{}
2. IfT;AN\NAp; Al = P then A; —Ap=A and T;A; A} = P

Proof: By mutual induction on the structure of the given derivation.* i

4[check for lemmas and write out some cases]
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For the completness direction we need to generalize the induction hypothesis
somewhat differently.

Theorem 5.2 (Completeness of I/O Resource Management)
1. If T; A = A A then T'; A[1], Ap\A[0], Ao = A 1} for any Ao.
2. IfT;A; Al = P then T; A[l], Ao\A[0], Ap; A} = P for andy Ao.

Proof: By mutual induction on the structure of the given derivation.® i

5.4 Some Example Programs

We start with some simple programs. Following the tradition of logic program-
ming, we write implications in the program (I") in reverse so that A o— B means
B — A. Implication in this direction is left associative, and subgoals solved
(visually) from left-to-right. So,

Po-Qo-R

stands for (P o— Q) o— R which is the same as R —o(Q — P). If P matches the
current atomic goal, then first subgoal to be solved is @ and then R. This is
consistent with the informal operational semantics explained above.

The first program is non-terminating for the simple query p.

Uy : po—p.
Uupg : p.

Then a goal = p under this program will diverge, since it will use u; first,

which produces the identical subgoal of = p. If we reorder the clauses
Uupg : p.
Uy : po—p.

the query = p will produce the immediate proof (ug) first and, if further
answer are requested, succeed arbitrarily often with different proofs. We can
slightly complicate this example by adding an argument to p.

uo : p(0).
us : V. p(s(x)) o—p(x).

In a query we can now leave an existential variable, indicated by an uppercase
letter, = p(X). this query will succeed and print the answer substitution
X = 0. If further solutions are requested, the program will enumerate X = s(0),
X =s(s(0)), etc. In general, most logic programming language implementation
print only substitutions for existential variables in a query, but not other aspects
of the proof it found.

The trivial examples above do not take advantage of the expressive power
of linear logic and could equally well be written, for example, in Prolog.

For the next example we introduce lists as terms, using constructors nil and
cons. For example, the list 1, 2, 3 would be written as cons(1, cons(2, cons(3, nil))).
A program to enumerate all permutations of a list is the following.

5[check for lemmas and write out some cases]
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po : perm(cons(X, L), K)o—(elem(X) —o perm(L, K))
p1 : perm(nil,cons(X, K)) o— elem(X) o— perm(nil, K)
p2 :  perm(nil, nil)

Here we have left universal quantifiers on X, L, and K implicit in each
declaration in order to shorten the program. This is also supported by imple-
mentations of logic programming languages.

We assume a query of the form = perm(l, K') where [ is a list and K is a
free existential variable. The program iterates over the list [ with pg, creating a
linear hypothesis elem(t) for every element ¢ of the list. Then it repeatedly uses
clause p; to consume the linear hypothesis in the output list K. When there are
no longer any linear hypotheses, the last clause ps will succeed and therefore
the whole program.

As a second example we consider a simple solitaire game with a board of the
form

O O O O O
Each circle represents a hole which is filled if that hole contains a peg. The

initial position

has one empty hole, while all other holes are filled by pegs (14 all together).
We move by jumping one peg over another if the hole behind it is empty. For
example, in the given initial position there are only two legal moves, one of
which leads to the following situation:

) ) ) O )

The goal is to achieve a configuration in which only one peg is left. Alternatively,
we can say the goal is to make 13 consecutive moves starting from the original
position.
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We use two digits to represent the address of each hole on the board in the
following manner:

00
10 11
20 21 22
30 31 32 33
40 41 42 43 44

To represent the current situation, we have two predicates

empty(z,y) Hole zy is empty
peg(z,y) Hold zy contains a peg

Then the initial situation is represent by the linear hypotheses

(0,0)
(1,0) ,
peg(2,0), empty(2,1), peg(2, 2),
(3,0), peg(3, ) peg( ; ),pe (3,4),
(4,0), peg(4 peg(4,3), peg(4,4).

Now each possible move can be represented in the style of our earlier encodings
as a linear implication. Because there are six possible directions for jumping
(although many are impossible for any given peg), we have six different rules.
We name each rule with its compass direction

sw : peg(z,y) ® peg(z + 1,y) ® empty(z + 2, y)
—oempty(z,y) ® empty(z + 1,y) ® peg(z + 2,y)
ne : peg(z+2,y)® peg(z+1,y) @ empty(z,y)
—oempty(z + 2,y) ® empty(z + 1,y) ® peg(z, y)
e : peg(z,y) ® peg(z,y + 1) ® empty(z,y + 2)
—oempty(z,y) ® empty(z,y + 1) ® peg(z,y + 2)
w : peg(z,y+2)®peg(zr,y+ 1) ® empty(z,y)
—oempty(z,y + 2) ® empty(z,y + 1) ® peg(z, y)
se : peg(r,y)@peg(z+1,y+ 1) @empty(x + 2,y +2)
—oempty(z,y) ® empty(z + 1,y + 1) ® peg(x + 2,y + 2)
nw : peg(x+2,y+2)Q@peg(z+1,y+ 1) @ empty(z,y)
—oempty(z + 2,y +2) ® empty(z + 1,y + 1) ® peg(z, y)

In order to specify the goal, we can specify the precise desired configuration.

In this example we see if we won by counting the number of moves, so we can add
count(0) to the initial state, count(n) to the left-hand side of every implication
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and count(n + 1) to the right-hand side. To solve the puzzle we then have to
prove
To; Ag, count(0) = count(13) @ T

where I is the program above and A is the representation of the initial situ-
ation.

This representation is adequate, but unfortunately it does not fall within
the class of linear hereditary Harrop formulas because of its use of ®. In fact, if
we look at the seqent we have to prove above to solve the puzzle, the proof will
not proceed in a goal-directed fashion. Instead, we have to continually focus on
propositions in I'g until the goal happens to be provable in the end.

Fortunately, we can transfer it into the class LHHF by taking advantage of
two ideas. The first is a logical law called uncurrying:

(A® B) — CHFA—o(B —C)

This allows us to eliminate simultanous conjunction on the left-hand side of
linear implications. But what about the right-hand side? In this case no similar
local transformation exists. Instead we transform the whole program by using
a so-called A-translation or continuation-passing transform.® Normally, a move
A —o B is a function that transforms the resource A into the goal B. However,
instead of returning B, we will now add a second argument that consumes the
result B and eventually returns a final answer. By the substitution principle
(or cut, in the sequent calculus), this is sound and complete. So A— B is
transformed into A —o(B —op) —op where p is a new atomic predicate. Note
that this shifts B to the left-hand side of an implication, so we can now apply
uncurrying in case it is a tensor. In general, all clauses of the program need to
be transformed with the same new propositional parameter or constant p.

If we read the transformed proposition operationally (also changing the order
of subgoals),

po— Ao—(B —op),

it means that in order to prove p we have to prove A (which may consume some
resources), then assume B and make a recursive call. In our example, we call
the new predicate jump and the first clause

sw : peg(z,y) @ peg(r + 1,y) ® empty(z + 2,y)
—oempty(z, y) ® empty(z + 1,y) ® peg(z + 2,)
is transformed into
sw : jumpo—(peg(z,y) ® peg(z + 1,y) ® empty(z + 2,y))
o—(empty(z, y) ® empty(z + 1,y) @ peg(z + 2,y) —o jump)

and similarly for the other clauses. Now we can eliminate the simultaneous
conjunction by uncurrying to obtain an equivalent proposition in the LHHF

6ladd citations]
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fragment.

sw : jumpo—peg(x,y)o— peg(r +1,y) o—empty(z + 2,y)
o—(empty(x, y) —empty(z + 1, y) —o peg(z + 2,y) —o jump)

In order to count the number of moves we just add an argument to the jump
predicate that we count down to zero.

sw : jump(n+ 1) o— peg(z,y) o— peg(z + 1,y) o—empty(z + 2, y)
o—(empty(z, y) —oempty(z + 1, y) —o peg(z + 2,y) —o jump(n))

ne : jump(n+ 1)o—peg(z + 2,y) o— peg(x + 1,y) o— empty(z, y)
o—(empty(z + 2,y) —o empty(z + 1, y) —o peg(x,y) — jump(n))

e : jump(n+ 1) o peg(z,y)o—peg(z,y+ 1) o—empty(z,y + 2)
o—(empty (x, y) — empty(z,y + 1) —o peg(z, y + 2) — jump(n))

w : jump(n + 1) o— peg(z,y + 2) o— peg(z,y + 1) o~ empty(z, y)
o—(empty(z, y + 2) —empty(z, y + 1) — peg(x, y) — jump(n))

se : jump(n+ 1) o—peg(z,y) o—peg(z + 1,y + 1) o—empty(z + 2,y + 2)
o—(empty(x,y) — empty(z + 1,y + 1) —o peg(x + 2,y + 2) —o jump(n))

nw : jump(n+1)o—peg(z + 2,y + 2) o peg(z + 1,y + 1) o— empty(z, y)
o—(empty(z + 2,y + 2) —empty(z + 1,y + 1) —o peg(z, y) — jump(n))

Finally we add a clause to succeed if we can make n moves given the query
jump(n).
done : jump(0)o—T

Note the use of T in order to consume the state at the end of the computation.

The runnable implementation of this program in the concrete syntax of Lolli
can be found in the Lolli distribution in the directory examples/solitaire/.
In order to circumvent the problem that Lolli does not show proofs, but only
instantiations for the free variables in the query, we can add another argument
to the jump predicate to construct a sequence of moves as it executes.

5.5 Logical Compilation

In this section we examine means to compile program clauses, which may reside
either in I or A. We do not push the ideas very far, but we want to give some
intuition on how more efficient and lower level compilation strategies can be
developed.

The main question is how to compile procedure call, which, as we have seen,
corresponds to applying focusing on the left once the goal is atomic. Instead
of working with focusing rules on the left, we would like to translate the pro-
gram clause to a residual subgoal, still is logically described but which can be
interpreted as providing instructions for search (and thereby for computation).
More formally, we introduce three new judgments. Note that propositions A
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stand for linear hereditary Harrop formulas as before, while G stands for resid-
ual formulas whose formal definition we postpone until we have considered what
is needed.

I A= A1t A follows by resolution from I'; A
A>P\G A immediately entails goal P with residual subgoal G
I'’ A= G1 residual subgoal G has a resolution proof from I'; A

The resolution judgment A 11 arises from the uniform proof judgment A {} by
copying all right rules except the choice rules

AAl = P NAANA) =P
————— decideLL decideL!
AJA=— Pqy INAA= P1q

which are replaced by

A>P\G T;A=G1?
A A= P11

decideL>>

A>P\G LAA= G?
INAAA= P

decideL!>>

We design the residuation A > P\ G to be parametric in P, so the translation
of A to G does not depend on the precise form of P. In other words, we
compile A independently of the form of the call—relaxing this would allow
some inlining optimizations. Furthermore, we must be careful that compilation
always succeeds and gives a uniquely defined result. That is, for every A and
P there exists a unique residual goal G such that A > P \ G. Therefore the
natural form of definition is inductive on the structure of A.

On the other hand it turns out our propositions A are not general enough
to express residual goals, so we need some additional propositions. We will see
for each connective what we need and collect them at the end. Note that if
A > P\ G then a uniform proof with focus formula A |} and goal P should
correspond to a proof of the residual goal G 1.

Atomic Propositions. If our focus formula is atomic, then we have to resid-
uate an equality check. Operationally, this will be translated into a call to
unification.

P'>P\P =P
The right rule for this new connective is clear: it just establishes the equality.
I;-=P=P1
For the left rule (which is not needed here), see Exercise 5.3.
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Linear Implication. If the focus formula is A; — A5, then A; is must be
solved as a subgoal. In addition, the residuation of As yields another subgoal
G. These must be joined with simultaneous conjunction in order to reflect the
context split in the —o L rule.

Ay > P\ G
A1—0A2 >>P\G®A1

The order is determined by our general convention on conjunctive non-determinism:
we first solve G and then A, so G is written on the left. The corresponding right
rule for ® is familiar, but used here in a slight different form, so we restate it
explicitly.

F;Al,AQ — G@AT

Of course, we use resource management as shown before to postpone the split-
ting of A = (A4, Ay) when using this rule during logic program execution.

®R

Alternative Conjunction. If the focus formula is an alternative conjunction
A18&As, then we must choose either to use the &L; or &Ls rule. This choice
is residuated into an external choice, for which we have the two corresponding
rules ®R; and ®R».

A1 >P\G1  Ay> P\ Gs
A1&8As >>P\G1@G2

Again, we repeat the two right rules for .
A= G171 R A= G2t
SRy
A= G &Gt A= G &Gt

Additive Truth. If the focus formula is T then there is no left rule that can
be applied and focusing fails. Correspondingly, there is no right rule for 0, so
T residuates to O.

T>P\O

As usual, this can be seen as a zero-ary alternative conjunction. And there is
no right rule for 0 1.

Unrestricted Implication. If the focus formula is an unrestricted implica-
tion A; D Ay we have to solve A; as a subgoal, but with access to any of the
linear resources.

Ay> P\ G
A13A2>>P\G®!A1

Here we should think of ®! as a single binary connective, a point overlooked
in [CHP00]. The reason is that it should be statically obvious when solving G
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in a proposition G ®! A; that A; cannot consume any resources remaining from
G. The new connective is characterized by the following right rule.

