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Chapter 1

Introduction

According to the Encyclopædia Britannica, logic is the study of propositions and
their use in argumentation. From the breadth of this definition it is immediately
clear that logic constitutes an important area in the disciplines of philosophy
and mathematics. Logical tools and methods also play an essential role in the
design, specification, and verification of computer hardware and software. It
is these applications of logic in computer science which will be the focus of
this course. In order to gain a proper understanding of logic and its relevance
to computer science, we will need to draw heavily on the much older logical
traditions in philosophy and mathematics. We will discuss some of the relevant
history of logic and pointers to further reading throughout these notes. In this
introduction, we give only a brief overview of the contents and approach of this
class.

The course is divided into four parts:

I. Basic Concepts

II. Constructive Reasoning and Programming

III. Automatic Verification

IV. Properties of Logical Systems

In Part I we establish the basic vocabulary and systematically study propo-
sitions and proofs, mostly from a philosophical perspective. The treatment will
be rather formal in order to permit an easy transition into computational appli-
cations. We will also discuss some properties of the logical systems we develop
and strategies for proof search. We aim at a systematic account for the usual
forms of logical expression, providing us with a flexible and thorough founda-
tion for the remainder of the course. Exercises in this section will test basic
understanding of logical connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat
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2 Introduction

surprising that many proofs in mathematics today are not constructive in this
sense. Concretely, we find that for a certain fragment of logic, constructive
proofs correspond to functional programs and vice versa. More generally, we
can extract functional programs from constructive proofs of their specifications.
We often refer to constructive reasoning as intuitionistic, while non-constructive
reasoning is classical. Exercises in this part explore the connections between
proofs and programs, and between theorem proving and programming.

In Part III we study fragments of logic for which the question whether a
proposition is true of false can be effectively decided by an algorithm. Such
fragments can be used to specify some aspects of the behavior of software or
hardware and then automatically verify them. A key technique here is model-
checking that exhaustively explores the truth of a proposition over a finite state
space. Model-checking and related methods are routinely used in industry, for
example, to support hardware design by detecting design flaws at an early stage
in the development cycle.

In Part IV we look more deeply at properties of logical system of the kind
we developed and applied in Parts I–III. Among the questions we consider is
the relation between intuitionistic and classical reasoning, and the soundness
and completeness of various algorithms for proof search.

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive logic
and its relation to computation. This includes the translation of informally
specified problems to logical language, the ability to recognize correct proofs
and construct them. The skills further include writing and inductively proving
the correctness of recursive programs.

The second goals concerns the transfer of this knowledge to other kinds of
reasoning. We will try to illuminate logic and the underlying philosophical and
mathematical principles from various points of view. This is important, since
there are many different kinds of logics for reasoning in different domains or
about different phenomena1, but there are relatively few underlying philosoph-
ical and mathematical principles. Our second goal is to teach these principles
so that students can apply them in different domains where rigorous reasoning
is required.

A third goal relates to specific, important applications of logic in the practice
of computer science. Examples are the design of type systems for programming
languages, specification languages, or verification tools for finite-state systems.
While we do not aim at teaching the use of particular systems or languages,
students should have the basic knowledge to quickly learn them, based on the
materials presented in this class.

These learning goals present different challenges for students from different
disciplines. Lectures, recitations, exercises, and the study of these notes are all
necessary components for reaching them. These notes do not cover all aspects
of the material discussed in lecture, but provide a point of reference for defini-

1for example: classical, intuitionistic, modal, second-order, temporal, belief, non-
monotonic, linear, relevance, authentication, . . .
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3

tions, theorems, and motivating examples. Recitations are intended to answer
students’ questions and practice problem solving skills that are critical for the
homework assignments. Exercises are a combination of written homework to
be handed at lecture and theorem proving or programming problems to be sub-
mitted electronically using the software written in support of the course. An
introduction to this software is included in these notes, a separate manual is
available with the on-line course material.
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Chapter 2

Propositional Logic

The goal of this chapter is to develop the two principal notions of logic, namely
propositions and proofs. There is no universal agreement about the proper
foundations for these notions. One approach, which has been particularly suc-
cessful for applications in computer science, is to understand the meaning of
a proposition by understanding its proofs. In the words of Martin-Löf [ML96,
Page 27]:

The meaning of a proposition is determined by [. . . ] what counts as
a verification of it.