A= G1? I — A1t
A= G AT

®'R

For the left rule (which is not needed here) see Exercise 5.2.
Universal Quantification. The universal quantifier is simply residuated into
a corresponding existential quantifier.
[a/x]A> P\ [a/z]G
a
Ve.A>P\Jz. A

where a must be a new parameter. The new version of the right rule is just as
before with a new judgment

I;A = [t/2]G 1
IR
A = Jz.G

Thus we needed the following language of residual goals G where A ranges
over linear hereditary Harrop formulas.

We call the system of uniform proofs where we replace the choice rules
decideL and decidell! with decideL.>> and decideL!>> the system of resolution.
Now the have the following theorem asserting the correctness of resolution.

Theorem 5.3 (Correctness of Resolution)
A= A1 if and only if T; A = A 1.

Proof: See Exercise 5.1 ]

To see how subgoal residuation is related to compilation, consider a simple
concrete program that implements a test if a natural number in unary presen-
tation is even.

even(0)&Vz. even(z) —o even(s(s(x)))

Let us call the proposition E. For illustration purposes, we have combined
the unrestricted clauses defining even into one using alternative conjunction,
because unrestricted assumptions A, B are equivalent to a single unrestricted
assumption A& B. If we have generic goal even(t) for some (unknown) term ¢,
we can calculate

E > even(t) \ even(0) = even(t) @ Jx. even(s(s(x))) = even(t) ® even(x)

Now we can read the new connectives in the residual goal as search instructions
from left to right:
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1. Unify (=) the proposition even(0) with the goal even(¢).

2. If this fails (@) then create a new existential variable X (3x).

3. Then unify (=) the proposition even(s(s(X))) with the goal even(t).
4. If this succeeds (®) continue with a recursive call to even with X.

Given the logical reading, we can reason about optimizations using the laws of
linear logic. For example, even(0) = even(t) succeeds exactly if 0 = ¢t. In the
second line we can unfold the unification further, since one of the terms to be
unified is known to be s(s(z)). This kinds of optimization naturally lead to a
higher-level version of the Warren Abstract Machine (WAM) [AK91] which is
the basis for almost all modern Prolog compilers.

5.6 Exercises

Exercise 5.1 Carefully prove the correctness of resolution (Theorem 5.3). Ex-
plicitly state and prove any generalized induction hypotheses or lemmas you
might need.

Exercise 5.2 We consider the new connective ®! from subgoal residuation as
a connective in full intuitionistic linear logic A ®! B. The right rule in the
sequent calculus is determined by the right rule given in Section 5.5.

A=A I's'—B
INA— AQ!B

®!'R

This corresponds directly to the introduction rule in natural deduction.
1. Show the elimination rule(s) in the natural deduction.
2. Show these rule(s) to be locally sound and complete.
3. Show the corresponding left rule(s) in the sequent calculus.
4. Show the new essential cases in the proof of admissibility of cut.

This demonstrates that ®! can be seen as a first-class connective of linear logic,
even if A ®! B may also be considered to as a shorthand for A ® (!B).

Exercise 5.3 We consider the new connective = from subgoal residuation as a
connective in full intuitionistic linear logic A = B. The right rule in the sequent
calculus is determined by the right rule given in Section 5.5:

I — A=A
As usual, this corresponds directly to the introduction rule in natural deduction.
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1. Show the elimination rule(s) in the natural deduction.
2. Show these rule(s) to be locally sound and complete.
3. Show the corresponding left rule(s) in the sequent calculus.

4. Show how to modify the proof of admissibility of cut to account for the
new connective.

Exercise 5.4 Extend the translation to A-normal form, as used in the encoding
of the solitaire game, to arbitrary propositions in linear logic. It should have
the property that each proposition is translated into a corresponding proposition
using only the additional predicate p. State explicitly which laws you need that
are similar to uncurrying to eliminate gratuitous uses of propositions that are
left asynchronous.

Exercise 5.5 Implement the Towers of Hanoi puzzle with three pegs and sev-
eral disks in Lolli.

Exercise 5.6 Define a translation that maps a regular expressions r to a pred-
icates p and some unrestricted linear hereditary Harrop formulas. This transla-
tion, to be described on paper, should have the property that a word w is in the
language of r if and only if p(w) can be proven by the logic programming inter-
preter underlying Lolli. Implement words as list of single character constants
and make sure to pay attention to termination issues.

Apply your translation to r = a(b + ¢)*a and execute the resulting program
on several successful and failing queries.
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Chapter 6

Linear \-Calculus

In philosophy we distinguish between the notion of analytic and synthetic judg-
ment [ML94], a terminology which goes back to Kant. Briefly, an analytic
judgment can be seen to be evident by virtue of the terms contained in it. A
synthetic judgment, on the other hand, requires to go beyond the judgment
itself to find evidence for it. The various judgments of truth we have considered
such as I'; A - A true are synthetic because we need the derivation as evidence
external to the judgment. We can contrast this with the judgment A prop which
is analytic: an analysis of A itself is sufficient to see if it is a proposition.

It is important to recognize analytic judgments because we do not need
to communicate external evidence for them if we want to convince someone
of it. The judgment itself carries the evidence. A standard way to convert
a synthetic to a corresponding analytic judgment is to enrich it with a term
that carries enough information to reconstruct its deduction. We refer to such
objects as proof terms when they are used to establish the truth of a proposition.
There still is a fair amount of latitude in designing proof terms, but with a few
additional requirements discussed below they are essentially determined by the
structure of the inference rules.

From our intuitionistic point of view it should not be surprising that such
proof terms describe constructions. For example, a proof of A—o B describes
a construction for achieving the goal B given resource A. This can be seen
as a plan or a program. In (unrestricted) intuitionistic logic, the corresponding
observation that proofs are related to functional programs via the Curry-Howard
isomorphism has been made by [CF58] and [How80]. Howard observed that
there is a bijective correspondence between proofs in intuitionistic propositional
natural deduction and simply-typed A-terms. A related observation on proof in
combinatory logic had been made previously by Curry [CF58].

A generalization of this observation to include quantifiers gives rise to the
rich field of type theory, which we will analyze in Chapter 7. Here we study the
basic correspondence, extended to the case of linear logic.

A linear A-calculus of proof terms will be useful for us in various circum-
stances. First of all, it gives a compact and faithful representation of proofs as
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terms. Proof checking is reduced to type-checking in a A-calculus. For example,
if we do not trust the implementation of our theorem prover, we can instrument
it to generate proof terms which can be verified independently. In this sce-
nario we are just exploiting that validity of proof terms is an analytic judgment.
Secondly, the terms in the A-calculus provide the core of a functional language
with an expressive type system, in which statements such as “this function
will use its argument exactly once” can be formally expressed and checked. It
turns out that such properties can exploited for introducing imperative (state-
related) concepts into functional programming [Hof00b], structural complexity
theory [Hof00a, AS01], or analysis of memory allocation [WWO01] Thirdly, lin-
ear \-terms can serve as an expressive representation language within a logical
framework, a general meta-language for the formalization of deductive systems.

6.1 Proof Terms

We now assign proof terms to the system of linear natural deduction. Our main
criterion for the design of the proof term language is that the proof terms should
reflect the structure of the deduction as closely as possible. Moreover, we would
like every valid proof term to uniquely determine a natural deduction. Because
of weakening for unrestricted hypotheses and the presence of T, this strong
property will fail, but a slightly weaker and, from the practical point of view,
sufficient property holds. Under the Curry-Howard isomorphism, a proposition
corresponds to a type in the proof term calculus. We will there call a proof term
well-typed if it represents a deduction.

The proof term assignment is defined via the judgment I'; A + M : A, where
each formula in I" and A is labelled. We also use M —3 M’ for the local
reduction and M : A —,, M’ for the local expansion, both expressed on proof
terms. The type on the left-hand side of the expansion reminds is a reminder
that this rule only applies to term of the given type (contexts are elided here).

Hypotheses. We use the label of the hypotheses as the name for a variable
in the proof terms. There are no reductions or expansions specific to variables,
although variables of non-atomic type may be expanded by the later rules.

u u
TiuwAbu: A (T,v:A);-Fv: A

Recall that we take exchange for granted so that in the rule for unrestricted
hypotheses, v: A could occur anywhere.

Multiplicative Connectives. Linear implication corresponds to a linear func-
tion types with corresponding linear abstraction and application. We distinguish
them from unrestricted abstraction and application by a “hat”. In certain cir-
cumstances, this may be unnecessary, but here we want to reflect the proof
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structure as directly as possible.

I (A,uw:A)F M : B

!

;AR AwA. M:A—B

INAFM:A—oB ;A'FN:A
— K

I;(A,A)FM N:B

Qw:A. M) N —5 [N/w]M
M:A—B —, Aw:A. M w
In the rules for the simultaneous conjunction, the proof term for the elimination
inference is a let form which deconstructs a pair, naming the components. The
linearity of the two new hypotheses means that the variables must both be used

in M.
ALEM:A I"AsEN: B

®I

AFM:A®B T (A wA,w:B)FN:C
[ (AA)Fletu®@w=MinN : C

The reduction and expansion mirror the local reduction and expansion for de-
duction as the level of proof terms. We do not reiterate them here, but simply
give the proof term reduction.

®FE

letw; @ wo = M; @ Myin N —3 [Ml/wl,Mg/wg]N
M:A®B —, letw®@ws=Minw; ® wy

The unit type allows us to consume linear hypotheses without introducing new
linear ones.

AREM:1 A'FN:C
—11I
Iy Fx:1 T (AAY Fletx=MinN : C

1E

letx=MinN —p3 N
M:x —, letx=Minx

Additive Connectives. As we have seen from the embedding of intuition-
istic in linear logic, the simultaneous conjunction represents products from the
simply-typed A-calculus.

IAREM:A INAFN:B

&l
AR (M,N) : A&B
I'A-DM: AB AR M: AB
&Eq, &ERr
TARfstM: A I'sAbsndM: B
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The local reduction are also the familiar ones.

fst <M1,M2> —>ﬁ Ml
snd <M1,M2> —>5 M2

M : A&B —, (fstM,snd M)

The additive unit corresponds to a unit type with no operations on it.

———T1
;AR :T No T elimination

The additive unit has no elimination and therefore no reduction. However, it
still admits an expansion, which witnesses the local completeness of the rules.

M:T —, ()

The disjunction (or disjoint sum when viewed as a type) uses injection and case
as constructor and destructor forms, respectively. We annotated the injections
with a type to preserve the property that any well-typed term has a unique

type.
AFM:A INAFM:B

@Iy, Blr
D;AFPM: A B ;AR M:Aa B

AFM:A®eB T; (A wi:A)F Ny :C T (A wy:B) - Ny : C
[ (A’ A) I case M of inlwy = Ny |infrwg = Ny : C

@Ewth

The reductions are just like the ones for disjoint sums in the simply-typed A-
caclulus.

caseinl® Mofinlw; = Ny infwy = Ny —g  [M/w1]Ny
caseinr® Mof inlw; = N; infwy = Ny —g  [M/ws]Na

M:A®B —s, case Mofinlw; = inl®w; |inrws = inr ws
n

For the additive falsehood, there is no introduction rule. It corresponds to a
void type without any values. Consequently, there is no reduction. Once again
we annotate the abort constructor in order to guarantee uniqueness of types.

IAEM:0
OE

No 0 introduction I; (A, A) + abort® M : C
M:0 —, abort®M
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Exponentials. Unrestricted implication corresponds to the usual function
type from the simply-typed A-calculus. For consistency, we will still write AD> B
instead of A — B, which is more common in A-calculus. Note that the argument
of an unrestricted application may not mention any linear variables.

(T,v:A);AFM: B
AR A M:ADB

DI

IAFM:ADB I'FN:A
INAFMN:B

DE

The reduction and expansion are the origin of the 8 and 7 rules names due to
Church [Chu4l].
(MWA. M)N —p [N/v]M
M:A>DB —, MA Mv

The rules for the of course operator allow us to name term of type !A and use
it freely in further computation.

I;-FM:A I;ARM:1A (T, v:A); A’ N: C
IT 'E

I, HIM: 1A (A, A)Fletlv=MinN:C

letlv=IMinN —p3 [M/v]N
M:1A —, letlv=Minly

Below is a summary of the linear A-calculus with the (-reduction and n-
expansion rules.

M = u Linear Variables
| Aw:A. M | My M, A—B
|M1®M2|Ietu1®u2=MinM’ A@B
| % | let« = Min M’ 1
| <M1,M2> | fStMl | snd M2 A&B
| () T
|inl? M | inrt M Aa B

| (caseM of inluy = M | inrug = Ma)
| abort® M 0
| v Unrestricted Variables
|)\’UIA.M|M1M2 ADB
| IM | letv=Min M’ 14

Below is a summary of the (-reduction rules, which correspond to local
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reductions of natural deductions.

(Aw:A. M) N —5 [N/ulM A—B
|etu1®uQ:Ml®M2inN —3 [Ml/ul,MQ/UQ]N A@B
letx=MinN —g N 1
fst <M1,M2> —>5 Ml A&B

snd <M1,M2> —3 M2
No T reduction
caseinl? Mofinluy = Ny |inruy = No  —5  [M/u]N; A® B
caseinr® M ofinlu; = Ny |infug = Ny —g  [M/u1]N2
No 0 reduction
(MWA. M)N —pg [N/v]M ADB
letlv =IMinN —p3 [M/v]N 14

The substitution [M/u]N and [M/v]N assumes that there are no free variables
in M which would be captured by a variables binding in N. We nonethless
consider it a total function, since the capturing variable can always be renamed
to avoid a conflict (see Exercise 6.3).

Next is a summary of the n-expansion rules, which correspond to local ex-
pansions of natural deductions.

M:A—B —, MuA. M u
M:A®B —, letug ®us=Minu; ® us
M:x —, letx=Minx
M : A&B —, (fstM,snd M)
M:T —, ()
M:A®B —, caseMofinlu; = inl® uy | inrug = inr? us
M:0 —, abort’M
M:ADB —y,; XA Mvo
M:1A —, letlv=Minlv

Note that there is an implicit assumption that the variables w and u in the cases
for A— B and A D B do not already occur in M: they are chosen to be new.
If P is a derivation of I'; A - M : A then we write erase(P) for the corre-
sponding derivation of I'; A -+ A true where the proof term M has been erased
from every judgment.
We have the following fundamental properties. Uniqueness, where claimed,
holds only up to renaming of bound variables.

Theorem 6.1 (Properties of Proof Terms)

1. If P is a derivation of T; A+ M : A then erase(P) is a derivation of
INAR A

2. If D is a derivation of I'; A+ A then there is a unique M and derivation
P of T;AF M : A such that erase(P) = D.

Proof: By straightforward inductions over the given derivations. i
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Types are also unique for well-typed terms (see Exercise 6.1). Uniqueness of
derivations fails, that is, a proof term does not uniquely determine its derivation,
even under identical contexts. A simple counterexample is provided by the
following two derivations (with the empty unrestricted context elided).

TI TI TI TI
w:THEO:T ()T . EOT w:TEO:T
wTHFOR(): TT ® wThkFEOR():T®T

It can be shown that linear hypotheses which are absorbed by TI are the
only source of only ambiguity in the derivation. A similar ambiguity already
exists in the sense that any proof term remains valid under weakening in the
unrestricted context: whenever T; A - M : A then (I,T");A + M : A. So
this phenomenon is not new to the linear A-calculus, and is in fact a useful
identification of derivations which differ in “irrelevant” details, that is, unused
or absorbed hypotheses.

The substitution principles on natural deductions can be expressed on proof
terms. This is because the translations from natural deductions to proof terms
and wvice versa are compositional: uses of a hypothesis labelled v in natural
deduction corresponds to an occurrence of a variable u in the proof term.

Lemma 6.2 (Substitution on Proof Terms)
1. IfT (A uwA) E N:C and T; A M - A, then T (A, A") F [M/u]N : C.
2. If T,v:A); AF N:C and T;-+ M : A, thenT; A+ [M/v]N : C.

Proof: By induction on the structure of the first given derivation, using the
property of exchange. ]

We also have the property of weakening for unrestricted hypotheses. The
substitution properties are the critical ingredient for the important subject re-
duction properties, which guarantee that the result of S-reducing a well-typed
term will again be well-typed. The expansion rules also preserve types when
invoked properly.

Theorem 6.3 (Subject Reduction and Expansion)
1. IfT5AFM: A and M —3 M’ then T; A+ M': A.

2. If T AFM:Aand M : A —, M' thenT; A M': A.

Proof: For subject reduction we examine each possible reduction rule, applying
inversion to obtain the shape of the typing derivation. From this we either
directly construct the typing derivation of M’ or we appeal to the substitution
lemma.

For subject expansion we directly construct the typing derivation for M’
from the typing derivation of M. |

Note that the opposite of subject reduction does not hold: there are well-
typed terms M’ such that M — 3 M’ and M is not well-typed (see Exer-
cise 6.4).
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6.2 Linear Type Checking

The typing rules for the linear A-calculus are syntaz-directed in that the principal
term constructor determines the typing rule which must be used. Nonetheless,
the typing rules are not immediately suitable for an efficient type-checking al-
gorithm since we would have to guess how the linear hypotheses are to be split
between the hypothesis in a number of rules.

The occurrence constraints introduced in Section ?? would be sufficient to
avoid this choice, but they are rather complex, jeopardizing our goal of designing
a simple procedure which is easy to trust. Fortunately, we have significantly
more information here, since the proof term is given to us. This determines the
amount of work we have to do in each branch of a derivation, and we can resolve
the don’t-care non-determinism directly.

Instead of guessing a split of the linear hypotheses between two premisses of a
rule, we pass all linear variables to the first premiss. Checking the corresponding
subterm will consume some of these variables, and we pass the remaining ones
one to check the second subterms. This idea requires a judgment

F;A[\A()'—M:A

where A represents the available linear hypotheses and Ap C Ay the linear hy-
potheses not used in M. For example, the rules for the simultaneous conjunction
and unit would be

D;A\NA'FM:A IA'\ Ao N:B
F;A[\Aol—M(@N:A@B

®I

I

1
F;A[\A[F*:A

Unfortunately, this idea breaks down when we encounter the additive unit (and
only then!). Since we do not know which of the linear hypotheses might be used
in a different branch of the derivation, it would have to read

Ar2 Ao
TI
F;A[\Aol—<>:—|—

which introduces undesirable non-determinism if we were to guess which subset
of At to return. In order to cirumvent this problem we return all of Ay, but flag
it to indicate that it may not be exact, but that some of these linear hypotheses
may be absorbed if necessary. In other words, in the judgment

F;A[\Aol—lM:A

any of the remaining hypotheses in Ap need not be consumed in the other
branches of the typing derivation. On the other hand, the judgment

F;A[\Aol—QM:A
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indicates the M uses exactly the variables in A; — Ap.

When we think of the judgment I'; Ar \ Ap F; M : A as describing an
algorithm, we think of I'; Ay and M as given, and Ao and the slack indicator
i as part of the result of the computation. The type A may or may not be
given—in one case it is synthesized, in the other case checked. This refines
our view as computation being described as the bottom-up construction of a
derivation to include parts of the judgment in different roles (as input, output,
or bidirectional components). In logic programming, which is based on the
notion of computation-as-proof-search, these roles of the syntactic constituents
of a judgment are called modes. When writing a deductive system to describe an
algorithm, we have to be careful to respect the modes. We discuss this further
when we come to the individual rules.

Hypotheses. The two variable rules leave no slack, since besides the hypoth-
esis itself, no assumptions are consumed.

w u
I (ApwA)\Arkow: A (T,wA); Ar\ Artou: A

Multiplicative Connectives. For linear implication, we must make sure that
the hypothesis introduced by —oI actually was used and is not part of the
residual hypothesis Ap. If there is slack, we can simply erase it.

I (A, w:A)\ Ao b; M : B where i =1 or w not in Agp

—o I

;A7\ (Ao —w:A) H; Aw:A. M:A—B

DA \NA'"F;, M:A—B A\ Aok N: A

— Kk
F; (A[\Ao) |_i\/k M N:B

Here itVk=1ifi=1or k=1, and i V k = 0 otherwise. This means we have
slack in the result, if either of the two premisses permits slack.

DA \NA"F, M- A A"\ Aotk N: B
F;A[\A()'—i\/k M®N:A® B

®I

D;A\NA'"F, M:A®B
I (A, wi:A,we:B)\ Ao b N: C

where k= 1 or w; and ws not in Ap
Ewi w2

;A7\ (Ao —wi:A — we:B) by letw; @ we = MinN : C
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In the QK rule we stack the premisses on top of each other since they are too
long to fit on one line. The unit type permits no slack.

11
F;A[\A[FQ*:]_

DA \A"F; M1 A"\ Aotk N: C
F;A[\AO Five letx=MinN : C

1E

Additive Connectives. The mechanism of passing and consuming resources
was designed to eliminate unwanted non-determinism in the multiplicative con-
nectives. This introduces complications in the additives, since we have to force
premisses to consume exactly the same resources. We write out four version of
the &I rule.

DA \NAp o M:A T;A;\ AL o N: B Ap=Aj

&loo

[;A7\ (Ap NAY) o (M,N) : A&B
A \NAp o M:A T;A;\AL L N: B AbgAg&I
10

[;A7\ (Ap NAY) Fo (M, N) : A&B
DA \NAp i M:A T;A;\ AL N: B AbQAg&I
01

[;A7\ (Ap NAY) Fo (M, N) : A&B
A \NAp i M:A T;A;\AL L N: B .
&ly1

[5A7\ (Ap NAYL) F (M, N) : A&B

Note that in &Igg, Ay NAY = A = AY by the condition in the premiss.
Similarly for the other rules. We chose to present the rules in a uniform way
despite this redundancy to highlight the similarities. Only if both premisses
permit slack do we have slack overall.

;A\ Aok M A&B ;AP\ Ao M : A&B
&Eq, &ERr
F;A[\Aol—ifStM:A F;A[\Aol—isndM:B

Finally, we come to the reason for the slack indicator.

TI
;AT \NArEL () T No T elimination
The introduction rules for disjunction are direct.
F;A[\AoFiM:A F;A[\Aol—iM:B

@Iy, Blr
D;A;\ Aotk inl®: A® B D;A7\ Agkiintd: Ae B

Draft of January 26, 2002



6.2 Linear Type Checking 119

The elimination rule for disjunction combines resource propagation (as for mul-
tiplicatives) introduction of hypothesis, and resource coordination (as for addi-
tives) and is therefore somewhat tedious. It is left to Exercise 6.6. The OE rule
permits slack, no matter whether the derivation of the premiss permits slack.

F;A[\Aol—iM:O

0E
No 0 introduction T;A;\ Ao by abort” M : C

Exponentials. Here we can enforce the emptiness of the linear context di-
rectly.
(T,wA);Ar\ Ao+ M : B

D)
;AT\ Aok Adw:A.M:ADB

U

;A \AobF; M:ADB I \A*F, N: A
F;A[\Aol—iMN:B

DE

Here A* will always have to be - (since it must be a subset of -) and k is
irrelevant. The same is true in the next rule.
1

I \A*H, M: A
D;A7\Arbo IM: 1A

DA \A"F M 1A (T,uw:A); A"\ Ao b N : C
1B
A\ Ao Fiyjletlu=MinN : C

The desired soundness and completeness theorem for the algorithmic typing
judgment must first be generalized before it can be proved by induction. For this
generalization, the mode (input and output) of the constituents of the judgment
is a useful guide. For example, in the completness direction (3), we can expect
to distinguish cases based on the slack indicator which might be returned when
we ask the question if there are Ao and 4 such that I'; A\ Ap H; M : A for the
given ', A, M and A.

Lemma 6.4 (Properties of Algorithmic Type Checking)
1. IfT; A\ Ao ko M : A then A; D Ap and T; A1 — Ao F M : A.

2. IfT; A1\ Ao b1 M : A then Ar O Ao and for any A such that Ay 2
ADA;—Ap we have I'; A+ M : A.

3. IfT'; A+ M : A then either
(a) T; (A, A)\ A" o M = A for any A/, or
(b)) T; (A", A)\ (A, Ap) 1 M 2 A for all A’ and some Ap C A.
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Proof: By inductions on the structure of the given derivations.! Items (1) and
(2) must be proven simultaneously. 0

From this lemma, the soundness and completeness of algorithmic type check-
ing follow directly.

Theorem 6.5 (Algorithmic Type Checking)
;A M : A if and only if either

1.T;AN\N-FoM: A, or
2. T5AN\ A" M : A for some A.

Proof: Directly from Lemma 6.4 a

6.3 Pure Linear Functional Programming

The linear A-calculus developed in the preceding sections can serve as the basis
for a programming language. The step from A-calculus to programming lan-
guage can be rather complex, depending on how realistic one wants to make
the resulting language. The first step is to decide on observable types and a
language of values and then define an evaluation judgment. This is the subject
of this section. Given the purely logical view we have taken, this language still
lacks datatypes and recursion. In order to remedy this, we introduce recursive
types and recursive terms in the next section.

Our operational semantics follows the intuition that we should not evaluate
expressions whose value may not be needed for the result. Expressions whose
value will definitely be used, can be evaluated eagerly. There is a slight mismatch
in that the linear A-calculus can identifies expressions whose value will be needed
ezxactly once. However, we can derive other potential benefits from the stronger
restriction at the lower levels of an implementation such as improved garbage
collection or update-in-place. These benefits also have their price, and at this
time the trade-offs are not clear. For the strict A-calculus which captures the
idea of definite use of the value of an expression, see Exercise 6.2.

We organize the functional language strictly along the types, discussing ob-
servability, values, and evaluation rules for each. We have two main judgments,
M Value (M is a value), and M — v (M evaluates to v). In general we use v
for terms which are legal values. For both of these we assume that M is closed
and well-typed, that is, ;- = M : A.

Linear Implication. An important difference between a general A-calculus
and a functional language is that the structure of functions in a programming
language is not observable. Instead, functions are compiled to code. Their be-
havior can be observed by applying functions to arguments, but their definition
cannot be seen. Thus, strictly speaking, it is incorrect to say that functions

L[ check]
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are first-class. This holds equally for so-called lazy functional languages such
as Haskell and eager functional languages such as ML. Thus, any expression of
the form Aw:A. M is a possible value.