In this chapter we apply Martin-Löf’s approach, which follows a rich philo-
sophical tradition, to explain the basic propositional connectives. We will see
later that universal and existential quantifiers and types such as natural num-
bers, lists, or trees naturally fit into the same framework.

2.1 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of the
notions of judgment and proposition. A judgment is something we may know,
that is, an object of knowledge. A judgment is evident if we in fact know it.

We make a judgment such as “it is raining”, because we have evidence for it.
In everyday life, such evidence is often immediate: we may look out the window
and see that it is raining. In logic, we are concerned with situation where the
evidence is indirect: we deduce the judgment by making correct inferences from
other evident judgments. In other words: a judgment is evident if we have a
proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. In order to reason correctly, we therefore need a second judgment
form “A is a proposition”. But there are many others that have been studied
extensively. For example, “A is false”, “A is true at time t” (from temporal
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6 Propositional Logic

logic), “A is necessarily true” (from modal logic), “program M has type τ” (from
programming languages), etc.

Returning to the first two judgments, let us try to explain the meaning of
conjunction. We write A prop for the judgment “A is a proposition” and A true
for the judgment “A is true” (presupposing that A prop). Given propositions
A and B, we want to form the compound proposition “A and B”, written more
formally as A ∧B. We express this in the following inference rule:

A prop B prop
∧F

A ∧B prop

This rule allows us to conclude that A ∧ B prop if we already know that
A prop and B prop. In this inference rule, A and B are schematic variables, and
∧F is the name of the rule (which is short for “conjunction formation”). The
general form of an inference rule is

J1 . . . Jn
name

J

where the judgments J1, . . . , Jn are called the premises, the judgment J is called
the conclusion. In general, we will use letters J to stand for judgments, while
A, B, and C are reserved for propositions.

Once the rule of conjunction formation (∧F ) has been specified, we know
that A∧B is a proposition, if A and B are. But we have not yet specified what
it means, that is, what counts as a verification of A ∧ B. This is accomplished
by the following inference rule:

A true B true
∧I

A ∧B true

Here the name ∧I stands for “conjunction introduction”, since the conjunction
is introduced in the conclusion. We take this as specifying the meaning of A∧B
completely. So what can be deduce if we know that A∧B is true? By the above
rule, to have a verification for A ∧ B means to have verifications for A and B.
Hence the following two rules are justified:

A ∧B true
∧EL

A true

A ∧B true
∧ER

B true

The name ∧EL stands for “left conjunction elimination”, since the conjunction
in the premise has been eliminated in the conclusion. Similarly ∧ER stands for
“right conjunction elimination”.

We will later see what precisely is required in order to guarantee that the
formation, introduction, and elimination rules for a connective fit together cor-
rectly. For now, we will informally argue the correctness of the elimination
rules.
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2.2 Hypothetical Judgments 7

As a second example we consider the proposition “truth” written as >.

>F
> prop

Truth should always be true, which means its introduction rule has no premises.

>I
> true

Consequently, we have no information if we know > true, so there is no elimi-
nation rule.

A conjunction of two propositions is characterized by one introduction rule
with two premises, and two corresponding elimination rules. We may think of
truth as a conjunction of zero propositions. By analogy it should then have one
introduction rule with zero premises, and zero corresponding elimination rules.
This is precisely what we wrote out above.