—oval

\w:A. M Value

Evaluation of a A-abstraction returns itself immediately.

—oIv

Aw:A. M <  w:A. M
Since a linear parameter to a function is definitely used (in fact, used exactly
once), we can evaluate the argument without doing unnecessary work and sub-

stitute it for the bound variable during the evaluation of an application.

My < dw:dy. M] My < vy [va/w]M{ < v

- —o Ev
Ml M2 — v

Note that after we substitute the value of argument v, for the formal parameter
w in the function, we have to evaluate the body of the function.

Simultaneous Pairs. The multiplicative conjunction A ® B corresponds to
the type of pairs where both elements must be used exactly once. Thus we can
evaluate the components (they will be used!) and the pairs are observable. The
elimination form is evaluated by creating the pair and then deconstructing it.

My Value Ms> Value
M ® My Value

®val

M; — vy My — vg M — vy @ v [v1/w1, v2/w2] N — v
RIv QREv
M @ My — v1 ® va letw; @ wo = MinN — v

Multiplicative Unit. The multiplicative unit 1 is observable and contains
exactly one value *. Its elimination rule explicitly evaluates a term and ignores
its result (which must be *).

1val
* Value

M — % N —wv
1Iv 1Ev
* > K letx =MinN < v
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Alternative Pairs. Alternative pairs of type A&B are such that we can only
use one of the two components. Since we may not be able to predict which
one, we should not evaluate the components. Thus pairs (M7, M) are lazy, not
observable and any pair of this form is a value. When we extract a component,
we then have to evaluate the corresponding term to obtain a value.

— &val
(M7, M3) Value
&lv
(M, My) — (M, M)
M — <M1,M2> M1 — U1 M — <M1,M2> M2 — Vg
&EV1 &EVQ
fst M — v, snd M < vy

Additive Unit. By analogy, the additive unit T is not observable. Since
there is no elimination rule, we can never do anything interesting with a value
of this type, except embed it in larger values.

———— Tval
() Value

— TIv

(=0

This rule does not express the full operational intuition behind T which “garbage
collects” all linear resources. However, we can only fully appreciate this when
we define evaluation under environments (see Section ?7).

Disjoint Sum. The values of a disjoint sum type are guaranteed to be used
(no matter whether it is of the form inl® M or inr M). Thus we can require
values to be built up from injections of values, and the structure of sum values
is observable. There are two rules for evaluation, depending on whether the
subject of a case-expression is a left injection or right injection into the sum

type.

M Value M Value
— @val; ————— Pvaly
inl? M Value inr M Value
M —wv M —wv

— ®Ivy — ®lvy
inl? M < inl® v inr M < inr* v
M < inl® v, [v1/w1] N1 — v
GEvy
case M of inlw; = Ny | inrwg = Ny — v
M < inr? vy [v2/w2]No — v
GEvs

case M of inlw; = Ny | inrwg = Ny — v
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Void Type. The void type 0 contains no value. In analogy with the disjoint
sum type it is observable, although this is not helpful in practice. There are no
evaluation rules for this type: since there are no introduction rules there are no
constructor rules, and the elimination rule distinguishes between zero possible
cases (in other words, is impossible). We called this abort® M, since it may be
viewed as a global program abort.

Unrestricted Function Type. The unrestricted function type A D B (also
written as A — B in accordance with the usual practice in functional pro-
gramming) may or may not use its argument. Therefore, the argument is not
evaluated, but simply substituted for the bound variable. This is referred to as
a call-by-name semantics. It is usually implemented by lazy evaluation, which
means that first time the argument is evaluated, this value is memoized to avoid
re-evaluation. This is not represented at this level of semantic description. Val-
ues of functional type are not observable, as in the linear case.

——  —~ Ival
Mu:A. M Value

— Iv
MuA M — A M

My — )\U:AQ. Ml/ [MQ/U:]M{ — v
Ml M2 — v

— Ev

Modal Type. A linear variable of type !A must be used, but the embedded
expression of type A may not be used since it is unrestricted. Therefore, terms
IM are values and “!” is like a quotation of its argument M, protecting it from

evaluation.
— lval
M Value
M — \M’ [M'/u]N < v
IIv IEv
\M — M letlu =MinN — v

We abbreviate the value judgment from above in the form of a grammar.

Values v = Mw:A. M A—B  not observable
| v1®uy A; ® A, observable
| * 1 observable
| (M, Ms) A18As  not observable
| () T not observable
| intPvlinr*y A®B  observable
No values 0 observable
| AwA. M A — B not observable
| M 1A not observable
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In the absence of datatypes, we cannot write many interesting programs. As
a first example we consider the representation of the Booleans with two values,
true and false, and a conditional as an elimination construct.

bool = 1¢1

true = inlt%

false = inrlx
if M thenN;else Ny, = case M

of inlt w1 = letx = wyin Ny
| inr! wy = let x = wo in N

The elimination of x in the definition of the conditional is necessary, because
a branch inl* w; = N; would not be well-typed: w; is a linear variable not
used in its scope. Destructuring a value in several stages is a common idiom
and it is helpful for the examples to introduce some syntactic sugar. We allow
patterns which nest the elimination forms which appear in a let or case. Not all
combination of these are legal, but it is not difficult to describe the legal pattern
and match expressions (see Exercise 6.7).

Patterns p = w|p1@pa|*|inlp|inrp|u]|lp
Matches m == p= M| (my | mg)

An extended case expression has the form case M of m.

In the example of Booleans above, we gave a uniform definition for condi-
tionals in terms of case. But can we define a function cond with arguments
M, N; and N> which behaves like if M then N; else No? The first difficulty
is that the type of branches is generic. In order to avoid the complications of
polymorphism, we uniformly define a whole family of functions cond¢ types C.
We go through some candidate types for cond¢ and discuss why they may or
may not be possible.

condg : 1 ®1—oC —oC —o (. This type means that both branches of the con-
ditional (second and third argument) would be evaluated before being
substituted in the definition of conds. Moreover, both must be used dur-
ing the evaluation of the body, while intuitively only one branch should
be used.

conde : 1@ 1 —(IC) —(IC) — C. This avoids evaluation of the branches, since
they now can have the form !Ny and !Ny, which are values. However, Ny

and Ny can now no longer use linear variables.

condg :1®1—-oC — C — C. This is equivalent to the previous type and un-
desirable for the same reason.

condeg : 1@ 1 —(C&C) —o C. This type expresses that the second argument of
type C&C is a pair (N7, N3) such that exactly one component of this pair
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will be used. This expresses precisely the expected behavior and we define

conde : 1®1—(C&C)—C
= \:l@ 1. \n:CsC.
case b
of inlx = fstn
| inrx = sndn

which is linearly well-typed: b is used as the subject of the case and n is
used in both branches of the case expression (which is additive).

As a first property of evaluation, we show that it is a strategy for S-reductions.
That is, if M < v then M reduces to v in some number of [-reduction
steps (possibly none), but not vice versa. For this we need a new judgment
M —5 M " is the congruent, reflexive, and transitive closure of the M — g M’
relation. In other words, we extend (-reduction so it can be applied to an ar-
bitrary subterm of M and then allow arbitrary sequences of reductions. The
subject reduction property holds for this judgment as well.

Theorem 6.6 (Generalized Subject Reduction) If[AF M : Aand M —
M’ thenT; A M': A.

Proof: See Exercise 6.8 O

Evaluation is related to (-reduction in that an expression reduces to its
value.

Theorem 6.7 If M — v then M — v.

Proof: By induction on the structure of the derivation of M — v. In each case
we directly combine results obtained by appealing to the induction hypothesis
using transitivity and congruence. m]

The opposite is clearly false. For example,
(Aw:L. w) %, %) — (%, %),
but . . R .
((Aw:1. w) *,%) = (Aw:1. w) *,*)

and this is the only evaluation for the pair. However, if we limit the congruence
rules to the components of ®, inl, inr, and all elimination constructs, the corre-
spondence is exact (see Exercise 6.9). Type preservation is a simple consequence
of the previous two theorems. See Exercise 6.10 for a direct proof.

Theorem 6.8 (Type Preservation) If;-- M : A and M < v then ;- Fv:
A.

Proof: By Theorem 6.7, M —7 v. Then the result follows by generalized
subject reduction (Theorem 6.6). O
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The final theorem of this section establishes the uniqueness of values.

Theorem 6.9 (Determinacy) If M — v and M < v then v =v'.

Proof: By straightforward simultaneous induction on the structure of the two
given derivations. For each for of M except case expressions there is exactly
one inference rule which could be applied. For case we use the uniqueness of
the value of the case subject to determine that the same rule must have been
used in both derivations. |

We can also prove that evaluation of any closed, well-typed term M termi-
nates in this fragment. We postpone the proof of this (Theorem 6.12) until we
have seen further, more realistic, examples.

6.4 Recursive Types

The language so far lacks basic data types, such as natural numbers, integers,
lists, trees, etc. Moreover, except for finitary ones such as booleans, they are
not definable with the mechanism at our disposal so far. At this point we can
follow two paths: one is to define each new data type in the same way we defined
the logical connectives, that is, by introduction and elimination rules, carefully
checking their local soundness and completeness. The other is to enrich the
language with a general mechanism for defining such new types. Again, this
can be done in different ways, using either inductive types which allow us to
maintain a clean connection between propositions and types, or recursive types
which are more general, but break the correspondence to logic. Since we are
mostly interested in programming here, we chose the latter path.

Recall that we defined the booleans as 1 & 1. It is easy to show by the
definition of values, that there are exactly two values of this type, to which we
can arbitrarily assign true and false. A finite type with n values can be defined
as the disjoint sum of n observable singleton types, 1@ --- @ 1. The natural
numbers would be 1 &1 @ - - -, except that this type is infinite. We can express
it finitely as a recursive type pa. 1 @ «. Intuitively, the meaning of this type
should be invariant under unrolling of the recursion. That is,

nat pno. 1@ o
[(po. 1@ a)/a]l @«
1P pua.1®a

1 ¢ nat

I

which is the expected recursive definition for the type of natural numbers.

In functional languages such as ML or Haskell, recursive type definitions are
not directly available, but the results of elaborating syntactically more pleaseant
definitions. In addition, recursive type definitions are generative, that is, they
generate new constructors and types every time they are invoked. This is of
great practical value, but the underlying type theory can be seen as simple

Draft of January 26, 2002



6.4 Recursive Types 127

recursive types combined with a mechanism for generativity. Here, we will only
treat the issue of recursive types.

Even though recursive types do not admit a logical interpretation as propo-
sitions, we can still define a term calculus using introduction and elimination
rules, including local reduction and expansions. In order maintain the property
that a term has a unique type, we annotate the introduction constant fold with
the recursive type itself.

LA M : [pa. AJa]A I AFEM: pa. A
1 7
[; A F fold*® AM : po. A ;AR unfold M : [pa. A/a]A

E

The local reduction and expansions, expressed on the terms.

unfold fold"* * M —5 M
M:po. A —, fold*™ # (unfold M)

It is easy to see that uniquess of types and subject reduction remain valid
properties (see Exercise 6.11). There are also formulation of recursive types
where the term M in the premiss and conclusion is the same, that is, there
are no explicit constructor and destructors for recursive types. This leads to
more concise programs, but significantly more complicated type-checking (see
Exercise 6.12).

We would like recursive types to represent data types. Therefore the values
of recursive type must be of the form fold** A4 for values v—otherwise data
values would not be observable.

M Value
pval
fold"™ 4 M Value
M < Iy M fold™ A JEv
fold“® 4 M < fold** 4 v unfold M — v

In order to write interesting programs simply, it is useful to have a general
recursion operator fixu:A. M at the level of terms. It is not associated with
an type constructor and simply unrolls its definition once when executed. In
the typing rule we have to be careful: since the number on unrollings generally
unpredictable, no linear variables are permitted to occur free in the body of
a recursive definition. Moreover, the recursive function itself may be called
arbitrarily many times—one of the characteristics of recursion. Therefore its
uses are unrestricted.

(T,wA);-FM: A

fix
Iy - FfixuwA M: A

The operator does not introduce any new values, and one new evaluation rules
which unrolls the recursion.

fixwA. M/ulM — v
fixuA. M —v

fixv
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In order to guarantee subject reduction, the type of whole expression, the body
M of the fixpoint expression, and the bound variable v must all have the same
type A. This is enforced in the typing rules.

We now consider a few examples of recursive types and some example pro-
grams.

Natural Numbers.

nat = pa.1da
zero : nat
= fold"* (inlnat *)
succ : nat-—onat

= Azmat. fold™* (inr' z)

With this definition, the addition function for natural numbers is linear in both
argument.

plus : nat—onat—onat
= fixp:nat —onat —onat.
Az:mat. Ay:nat. case unfold z
of inlx =y

| inrz’ = succ (p ' y)

It is easy to ascertain that this definition is well-typed: x occurs as the case
subject, y in both branches, and z’ in the recursive call to p. On the other hand,
the natural definition for multiplication is not linear, since the second argument
is used twice in one branch of the case statement and not at all in the other.

mult : nat-—omnat— nat
= fixm:nat —onat — nat
Az:mat. Ay:nat. case unfold z
of inlx = zero

| inra’ = plusA(mAm’ y)Ay

Interestingly, there is also a linear definition of mult (see Exercise 6.13), but its
operational behavior is quite different. This is because we can explicitly copy
and delete natural numbers, and even make them available in an unrestricted
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way.

copy : nat-—onat® nat
= fixc:nat —onat ® nat
Ax:nat. case unfold x

of inl x = zero ® zero
|inrz’ = letz] ® ab = ¢ z'in (succAm’l) ® (succAm’Q)
delete : nat—o1
= fixdmat—1
Az:mat. case unfold z
ofinlx=1
linra’ = letx=d z/inl
promote : mnat—o!nat
= fixp:nat —onat
Az:mat. case unfold z
of inl x = !zero

linra’ = let v/ = p 2’ in!(succ u')

Lazy Natural Numbers. Lazy natural numbers are a simple example of lazy
data types which contain unevaluated expressions. Lazy data types are useful
in applications with potentially infinite data such as streams. We encode such
lazy data types by using the !A type constructor.

Inat = pa. (1@ a)
Izero : Inat
= fold™" ! (inI"™" x)
Isucc : Inat — Ilnat

= Ju:lnat. fold™" ! (inr* )

There is also a linear version of successor of type, lnat —olnat, but it is not
as natural since it evaluates its argument just to build another lazy natural
number.

lsucc’ : Inat—olnat
= Az:Inat. let lu = unfold z in fold™" (linr* (fold™* (lu)))

The “infinite” number number w can be defined by using the fixpoint operator.
We can either use lsucc as defined above, or define it directly.

w : Inat
= fixw:lnat. Isuccu
>~ fixw:lnat. fold™" ! (inr' u)

Note that lazy natural numbers are not directly observable (except for the
fold™*), so we have to decompose and examine the structure of a lazy natural
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number successor by successor, or we can convert it to an observable natural
number (which might not terminate).

toNat : Inat-—onat
= fixt:lnat —onat
Az:Inat. case unfold z
of linl™ % = zero
| linr! 2’ = suce (¢ )

Lists. To avoid issues of polymorphism, we define a family of data types list 4
for an arbitrary type A.

listgy = pa.1®d(A®a)
nilg : listy
— foldlistA (inllistA *)
consg : AQ®listy —olisty

= Ap:A®lista. fold™ 4 (inrt p)

We can easily program simple functions such as append and reverse which are
linear in their arguments. We show here reverse; for other examples see Exer-
cise 6.14. we define an auxiliary tail-recursive function rev which moves element
from it first argument to its second.

revy : listy —olisty —olisty

= fixr:listg —olist 4 —olisty

Al:list 4. Mk:list 4.

case unfold!
of inlA®lsta 4 —
inlt (z 1) = rAl’A(consA (x ®Fk))
reverse4 : listy —olisty
= j\ltlistA. revAlAnilA
To make definitions like this a bit easier, we can also define a case for lists, in

analogy with the conditional for booleans. It is a family indexed by the type of
list elements A and the type of the result of the conditional C.

listCaseqa,c : listy —-(C&(AQlista —C))—-C
= M:lista. j\n:C&(A ® listg — C).
case unfold/

of inlA®lsta o — fet

| inrlp = (sndn) p

Lazy Lists. There are various forms of lazy lists, depending of which evalua-

tion is postponed.

llistY, = pa. (1 ® (A ® «)). This is perhaps the canonical lazy lists, in which
we can observe neither head nor tail.
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llisty = po. 1 ® (A ® o). Here we can observe directly if the list is empty or
not, but not the head or tail which remains unevaluated.

llist}, = po. 1 ® (A ® la). Here we can observe directly if the list is empty or
not, and the head of the list is non-empty. However, we cannot see the
tail.

llist}y = pa. 1@ ('A® ). Here the list is always eager, but the elements are
lazy. This is the same as listi4.

llist® = po. 1 @ (A&a). Here we can see if the list is empty or not, but we can
access only either the head or tail of list, but not both.

infStream4 = po. (A ® a). This is the type of infinite streams, that is, lazy
lists with no nil constructor.

Functions such as append, map, etc. can also be written for lazy lists (see
Exercise 6.15).

Other types, such as trees of various kinds, are also easily represented using
similar ideas. However, the recursive types (even without the presence of the
fixpoint operator on terms) introduce terms which have no normal form. In the
pure, untyped A-calculus, the classical examples of a term with no normal form
is (Az. zz) (Az. zx) which S-reduces to itself in one step. In the our typed
A-calculus (linear or intuitionistic) this cannot be assigned a type, because x is
used as an argument to itself. However, with recursive types (and the fold and
unfold constructors) we can give a type to a version of this term which S-reduces
to itself in two steps.

Q = po.a—a
w : 20
= Az:Q. (unfoldz) z
Then
w (fold*? w)

—+ 5 (unfold (fold® w)) (fold” w)
— 5 w (fold? w).
At teach step we applied the only possible -reduction and therefore the term

can have no normal form. An attempt to evaluate this term will also fail,
resulting in an infinite regression (see Exercise 6.16).

6.5 Termination

As the example at the end of the previous section shows, unrestricted recursive
types destroy the normalization property. This also means it is impossible to
give all recursive types a logical interpretation. When we examine the inference
rules we notice that recursive types are impredicative: the binder pca in pa. A
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ranges over the whole type. This means in the introduction rule, the type
in the premiss [pa. A/a]A generally will be larger than the type pa. A in
the conclusion. That alone is not responsible for non-termination: there are
other type disciplines such as the polymorphic A-calculus which retain a logical
interpretation and termination, yet are impredicative.

In this section we focus on the property that all well-typed terms in the
linear A-calculus without recursive types and fixpoint operators evaluate to a
value. This is related to the normalization theorem for natural deductions
(Theorem 3.10): if I'; A + A then I'; A = A 1. We proved this by a rather
circuitous route: unrestricted natural deductions can be translated to sequent
derivations with cut from which we can eliminate cut and translate the result
cut-free derivation back to a noraml natural deduction.

Here, we prove directly that every term evaluates using the proof technique
of logical relations [Sta85] also called Tait’s method [Tai67]. Because of the
importance of this technique, we spend some time motivating its form. Our
ultimate goal is to prove:

If - M: A then M — V for some value V.

The first natural attempt would be to prove this by induction on the typing
derivation. Surprisingly, case for —o I works, even though we cannot apply the
inductive hypothesis, since every linear \-abstraction immediately evaluates to
itself.

In the case for —o E, however, we find that we cannot complete the proof.
Let us examine why.

Dl DQ
';'l_MltAQ—OAl -;-l—MQ:AQ
Case: D = - — E.
i = Ml M2 : A1
We can make the following inferences.
M; — Vi for some V3 By ind. hyp. on D,
Vi = Az:As. M By type preservation and inversion
My — Vy  for some V5 By ind. hyp. on Do

At this point we cannot proceed: we need a derivation of
[Va/z]M{ — V for some V

to complete the derivation of MlAMg — V. Unfortunately, the induction hy-
pothesis does not tell us anything about [V2/x]M/. Basically, we need to extend
it so it makes a statement about the result of evaluation (Az:As. M{, in this
case).

Sticking to the case of linear application for the moment, we call a term M
“good” if it evaluates to a “good” value V. A value V' is “good” if it is a function
Az:A,. M| and if substituting a “good” value V3 for x in M] results in a “good”
term. Note that this is not a proper definition, since to see if V is “good” we
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may need to substitute any “good” value V5 into it, possibly including V itself.
We can make this definition inductive if we observe that the value V5 will be
of type Ay, while the value V' we are testing has type As — Aj, and that the
resulting term as type A;. That is, we can fashion a definition which is inductive
on the structure of the type. Instead of saying “good” we say M € ||A| and
v € |A]. Still restricting ourselves to linear implication only, we define:

Me Al if M<—VandV € |A|
M e |A2 —OA1| iff M= )\JIZAQ. M; and [‘/2/.11]M1 S HAlH for any Vs € |A2|

From M € ||A|| we can immediately infer M — V for some V, so when proving
that ;- F M : A implies M € || A|| we do indeed have a much stronger induction
hypothesis.

While the case for application now goes through, the case for linear A-
abstraction fails, since we cannot prove the stronger property for the value.

D,
sxiAg b My Aq
Case: D = - —o L.
i - )\JIZAQ. Ml . A2—0A1
Then A\z:As. My < A\z:As. My and it remains to show that for every
Va € [Az], [Va/x] M2 € [|A4]|.

This last statement should follow from the induction hypothesis, but presently
it is too weak since it only allows for closed terms. The generalization which
suggests itself from this case (ignoring the unrestricted context for now) is:

If A M : A, then for any substitution § which maps the linear
variables z:A in A to values V € |A], [6]M € ||A]|.

This generalization indeed works after we also account for the unrestricted con-
text. During evaluation we substitute values for linear variables and expressions
for unrestricted variables. Therefore, the substitutions we must consider for the
induction hypothesis have to behave accordingly.

-1 6,V/x

Unrestricted Substitution n
Linear Substitution 6

We write [n; 0] M for the simultaneous application of the substitutions 7 and
0 to M. For our purposes here, the values and terms in the substitutions are
always closed, but we do not need to postulate this explicitly. Instead, we only
deal with substitution satisfying the property necessary for the generalization
of the induction hypothesis.

0 c|A|l iff [f)x € |A| for every z:A in A
ne |l iff [nlue ||A] for every u:A in T

We need just one more lemma, namely that values evaluate to themselves.
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Lemma 6.10 (Value Evaluation) For any value v, v < v
Proof: See Exercise 6.18. O

Now we have all ingredients to state the main lemma in the proof of termi-
nation, the so called logical relations lemma [Sta85]. The “logical relations” are
||A]| and |A|, seen as unary relations, that is, predicates, on terms and values,
respectively. They are “logical” since they are defined by induction on the struc-
ture of the type A, which corresponds to a proposition under the Curry-Howard
isomorphism.

Lemma 6.11 (Logical Relations) If ;A - M : A, n € ||| and 0 € |A]
then [n; 6] M € ||A]|.

Before showing the proof, we extend the definition of the logical relations to
all the types we have been considering.

Mel|A| iff M—VandV € |A]
Ve |dy—Ay| iff V= Az:Ay. My and [Va/z]M; € || Ay for any Va € |Ay]
VelA1 ® Ay iff V =V1® V2 where Vi € |A1] and Vs € |Ag|
Velll if V=x
Ve |A1&A2| iff V= <M1,M2> where M, € HAlH and M, € HAQH
VelT| if Vv=()
V € |A1&8Ay| iff either V =inl? V; and V; € |4,],
or V=inr"Vy and V; € |Aa]
Ve |o| never
Vel|llAdl if V=IMandM €|A
Ve |A2 — A1| if V= Au:Ay. My and [MQ/U]Ml S HAlH
for any M; € || Az

These definitions are motivated directly from the form of values in the language.
One can easily see that it is indeed inductive on the structure of the type. If
we tried to add recursive types in a similar way, the proof below would still go
through, except that the definition of the logical relation would no longer be
well-founded.

Proof: (of the logical relations lemma 6.11). The proof proceeds by induction
on the structure of the typing derivation D :: (I A+ M : A). We show three
cases—all others are similar.

Dl D2
F;AFMltAQ—OAl F7A|_M2A2
Case: D = - — E.
F; AF Ml M2 . A1
URSHIIN Assumption
0 € |A] Assumption
[n; 0] My € || Az —o A4| By ind. hyp. on D,
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&1 ([n; 0]My — Vi) and V) € |Ag — Ay

Vi = \z:4;. M and

[Va/x]Mj € || A for any V2 € |4z

[n; 0] M € || As||

Es i ([n; 0] My — Vo) and Vs € |As|

[Va/a] My € || A

Es i ([Vo/x]M{ — V) and V € |A,]

€ ([n; 6)(My Ms) = V)
[n; 0](My1 M>) € [ A4

Dy
D (A, z:Ax) - My 2 Ay
Case: D = n
F; A+ )\J?IAQ. Ml . A2 —OA1
n € [Tl
6 €A

E : ([m; 0)(Ax:Ag. My) < [n; 0](Az:Az. My))

Vs € |Ag|

0, Va/x) € |A, x:As]

[ (0, Va/x)| Mi € || A4
[Va/z)([n; (0, z/z)|Ma) € || Ad|

— 1.

(S\m:Ag. n; (0, /)| M) € |Ay —o A4

[7’], 9](%\23142 Ml) S |A2 —OA1|

[7’], 9]()\$A2 Ml) S HA2 _OAlH
Case: D=————hyp

Tyz:Abx: A

0 €|, z:A|

[0z € |A]

€ ([n; 0]z — [n; 0]x)

[n; 0]z € [|A]

By definition of ||Az —o A4]|

By definition of |As —o A;|
By ind. hyp. on Do

By definition of || As||

Since V3 € |Ag|

by definition of || A||

by — Ev from &;, &, and &3
by definition of || A||

by assumption

by assumption

by —oIv

assumption

by definition of |A|

by ind. hyp. on D;

by properties of substitution
by definition of | Ay —o A4
by properties of substitution
by definition of ||Az — A4|

by assumption

by definition of |-, z:A|
by Lemma 6.10

by definition of || A]|

O

The termination theorem follows directly from the logical relations lemma.
Note that the theorem excludes recursive types and the fixpoint operator by a
general assumption for this section.