2.2 Hypothetical Judgments

Consider the following derivation, for some arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true
∧ER

B ∧ C true
∧EL

B true

Have we actually proved anything here? At first glance it seems that cannot be
the case: B is an arbitrary proposition; clearly we should not be able to prove
that it is true. Upon closer inspection we see that all inferences are correct,
but the first judgment A ∧ (B ∧ C) has not been justified. We can extract the
following knowledge:

From the assumption that A ∧ (B ∧ C) is true, we deduce that B
must be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical derivation. In general, we may have more than one assumption, so
a hypothetical derivation has the form

J1 · · · Jn
...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judgment J
is the conclusion. Note that we can always substitute a proof for any hypoth-
esis Ji to eliminate the assumption. We call this the substitution principle for
hypotheses.
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8 Propositional Logic

Many mistakes in reasoning arise because dependencies on some hidden as-
sumptions are ignored. When we need to be explicit, we write J1, . . . , Jn ` J for
the hypothetical judgment which is established by the hypothetical derivation
above. We may refer to J1, . . . , Jn as the antecedents and J as the succedent of
the hypothetical judgment.

One has to keep in mind that hypotheses may be used more than once, or
not at all. For example, for arbitrary propositions A and B,

A ∧B true
∧ER

B true

A ∧B true
∧EL

A true
∧I

B ∧A true

can be seen a hypothetical derivation of A ∧B true ` B ∧A true.
With hypothetical judgments, we can now explain the meaning of implication

“A implies B” or “if A then B” (more formally: A⊃B). First the formation
rule:

A prop B prop
⊃F

A⊃B prop

Next, the introduction rule: A⊃B is true, if B is true under the assumption
that A is true.

u
A true

...

B true
⊃Iu

A⊃B true

The tricky part of this rule is the label u. If we omit this annotation, the rule
would read

A true
...

B true
⊃I

A⊃B true

which would be incorrect: it looks like a derivation of A⊃B true from the
hypothesis A true. But the assumption A true is introduced in the process of
proving A⊃B true; the conclusion should not depend on it! Therefore we label
uses of the assumption with a new name u, and the corresponding inference
which introduced this assumption into the derivation with the same label u.

As a concrete example, consider the following proof of A⊃(B⊃(A ∧B)).

u
A true

w
B true

∧I
A ∧B true

⊃Iw
B⊃(A ∧B) true

⊃Iu
A⊃(B⊃(A ∧B)) true
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2.2 Hypothetical Judgments 9

Note that this derivation is not hypothetical (it does not depend on any assump-
tions). The assumption A true labeled u is discharged in the last inference, and
the assumption B true labeled w is discharged in the second-to-last inference.
It is critical that a discharged hypothesis is no longer available for reasoning,
and that all labels introduced in a derivation are distinct.

Finally, we consider what the elimination rule for implication should say. By
the only introduction rule, having a proof of A⊃B true means that we have a
hypothetical proof of B true from A true. By the substitution principle, if we
also have a proof of A true then we get a proof of B true.

A⊃B true A true
⊃E

B true

This completes the rule concerning implication.

With the rules so far, we can write out proofs of simple properties con-
cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

u
A ∧B true

∧ER
B true

u
A ∧B true

∧EL
A true

∧Iu
B ∧A true

⊃I
(A ∧B)⊃(B ∧A) true

When we construct such a derivation, we generally proceed by a combination
of bottom-up and top-down reasoning. The next example is a distributivity
law, allowing us to move implications over conjunctions. This time, we show
the partial proofs in each step. Of course, other sequences of steps in proof
constructions are also possible.

...
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

First, we use the implication introduction rule bottom-up.

u
A⊃(B ∧ C) true

...

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
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10 Propositional Logic

Next, we use the conjunction introduction rule bottom-up.

u
A⊃(B ∧ C) true

...

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

We now pursue the left branch, again using implication introduction bottom-
up.

u
A⊃(B ∧ C) true

w
A true

...

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Note that the hypothesis A true is available only in the left branch, but
not in the right one: it is discharged at the inference ⊃Iw. We now switch to
top-down reasoning, taking advantage of implication elimination.

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

...