Theorem 6.12 (Termination) If -;- = M : A then M — V for some V.

Proof: We have - € ||| and - € |- | since the conditions are vacuously satisfied.
Therefore, by the logical relations lemma 6.11, [-;-]M € ||A]|. By the definition
of ||A|| and the observation that [-;-]M = M, we conclude that M — V for

some V.

O
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6.6 Exercises
Exercise 6.1 Prove that if ;A M :Aand ;AR M : A’ then A= A'.

Exercise 6.2 A function in a functional programming language is called strict
if it is guaranteed to use its argument. Strictness is an important concept in the
implementation of lazy functional languages, since a strict function can evaluate
its argument eagerly, avoiding the overhead of postponing its evaluation and
later memoizing its result.

In this exercise we design a A-calculus suitable as the core of a functional
language which makes strictness explicit at the level of types. Your calculus
should contain an unrestricted function type A — B, a strict function type
A — B, a vacuous function type A --» B, a full complement of operators
refining product and disjoint sum types as for the linear A-calculus, and a modal
operator to internalize the notion of closed term as in the linear A-calculus. Your
calculus should not contain quantifiers.

1. Show the introduction and elimination rules for all types, including their
proof terms.

2. Given the reduction and expansions on the proof terms.
3. State (without proof) the valid substitution principles.

4. If possible, give a translation from types and terms in the strict A-calculus
to types and terms in the linear A-calculus such that a strict term is well-
typed if and only if its linear translation is well-typed (in an appropriately
translated context).

5. Either sketch the correctness proof for your translation in each direction
by giving the generalization (if necessary) and a few representative cases,
or give an informal argument why such a translation is not possible.

Exercise 6.3 Give an example which shows that the substitution [M/w]N
must be capture-avoiding in order to be meaningful. Variable capture is a sit-
uation where a bound variable w’ in N occurs free in M, and w occurs in the
scope of w’. A similar definition applies to unrestricted variables.

Exercise 6.4 Give a counterexample to the conjecture that if M — 3 M’ and
AR M : Athen T;A R M : A. Also, either prove or find a counterexample
to the claim that if M —, M’ andT; A+ M’ : Athen ;A M : A

Exercise 6.5 The proof term assignment for sequent calculus identifies many
distinct derivations, mapping them to the same natural deduction proof terms.
Design an alternative system of proof terms from which the sequent derivation
can be reconstructed uniquely (up to weakening of unrestricted hypotheses and
absorption of linear hypotheses in the TR rule).

1. Write out the term assignment rules for all propositional connectives.
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2. Give a calculus of reductions which corresponds to the initial and principal
reductions in the proof of admissibility of cut.

3. Show the reduction rule for the dereliction cut.
4. Show the reduction rules for the left and right commutative cuts.

5. Sketch the proof of the subject reduction properties for your reduction
rules, giving a few critical cases.

6. Write a translation judgment S = M from faithful sequent calculus
terms to natural deduction terms.

7. Sketch the proof of type preservation for your translation, showing a few
critical cases.

Exercise 6.6 Supply the missing rules for GE in the definition of the judg-
ment I'; Ay \ Ap F; M : A and show the corresponding cases in the proof of
Lemma 6.4.

Exercise 6.7 In this exercise we explore the syntactic expansion of ezxtended
case expressions of the form case M of m.

1. Define a judgment which checks if an extended case expression is valid.
This is likely to require some auxiliary judgments. You must verify that
the cases are exhaustive, circumscribe the legal patterns, and check that
the overall expression is linearly well-typed.

2. Define a judgment which relates an extended case expression to its expan-
sion in terms of the primitive let, case, and abort constructs in the linear
A-calculus.

3. Prove that an extended case expression which is valid according to your
criteria can be expanded to a well-typed linear A-term.

4. Define an operational semantics directly on extended case expressions.

5. Prove that your direct operational semantics is correct on valid patterns
with respect to the translational semantics from questions 2.

Exercise 6.8 Define the judgment M —7 M " via inference rules. The rules
should directly express that it is the congruent, reflexive and transitive closure
of the S-reduction judgment M — 3 M’. Then prove the generalized subject
reduction theorem 6.6 for your judgment. You do not need to show all cases,
but you should carefully state your induction hypothesis in sufficient generality
and give a few critical parts of the proof.

Exercise 6.9 Define weak (3-reduction as allows simple (-reduction under ®,
inl, and inr constructs and in all components of the elimination form. Show that
if M weakly reduces to a value v then M — v.
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Exercise 6.10 Prove type preservation (Theorem 6.8) directly by induction on
the structure of the evaluation derivation, using the substitution lemma 6.2 as
necessary, but without appeal to subject reduction.

Exercise 6.11 Prove the subject reduction and expansion properties for recur-
sive type computation rules.

Exercise 6.12 [ An exercise exploring the use of type conversion
rules without explicit term constructors. |

Exercise 6.13 Define a linear multiplication function mult : nat —o nat —o nat
using the functions copy and delete.

Exercise 6.14 Defined the following functions on lists. Always explicitly state
the type, which should be the most natural type of the function.

1. append to append two lists.
2. concat to append all the lists in a list of lists.

3. map to map a function f over the elements of a list. The result of map-
ping f over the list 1, zo, . . ., x, should be the list f(x1), f(z2),... f(xn),
where you should decide if the application of f to its argument should be
linear or not.

4. foldr to reduce a list by a function f. The result of folding f over a
list 21, x2, ...z, should be the list f(x1, f(za, ..., f(xn, init))), where init
is an initial value given as argument to foldr. You should decide if the
application of f to its argument should be linear or not.

5. copy, delete, and promote.

Exercise 6.15 For one of the form of lazy lists on Page 130, define the functions
from Exercise 6.14 plus a function toList which converts the lazy to an eager list
(and may therefore not terminate if the given lazy lists is infinite). Make sure
that your functions exhibit the correct amount of laziness. For example, a map
function applied to a lazy list should not carry out any non-trivial computation
until the result is examined.

Further for your choice of lazy list, define the infinite lazy list of eager natural
numbers 0,1,2, . ...

Exercise 6.16 Prove that there is no term v such that w (fold” w) < v.

Exercise 6.17 [ An exercise about the definability of fixpoint oper-
ators at various type. ]

Exercise 6.18 Prove Lemma 6.10 which states that all values evaluate to them-
selves.
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Exercise 6.19 In this exercise we explore strictness as a derived, rather than
a primitive concept. Recall that a function is strict if it uses its argument at
least once. The strictness of a function from A to B can be enforced by the
type (A®!A) — B.

1. Show how to represent a strict function Xxz:A. M under this encoding.

2. Show how to represent an application of a strict function M to an argu-
ment V.

3. Give natural evaluation rules for strict functions and strict applications.

4. Show the corresponding computation under the encoding of strict func-
tions in the linear A-calculus.

5. Discuss the merits and difficulties of the given encoding of the strict in
the linear A-calculus.

Exercise 6.20 In the exercise we explore the affine A-calculus. In an affine
hypothetical judgment, each assumption can be used at most once. Therefore,
it is like linear logic except that affine hypotheses need not be used.

The affine hypothetical judgment I'; A F* A true is characterized by the
hypothesis rule

A, z:Atruet® A true

and the substitution principle

if T; A A true and T; A', AtrueH C true then T'; A, A" F C true.

1. State the remaining hypothesis rule and substitution principle for unre-
stricted hypotheses.

2. Give introduction and elimination rules for affine implication (4 ~~ B)
simultaneous conjunction, alternative conjunction, and truth. Note that
there is only one form of truth: since assumptions need not be used, the
multiplicative and additive form coincide.

3. Give a proof term assignment for affine logic.

4. We can map affine logic to linear logic by translating every affine function
A ~~ B to a linear function (A&1) — B. Give a corresponding translation
for all proof terms from the affine logic to linear logic.

5. We can also map affine logic to linear logic by translating every affine
function A ~~ B into function A —(B ® T). Again give a corresponding
translation for all proof terms from affine logic to linear logic.

6. Discuss the relative merits of the two translations.

7. [Extra Credit] Carefully formulate and prove the correctness of one of the
two translations.
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Chapter 7

Linear Type Theory

The distinction between logic and type theory is not always clear in the litera-
ture. From the judgmental point of view, the principal judgments of logic are
A is a proposition (A prop) and A is true (A true). This may be different for
richer logics. For example, in temporal logic we may have a basic judgment A
is true at time t. However, it appears to be a characteristic that the judgments
of logic are concerned with the study or propositions and truth.

In type theory, we elevate the concept of proof to a primary concept. In
constructive logic this is important because proofs give rise to computation
under reduction, as discussed in the chapter on linear functional programming
(Chapter 6). Therefore, our primary judgment has the form M is a proof of A
(M : A). This has the alternative interpretation M is an object of type A. So
the principal feature that distinguishes a type theory from a logic is the internal
notion of proof. But proofs are programs, so right from the outset, type theory
has an internal notion of program and computation which is lacking from logic.

The desire to internalize proofs and computation opens a rich design space for
the judgments defining type theory. We will not survey the different possibilities,
but we may map out a particular path that is appropriate for linear type theory.
We may occasionally mention alternative approaches or possibilities.

7.1 Dependent Types

The foundation of linear type theory was already laid in Section 6.1 where
we introduced a propositional linear type theory through the notion of proof
terms. We call it propositional, because the corresponding logic does not allow
quantification.

Propositions A = P Atoms
| Aj — A | A1 ® A2 |1 Multiplicatives
| Al&AQ | T | A1 D A2 | 0 Additives
| ADB|!A Exponentials
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We now reconsider the quantifiers, Vz. A and 3z. A. In the first-order linear
logic we developed, the quantifiers range over a single (unspecified) domain. We
may thus think of first-order logic as the study of quantification independently
of any particular domain. This is accomplished by not making any assumptions
about the domain of quantification. In contrast, first-order arithmetic arises if
we introduce natural numbers and allow quantifiers to range specifically over
natural numbers. This suggests to generalize the quantifiers to Vz:7. A and
Ja:7. A, where T is a type.

In type theory, we may identify types with propositions. Therefore, we may
label a quantifier with A instead of inventing a new syntactic category 7 of types.
Data types, such as the natural numbers, then have to be introduced as new
types A together with their introduction and elimination rules. We postpone
the discussion of numbers and other data types to Section ??. Here, we are
most interested in understanding the nature of the quantifiers themselves once
they are typed.

Universal Quantification. Before, the introduction rule for Vz. A required
us to prove [a/z]A for a new parameter a. This stays essentially the same,
except that we are allowed to make a typing assumption for a.

T,a:B; A ‘- [a/z]A true
T A Vo:B. A true

Ia

Note that the parameter a is treated in an unrestricted manner. In other words,
the object a we assume to exist is persistent, it is independent of the state. This
avoids the unpleasant situation where a proposition C may talk about an object
that no longer exists in the current state as defined via the linear hypotheses.
See Exercise 77?7 for an exploration of this issue.

The rule above is written as part of a logic, and not as part of a type theory.
We can obtain the corresponding type-theoretical formulation by adding proof
terms. In this case, the proof of the premise is a function that maps an object
N of type B to a proof of [N/x]A. We write this function as an ordinary A-
abstraction. We will also now use the same name = for the parameter and the
bound variable, to remain closer to the traditions functional programming and
type theory.

Ie:B;AFM: A

AR e:B. M :Vo:B. A

vI

It is implicit here that x must be new, that is, it may not already be declared
in I" or A. This can always be achieved via renaming of the bound variable z
in the proof term and the type of the conclusion. Note that the variable z may
occur in A. This represents a significant change from the propositional case,
where the variables in I' and A occur only in proof terms, but not propositions.

In the corresponding elimination rule we now need to check that the term
we use to instantiate the universal quantifier has the correct type. The proof
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term for the result is simply application.
AR M :Ve:B. A I's FN:B
I5AFMN : [N/z]A

VE

Because x: B may be used in an unrestricted manner in the proof of A, the proof
of B may not depend on any linear hypotheses.

The local reduction is simply B-reduction, the local expansion is n-expansion.
We write these out on the proof terms.

(Ae:B.M)N —p [N/z]M
M:Vo:B.A —, Mx:B. Mz

When viewed as a type, the universal quantifier is a dependent function type.
The word “dependent” refers to the fact that the type of the the result of the
function M : Vz:B. A depends on the actual argument N since it is [N/z]A.
In type theory this is most often written as Ilx:B. A instead of Vx:B. A. The
dependent function type is a generalization of the ordinary function type (see
Exercise ?7?) and in type theory we usually view B D A as an abbreviation for
Va:B. A for some x that does not occur free in A. This preserves the property
that there is exactly one rule for each form of term. In this section we will
also use the form B — A instead of B D A to emphasize the reading of the
propositions as types.

As a first simple example, consider a proof of Vz:i. P(x)—o P(x) for some
arbitrary type ¢ and predicate P on objects of type 3.

xi;u:P(z) Fu: P(x) !
x4y B Au:P(x). u: P(x) —o P(z)

!

VI
5o F Az AwP(x). u Vi, P(x) — P(z)

This proof is very much in the tradition of first-order logic—the added expressive
power of a type theory is not exploited. We will see more examples later, after
we have introduced the existential quantifier.

Existential Quantification. There is also a dependent version of existential
quantification. For reasons similar to the existential quantifier, the witness NV
for the truth of Jz:A. B is persistent and cannot depend on linear hypotheses.

I''FN:A AR M [N/z]B

|
I;AFNI@¥ B M :32:A. B

Unfortunately, we need to annotate the new term constructor with most of its
type in order to guarantee uniqueness. The problem is that even if we know
N and [N/z]B, we cannot in general reconstruct B uniquely (see Exercise 77).
The notation N !® M is a reminder that pairs of this form are exponential, not
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additive. In fact, 3z:A. B is a dependent generalization of the operator A !®
B defined either by introduction and eliminations or via notational definition
as (A) ® B. We have already seen the reverse, A ®! B in Section 5.5 and
Exercise 5.2.

The corresponding elimination is just a dependent version of the ordinary
existential elimination.

IAFM:3x:A. B Iz:A; A, u:B-N:C
[ (A A Fletz '@ u=MinN : C

JE

Here, x and u must be new with respect to I' and A’. In particular, they cannot
occur in C. Also note that x is unrestricted while u is linear, as expected from
the introduction rule.

Again, we write out the local reductions on proof terms.

let x '® u = M1 '@ MginN —)5 [Ml/li][Mg/u]N
M:A®B —, lz!l@u=Minz!®u

Here we have omitted the superscript on the !® constructor for the sake of
brevity.

Type Families. In order for a dependent type to be truly dependent, we
must have occurrences of the quantified variables in the body of the type. In
the example above we had Vz:i. P(z) — P(z). But what is the nature of P?
Logically speaking, it is a predicate on objects of type i. Type-theoretically
speaking, it is a type family. That is, P(M) is a type for every object M of
type i. In such a type we call M the index object. It should now be clear that
well-formedness of types is not longer a trivial issue the way it has been so far.
We therefore augment our collections of judgments with a new one, A is a type
written as A : type.

Since a type such as P(x)—o P(x) may depend on some parameters, we
consider a hypothetical judgment of the form

;- -+ A type.

There are no linear hypotheses because it not clear what such a judgment would
mean, as hinted above. One possible answer has been given by Ishtiaq and
Pym [IP98], but we restrict ourselves here to the simpler case.

Most rules for this judgment are entirely straightforward; we show only three
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representative ones.
;- A:type T';-+ B :type
I';-F A— B : type

—o

I;-+ A:type T z:A;-F B : type
vF
;- FVx:A. B : type

T;-+ A:type I‘,m:A;-l—B:type3
F
;- F3x:A. B : type

Atomic types a M ... M, consist of a type family a indexed by objects M, ..., M,.
We introduce each such family with a separate formation rule. For example,

Iy FM:i
I';-+=P M : type

PF

would be the formation rule for the type family P considered above. Later it will
be convenient to collect this information in a signature instead (see Section ?7).

In the next section we will see some examples of type families from functional
programming.

7.2 Dependently Typed Data Structures

One potentially important application of dependent types lies functional pro-
gramming. Here we can use certain forms of dependent types to capture data
structure invariants concisely. As we will see, there are also some obstacles to
the practical use of such type systems.

As an example we will use lists with elements of some type A, indexed by
their length. This is of practical interest because dependent types may allow us
to eliminate bounds checks statically, as demonstrated in [XP98].

Natural Numbers. First, the formation and introduction rules for natural
numbers in unary form.

——— natF
T';- F nat: type
I A M :nat
——natl natl;
I';-+0:nat ;A Fs(M) : nat

There a two destructors: one a case construct and one operator for itera-
tion. We give these in the schematic form, as new syntax constructors, and as
constants.
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Schematically, f is defined by cases if it satisfies

f(0) = No
Nl(n)

~
—
(2]
—
S
~—
~—

Here, Ni(n) indicates that the object N1 may depend on n. However, this
form does not express linearity conditions. If we write it as a new language
constructor, we have (avoiding excessive syntactic sugar)

case™*(M; Ny, n. Ny)
with the rule

;AR M :nat A RNy : C ;A n:nat-N;: C
A, A" F case™(M; No,n. Np) : C

natEcase

Note that the elimination is additive in character, since exactly one branch of
the case will be taken. The local reductions and expansion are simple:

case"(0; No,n. N1) —1 No
case(s(M); No,n. N1) — [M/n]Ny
M :nat —, case™(M;0,n.s(n))

We could also introduce case™*' as a constant with linear typing. This would

violate our orthogonality principle. However, for any given type C' we can define
a “canonical” higher-order function implementing a case-like construct with the
expected operational behavior.

casenatc  : nat—o(C&(nat—C)) —C
= An:nat. Ae:(C&(nat — C)). case™t(n; fst ¢, n. snd ¢ n)

Schematically, f is defined by iteration if it satisfies

f(0) = No
f(s(n)) = Ni(f(n))

Here, N; can refer to the value of f on the predecessor, but not to n itself. As
a language constructor:
itnat(M; NQ, T. Nl)

with the rule
I A M :nat I FNy: C IirCHN: C
;AR it"™ (M, No,r. Np) : C

natE;;

Note that N7 will be used as many times as M indicates, and can therefore not
depend on any linear variables. We therefore also do not allow the branch for 0
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to depend on linear variables. In this special data type this would be possible,
since each natural number contains exactly one base case (see Exercise ?77).

it"*(0; No,7. N1) —1  No
it"*(s(M); No, 7. N1) —  [it"™(M; No,r. Ny)/r| Ny
M :nat —, itnat(M; 0,r. 8(7“))

From this we can define a canonical higher-order function for each result type
C implementing iteration.

itnatc  :  nat—(C&(C —C(C)) = C
= Anmnat. \e:C&(C —o O). it"*(n; fste, r. snd ¢ )

More interesting is to define an operator for primitive recursion. Note the linear
typing, which requires that at each stage of iteration we either use the result
from the recursive call or the predecessor, but not both.

recnatc  : nat —(C&((nat&C) —C)) = C
The definition of this recursor is subject of Exercise ?7.
Lists. Next we define the data type of lists. We leave the type of elements

open, that is, list is a type constructor. In addition, lists are indexed by their
length. We therefore have the following formation rule

T -+ A:type T';-F M :nat
Tk lista(M) : type

listF

There are two introduction rules for lists: one for the empty list (nil) and
one for a list constructor (cons). Note that we have to take care to construct the
proper index objects. In order to simplify type-checking and the description of
the operational semantics, we make the length of the list explicit as an argument
to the constructor. In practice, this argument can often be inferred and in many
cases does not need to be carried when a program is executed. We indicate this
informally by writing this dependent argument as a subscript.

listl
;- F nil : list4(0)

I';-+ N :nat ARFH:A A" F L lista(N)
A, A" F consy H L : list4(s(N))

listIy

Again, there are two elimination constructs: one for cases and one for iter-
ation. A function for primitive recursion can be defined.
Schematically, f is defined by cases over a list [ if it satisfies:

f(nil) = No
f(consy HL) = Nyi(N,H,L)
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Here we supplied an additional argument to NV; since we cannot statically predict
the length of the list L. This also complicates the typing rule for the case
construct, in addition to the linearity conditions.

case't(M; Ng, n. h. 1. Ny)

with the rule
;AR M :lista(V)
;A E Ny - C(0)
T, n:nat; A/ hi A, Llista(n) B Ny : C(s(n))

- natEcase
;A A Fit" (M; No,n. h. 1. Ny) : C(N)

The novelty in this rule is that C' is normally just a type; here it is a type family
indexed by a natural number. This is necessary so that, for example

ida : Vnnat. lista(n) —o IistA(_n)
= An:nat. M:lista(n). case™t(M;0,n. h. I'. cons,, h1')

type-checks. Note that here the first branch has type list4(0) and the second
branch has type lista(s(n)), where n is the length of the list I’ which stands
for the tail of [. Local reduction and expansion are straightforward, given the
intuition above.

_ case'™t(nil; No;n. h. I. N1) —1 Np
case™(consy H L; No;n. h. 1. N;) —1 [N/n,H/h, L/l]|N;
M :lista(N) —, case™(M;nil;n. h.l. cons, hl)

If we write a higher-order case function it would have type
caselist 4 ¢ : Vm:nat. lista(m) —(C(0)&(¥n:nat. A ® lista(n) — C(s(n))) — C(m)

The iteration constructs for lists follows a similar idea. Schematically, f is
defined by iteration over a list if it satisfies

Fnil) = N
f(consy HL) = Ni(N,H, f(L))

As a language constructor:
it"t(M; No, n. h. 7. Ny)
with the rule

;A F M :listg(N)
;- Np: C(0)
T, n:nat; h:A,:C(n) = Ny : C(s(n))

- natE;
[; A F it"™ (M; No,n. h. . Ny) : C(N)
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Local reduction and expansion present no new ideas.

_ it"t(nil; No;n. h. 7. N1) —1 Np _
it" (consy H L; No;n. h.v. Ny)  —r,  [N/n, H/h,it"™ (L; No;n. h. r. Ny)/r|Ny
M :lista(N) —, it"™"(M;nil;n. h.r. cons, hr)

We can then define the following higher-order constant.
ithsta,c : Vmenat. lista(m) —(C(0)&(Vn:nat. C(n) — C(s(n)))) — C(m)

Note that, once again, C' is a type family indexed by a natural number.

We now consider some functions on lists and their types. When we append
two lists, the length of the resulting list will be the sum of the lengths of the
two lists. To express this in our language, we first program addition.

plus : nat —onat—onat
= Az:nat. it"*(z; Ay:nat. y; 7. Ay:nat. s(r y))

Note that the iteration is at type nat —o nat so that r : nat —o nat in the second
branch.

append 4, :  Vn:at. Vm:nat. list4(n) —o list4(m) —o lista(plus nm)
= n:nat. Am:nat. M:list4(n).
it"st(1; Mk:lista(m). k,
p. h. 7. Mk:list4(m). cons,, h (rAk))

This example illustrates an important property of dependent type systems:
the type of the function append 4, contains a defined function (in this case plus).
This means we need to compute in the language in order to obtain the type of
an expression. For example

append 4 00 nil4 nil4  : lista(plus00)

by the rules for dependent types. But the result of evaluating this expression
will be nil4 which has type list4(0). Fortunately, plus00 evaluates to 0. In
general, however, we will not be able to obtain the type of an expression purely
by computation, but we have to employ equality reasoning. This is because the
arguments to a function will not be known at the time of type-checking. For
example, to type-check the definition of append 4 above, we obtain the type

list 4 (s(plus pm))

for Ny (the second branch) for two parameters p and m. The typing rules for
it"®* require this branch to have type

lista (plus (s(p)) m)

since the type family C(n) = list 4 (plus nm) and the result of the second branch
should have type C(s(n)).
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Fortunately, in this case, we can obtain the first type from the second es-
sentially by some local reductions. In order for dependent type theories to be
useful for functional programming we therefore need the rule of type conversion

IAREM:A I';-+ A= B:type
INAFM:B

conv

where the A = B : type is a new judgment of definitional equality. At the
very least the example above suggests that if M and N can be related by a
sequence of reduction steps applied somewhere in M and N, then they should
be considered equal. If this question is decidable is not at all clear and has to
be reconsidered for each type theory in detail.

In an extensional type theory, such as the one underlying Nuprl [CT86], we
allow essentially arbitrarily complex reasoning (including induction) in order to
prove that A = B : type. This means that conversion and also type-checking in
general are undecidable—the judgment of the type theory are no longer analytic,
but synthetic. This cast some doubt on the use of this type theory as a functional
programming language.

In an intensional type theory, such as later type theories developed by Martin-
Lof [ML80, NPS90, CNSvS94], definitional equality is kept weak and thereby
decidable. The main judgment of the type theory remains analytic, which is
desirable in the design of a programming language.

However, there is also a price to pay for a weak notion of equality. It means
that sometimes we will be unable to type-check simple (and correct) functions,
because the reason for their correctness requires inductive reasoning. A simple
example might be

reva : Vnunat. lista(n) —olista(n)

which reverses the elements of a list. Depending on its precise formulation, we
may need to know, for example, that

n:nat, m:nat; - F list4 (plus nm) = list 4 (plus mn) : type

which will not be the case in an intensional type theory.

We circumvent this problem by introducing a new proposition (or type,
depending on one’s point of view) eq N M for index objects N and M of type
nat. Objects of this types are explicit proofs of equality for natural numbers
and should admit induction (which is beyond the scope of these notes). The
type of rev would then be rewritten as

reva : Vn:nat. list4(n) — Im:nat. Ip:eq nm. list4(m)

In other words, in order to have decidable type-checking, we sometimes need to
make correctness proofs explicit. This is not surprising, given the experience
that correctness proofs can often be difficult.

In practical languages such as ML, it is therefore difficult to include depen-
dent types. The approach taken in [Xi98] is to restrict index objects to be drawn
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from a domain with a decidable equality theory. This appears to be a reasonable
compromise that can make the expressive power of dependent types available
to the programmer without sacrificing decidable and efficient type-checking.

7.3 Logical Frameworks

In the previous section, we illustrated how (linear) type theory could be used
as the foundation of (linear) functional programming. The demands of a com-
plete functional language and, in particular, the presence of data types and
recursion makes it difficult to attain decidable type-checking. In this section we
discuss another application of linear type theory as the foundation for a logical
framework.