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Now we can close the gap in the left-hand side by conjunction elimination.
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2.3 Disjunction and Falsehood 11

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

∧EL
B true

⊃Iw
A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

∧EL
B true

⊃Iw
A⊃B true

u
A⊃(B ∧ C) true

v
A true

⊃E
B ∧ C true

∧ER
C true

⊃Iv
A⊃C true

∧I
(A⊃B) ∧ (A⊃C) true

⊃Iu
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

2.3 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A ∨ B) is more difficult, but does not
require any new judgment forms.

A prop B prop
∨F

A ∨B prop

Disjunction is characterized by two introduction rules: A∨B is true, if either
A or B is true.

A true
∨IL

A ∨B true

B true
∨IR

A ∨B true

Now it would be incorrect to have an elimination rule such as

A ∨B true
∨EL?

A true

because even if we know that A∨B is true, we do not know whether the disjunct
A or the disjunct B is true. Concretely, with such a rule we could derive the
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12 Propositional Logic

truth of every proposition A as follows:

u
B true

⊃Iu
B⊃B true

w
B⊃B true

∨IR
A ∨ (B⊃B) true

∨EL?
A true

⊃Iw
(B⊃B)⊃A true

⊃E
A true

Thus we take a different approach. If we know that A ∨B is true, we must
consider two cases: A true and B true. If we can prove a conclusion C true in
both cases, then C must be true! Written as an inference rule:

A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

Note that we use once again the mechanism of hypothetical judgments. In the
proof of the second premise we may use the assumption A true labeled u, in the
proof of the third premise we may use the assumption B true labeled w. Both
are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first premise
we know A ∨ B true. The premises of the two possible introduction rules are
A true and B true. In case A true we conclude C true by the substitution
principle and the second premise: we substitute the proof of A true for any use
of the assumption labeled u in the hypothetical derivation. The case for B true
is symmetric, using the hypothetical derivation in the third premise.

Because of the complex nature of the elimination rule, reasoning with dis-
junction is more difficult than with implication and conjunction. As a simple
example, we prove the commutativity of disjunction.

...
(A ∨B)⊃(B ∨A) true

We begin with an implication introduction.

u
A ∨B true

...

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true
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2.3 Disjunction and Falsehood 13

At this point we cannot use either of the two disjunction introduction rules.
The problem is that neither B nor A follow from our assumption A∨B! So first
we need to distinguish the two cases via the rule of disjunction elimination.

u
A ∨B true

v
A true

...

B ∨A true

w
B true

...

B ∨A true
∨Ev,w

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true

The assumption labeled u is still available for each of the two proof obligations,
but we have omitted it, since it is no longer needed.

Now each gap can be filled in directly by the two disjunction introduction
rules.

u
A ∨B true

v
A true

∨IR
B ∨A true

w
B true

∨IL
B ∨A true

∨Ev,w

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true

This concludes the discussion of disjunction. Falsehood (written as ⊥, some-
times called absurdity) is a proposition that should have no proof! Therefore
there are no introduction rules, although we of course have the standard forma-
tion rule.

⊥F
⊥ prop

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth of any
arbitrary proposition if we know ⊥ true. This justifies the elimination rule

⊥ true
⊥E

C true

We can also think of falsehood as a disjunction between zero alternatives. By
analogy with the binary disjunction, we therefore have zero introduction rules,
and an elimination rule in which we have to consider zero cases. This is precisely
the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think of the
proposition “not A” (written ¬A) as A⊃⊥. In other words, ¬A is true precisely
if the assumption A true is contradictory because we could derive ⊥ true.
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14 Propositional Logic

2.4 Notational Definition

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35]. One of his main motivations was to devise rules
that model mathematical reasoning as directly as possible, although clearly in
much more detail than in a typical mathematical argument.