A logical framework is a meta-language for the specification and implemen-
tation of deductive systems. This includes applications in various logics and
programming languages For surveys of logical frameworks and their applica-
tions, see [Pfe96, BM01, Pfe01].

One of the most expressive current frameworks is LF [HHP93] which is based
on a A-calculus with dependent types. There are many elegant encodings of de-
ductive systems in such a framework that can be found in the references above.
However, there are also many systems occurring both in logic and program-
ming languages, for which encodings are awkward. Examples are substructural
logic (such as linear logic), calculi for concurrency (such as the m-calculus), or
programming languages with state (such as Mini-ML with mutable references).
Even for pure languages such as Haskell, some aspects of the operational seman-
tics such as laziness and memoization are difficult to handle. This is because at
a lower level of abstraction, the implementations of even the purest languages
are essentially state-based.

In response to these shortcomings, a linear logical framework (LLF) has been
developed [CP96, Cer96, CP98]. This framework solved some of the problems
mentioned above. In particular, it allows natural encodings of systems with
state. However, it did not succeed with respect to intrinsic notions of concur-
rency. We will try to give an intuitive explanation of why this is so after showing
what the system looks like.

First, in a nutshell, the system LF. The syntax has the following form:

Types A = aMy...M, |Hx:A;... Ay
Objects M == claz | x:A. M| M M,

Here, a ranges over type families indexed by object M;, ¢ ranger over object
constants. Unlike the functional language above, these are not declared by
formation rules, introduction rules, and elimination rules. In fact, we must avoid
additional introduction and elimination rules because the corresponding local
reductions make the equational theory (and therefore type checking) difficult to
manage.

Instead, all judgments will be parametric in these constants! They are de-
clared in a signature Y which is a global analogue of the context I'. We need
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kinds in order to classify type families.

Kinds K = Ilzi:A;...1Hx,:A,. type
Signatures X = - |X,a:K|X,c¢A

As a simple example, we consider a small imperative language. We distin-
guish expressions (which have a value, but no effect) from commands (which
have an effect, but no value). Expressions are left unspecified, except that vari-
ables are allowed as expressions and that we must have boolean values true
and false. In other words, our example is parametric in the language of ex-
pressions; the only requirements are that they cannot have an effect, and that
they must allow variables. Commands are no-ops (skip), sequential composition
(C1; Cq), parallel composition (Cy || C2), assignment (z := e) and the alloca-
tion of a new local variable (newz. C). We also have a conditional construct
(if e then C; else C3) and a loop loop [. C.

Expression Types 7 = bool]|...
Expressions e = gz |true]|false]...
Commands C == skip|Cy;C2|Cy || Co|x:=€|newaz:r. C

| if e then C4 else Cs | loop 1. C

For the loop construct loop I. C', we introduce a label [ with scope C'. This
label is considered a new command in C', where invoking ! corresponds to a copy
of the loop body. Thus executing loop I. C reduces to executing [loop . C/I]|C.
Note that this only allows backwards jumps and does not model a general goto.
Its semantics is also different from goto if it is not the “last” command in a loop
(see Exercise 7?7 where you are also asked to model a while-loop using loop).
The simplest infinite loop is loop 1. I.

We now turn to the representation of syntax. We have a framework type
tp representing object language types, and index expressions by their object
language type. We show the representation function "7 and "e™.

tp 1 type
"bool? = bool bool : tp
var 1 tp — type
exp : tp— type
Tz = vitlz v : Viitp. var(t) — exp(?)
Ttrue? = true true : exp(bool)
Tfalse? = false false : exp(bool)

One of the main points to note here is that variables of our imperative
language are represented by variables in the framework. For the sake of conve-
nience, we choose the same name for a variable and its representation. The type
of such a variable in the framework will be var("77) depending on its declared
type. v is the coercion from a variable of type 7 to an expression of type 7. It
has to be indexed by a type t, because it could be applied to an expression of

any type.
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Commands on the other hand do not return a value, so their type is not
indexed. In order to maintain the idea the variables are represented by vari-
ables, binding constructs in the object language (namely new and loop) must
be translated so they bind the corresponding variable in the meta-language.
This idea is called higher-order abstract syntax [PE88], since the type of such
constructs in generally of order 2 (the constructors new and loop take functions
as arguments).

Tskip™' = skip

rCy; Oy = seq"C, 70,

o, H Cy7 = parTC, 770y

Tr:=e¢' = assign "7z "e! for z and e of type T
Tnew z:7. C™ = new 7' (Azwar("77). TCT)

Fif ethen Cy else Co7 = if Te'TC;7Cy7"  for e of type bool
Mloop 1. C™ = loop (Al:cmd. "C7)

In the declarations below, wee see that assign and new need to be indexed by
their type, and that a conditional command branches depending on a boolean
expression. In that way only well-typed commands can be represented—others
will be rejected as ill-typed in the framework.

cmd : type

skip : cmd

seq : cmd — cmd — cmd

par : cmd — cmd — cmd

assign : Vt:itp. var(t) — exp(t) — cmd
new  : Vétp. (var(t) — cmd) — cmd
if . exp(bool) = cmd — cmd
loop : (ecmd — cmd) — cmd

So far, we have not needed linearity. Indeed, the declarations above are just
a standard means of representing syntax in LF using the expressive power of
dependent types for data representation.

Next we would like to represent the operational semantics in the style of
encoding that we have used in this class before, beginning with expressions. We
assume that for each variable = of type 7 we have an affine assumption z = v for
a value v of type 7. In a context x; = v1,...,x, = v, all variables x; must be
distinct. In judgmental notation, our judgment would be ¥ I e — v, where ¥
represents the store and H is an affine hypothetical judgment. In our fragment
it would be represented by only three rules

ev_var

U rx=vFz—v

ev_true ev_false
T true — true ¥ ¥ false — false
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Since our framework is linear and not affine, we need to take care of elimi-
nating unconsumed hypotheses. We have

Te=v"' = wvalue"r7 2z 0"
Te—sv! = evall7 et

Note that these will be represented as type families since judgments are repre-
sented as types and deductions as objects.

value : Vititp. var(t) — exp(t) — type
eval : Viitp. exp(t) — exp(t) — type

Note that value and eval are both type families with dependent kinds, that
is, the type of the second and third index objects depends on the first index
object t in both cases. In the fragment we consider here, the evaluation rules are
straightforward, although we have to take care to consume extraneous resources
in the case of variable.

ev_true : T —oeval bool true true
ev_false : T —oeval bool false false
evvar ¢ Vtitp. Vauvar(t). Yuiexp(t). Ve:exp(t).

T —ovaluetzv—evalt(vtz)v

What did we need so far? We have used unrestricted implication and uni-
versal quantification, linear implication and additive truth. If we had a binary
operator for expressions we would also need an additive conjunction so that the
values of variables are accessible in both branches. Kinds and signatures change
only to the extent that the types embedded in them change.

Kinds K = Ilzi:A;...1x,:A,. type
Signatures X = | X, a:K |cA
Types A u= abMy...M,|Hx:A;... Ay
| A1 —OA2 | Al&AQ | T
Objects M == cla | x:A. M| M M,

| Az:A. M | My M,
| <M1,M2> |fStM | snd M
| ()

Note that in this fragment, uniform deductions are complete. Moreover,
every term has a canonical form, which is a S-normal, n-long form. Canonical
forms are defined as in Section 2.6 where the coercion from atomic to normal
derivations is restricted to atomic propositions. This is important, because it
allows a relatively simple algorithm for testing equality between objects, which
is necessary because of the rule of type conversion in the type theory.

The appropriate notion of definitional equality here is then defined by the
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rules for B-reduction and n-expansion.
Iz:A;AFM: B I'''FN:A
;AE (Ax:A. MYN = [N/z]M : [N/x]B

;A wAFM: B ;AN EN:A

[;A A" F (AwA. M) N = [N/ulM : B

IAEM, - A I'"AFMs: B IARM, - A INARM,:B
F;Al_fst<M1,M2>=M1 A F,Al—snd <M1,M2>=MQZB

AR M :Va:A. B
AR M=MXx:A. Mz :Ve:A. B

INAFM:A—-B

[;AF M = duA. Mu:A—B

I'A-DM: AB
;AR M = (fst M,snd M) : A&B

AREM:T
DAEM=():T

The remaining rules are reflexivity, symmetry, transitivity, and congruence
rules for each constructors. It is by no means trivial that this kind of equality
is decidable (see [CP98, VCO00]). We would like to emphasize once again that
in a dependent type theory, decidability of judgmental (definitional) equality is
necessary to obtain a decidable type-checking problem.

Next we come to the specification of the operational semantics of commands.
For this we give a natural specification in terms of two type families, exec D C'
where D is a label for the command, and done D which indicates that the
command labeled D has finished. The labels here are not targets for jumps
since they are not part of the program (see Exercise 77). Note that there are
no constructors for labels—we will generate them as parameters during the
execution.

lab : type
exec : lab — cmd — type
done : lab — type

According to our general strategy, exec D C' and done D will be part of
our linear hypothesis. Without giving a structural operational semantics, we
present the rules for execution of commands directly in the type theory.
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skip returns immediately.
ex_skip : VD:lab. exec D skip —done D

For sequential composition, we prevent execution of the second command
until the first has finished.

ex.seq : VD:lab. VCi:ecmd. VC5:cmd.
exec D (seq C1 C3)
—o(3d;:lab. exec d; Cy ® (done d; —oexec D C5))

For parallel composition, both commands can proceed independently. The
parallel composition is done, if both commands are finished. This is by no means
the only choice of an operational semantics.

ex_par : VD:lab. VCi:cmd. VCs:cmd.
exec D (par Cy Cs)
—o dd;:lab. Jds:lab. exec d; C1 ® exec da Cs
® (done d; ® done dy —o done D)

For assignment, we need to consume the assumption x = v’ for the variable
and assume the new value as z = v. We also want to allow assignment to an
uninitialized variables, which is noted by an assumption uninit "7 ' x.

uninit : Vé:tp. var(t) — type
ex_assign : VD:lab. VT:tp. VX:var(T). VE:exp(T). VV:exp(T).
exec D (assign T X E)
—o (eval T EV —0)
@ ((uninit T X @ IV":exp(T). value T X V')
—ovalue T X V ® done D)

The new command creates a new, uninitialized variable.

ex-new :  VD:lab. VT:tp. VC:var(T) — cmd.
exec D (new T (Az:var(T). C(z)))
—o Jy:var(T). uninit Ty ® exec D C(y)

Note type of C', which depends on a variable z. In order to emphasize this point,
we have created a variable y with a different name on the right-hand side. The
ex_new constant will be applied to a (framework) function (Az:var(T). C’) which
is applied to x on the left-hand side and y on the right hand side. We then have

C(x) = (Azwar(T). C") z = [z/2]C’

where the second equality is a definitionaly equality which follows by B-conversion.
On the right-hand side have instead

C(y) = (Azwvar(T). ")y = [y/z]C",
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again by (-conversion.

So here we take critical advantage of the rule of type conversion in order to
construct our encoding.

We leave the straightforward rules for the conditional to Exercise 77.

For loops, we give two alternative formulations. The first take advantage
of definitional equality in order to perform substitution, thereby unrolling the
loop.

ex_loop : VD:lab. VC:cmd — cmd
exec D (loop (M:ecmd. C(1)))
—oexec D (C (loop (Al:emd. C(1))))

Assume the command has form loop I. C’. Then
Moop I. C'7 = loop (Al:lab. "C'™).
Then the framework variable C' will be instantiated with
C = N:cmd. C'.
For the framework expression on the right-hand side we obtain

(C (loop (Al:emd. C(1))))
= (M:emd. C") (loop (Al:cmd. C(1)))
(loop (M:emd. C(1)))/1)C’

Q

[
[Mloop 1. C"7/1]™
Mloop . C'/1)C""

Here the last equation follows by compositionality: substitution commutes
with representation. This is a consequence of the decision to represent object-
language variables by meta-language variables and can lead to very concise
encodings (just as in this case). It means we do not have to explicitly axiom-
atize substitution, but we can let the framework take care of it for us. Since
formalizing substitution can be a significant effort, this is a major advantage of
higher-order abstract syntax over other representation techniques.

We can also avoid explicit substitution, instead adding an linear hypothesis
that captures how to jump back to the beginning of a loop more directly.

ex_loop’ : VD:lab. VC:cmd — cmd
exec D (loop (AM:cmd. C(1)))
—oJk:cmd. (Vd:lab. exec d k — exec d (C'(k)))
® exec D (C(k))

This completes our specification of the operational semantics, which is at
a very high level of abstraction. Unfortunately, the concurrency in the spec-
ification requires leaving the fragment we have discussed so far and including
multiplicative conjunction and existential quantification, at least. As mentioned
before, there is a translation back into the uniform fragment that preserves prov-
ability. This translation, however, does not preserve a natural notion of equality
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on proofs, or a natural semantics in terms of logic program execution. It is a
subject of current research to determine how concurrency can be introduced
into the linear logical framework LLF in a way that preserves the right notion
of equality.

So far, it seems we have not used the nm-conversion. Our representation
function is a bijection between syntactic categories of the object language and
canonical forms of the representation type. Together with G-reduction, we need
n-expansion to transform and arbitrary object to its canonical form. Without
it we would have “exotic objects” that do not represent any expression in the
language we are trying to model.
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