We now consider how to define negation. So far, the meaning of any logical
connective has been defined by its introduction rules, from which we derived
its elimination rules. The definitions for all the connectives are orthogonal : the
rules for any of the connectives do not depend on any other connectives, only
on basic judgmental concepts. Hence the meaning of a compound proposition
depends only on the meaning of its constituent propositions. From the point
of view of understanding logical connectives this is a critical property: to un-
derstand disjunction, for example, we only need to understand its introduction
rules and not any other connectives.

A frequently proposed introduction rule for “not A” (written ¬A) is

u
A true

...

⊥ true
¬Iu?

¬A true

In words: ¬A is true if the assumption that A is true leads to a contradiction.
However, this is not a satisfactory introduction rule, since the premise relies the
meaning of ⊥, violating orthogonality among the connectives. There are several
approaches to removing this dependency. One is to introduce a new judgment,
“A is false”, and reason explicitly about truth and falsehood. Another em-
ploys schematic judgments, which we consider when we introduce universal and
existential quantification.

Here we pursue a third alternative: for arbitrary propositions A, we think of
¬A as a syntactic abbreviation for A⊃⊥. This is called a notational definition
and we write

¬A = A⊃⊥.

This notational definition is schematic in the proposition A. Implicit here is the
formation rule

A prop
¬F

¬A prop

We allow silent expansion of notational definitions. As an example, we prove
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2.4 Notational Definition 15

that A and ¬A cannot be true simultaneously.

u
A ∧ ¬A true

∧ER
¬A true

u
A ∧ ¬A true

∧EL
A true

⊃E
⊥ true

⊃Iu
¬(A ∧ ¬A) true

We can only understand this derivation if we keep in mind that ¬A stands for
A⊃⊥, and that ¬(A ∧ ¬A) stands for (A ∧ ¬A)⊃⊥.

As a second example, we show the proof that A⊃¬¬A is true.

w
¬ A true

u
A true

⊃E
⊥ true

⊃Iw
¬¬A true

⊃Iu
A⊃¬¬A true

Next we consider A ∨ ¬A, the so-called “law” of excluded middle. It claims
that every proposition is either true or false. This, however, contradicts our
definition of disjunction: we may have evidence neither for the truth of A, nor
for the falsehood of A. Therefore we cannot expect A ∨ ¬A to be true unless
we have more information about A.

One has to be careful how to interpret this statement, however. There are
many propositions A for which it is indeed the case that we know A ∨ ¬A. For
example, > ∨ (¬>) is clearly true because > true. Similarly, ⊥ ∨ (¬⊥) is true
because ¬⊥ is true. To make this fully explicit:

>I
> true

∨IL
> ∨ (¬>) true

u
⊥ true

⊃Iu
¬⊥ true

∨IR
⊥ ∨ (¬⊥) true

In mathematics and computer science, many basic relations satisfy the law of
excluded middle. For example, we will be able to show that for any two numbers
k and n, either k < n or ¬(k < n). However, this requires proof, because for
more complex A propositions we may not know if A true or ¬A true. We will
return to this issue later in this course.

At present we do not have the tools to show formally that A ∨ ¬A should
not be true for arbitrary A. A proof attempt with our generic proof strategy
(reason from the bottom up with introduction rules and from the top down with
elimination rules) fails quickly, no matter which introduction rule for disjunction
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16 Propositional Logic

we start with.

...

A true
∨IL

A ∨ ¬A true

u
A true

...

⊥ true
⊃Iu

¬A true
∨IR

A ∨ ¬A true

We will see that this failure is in fact sufficient evidence to know that A ∨ ¬A
is not true for arbitrary A.

2.5 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules of
inference. For example,

A⊃B true B⊃C true

A⊃C true

is a derived rule of inference. Its derivation is the following:

u
A true A⊃B true

⊃E
B true B⊃C true

⊃E
C true

⊃Iu
A⊃C true

Note that this is simply a hypothetical derivation, using the premises of the
derived rule as assumptions. In other words, a derived rule of inference is
nothing but an evident hypothetical judgment; its justification is a hypothetical
derivation.

We can freely use derived rules in proofs, since any occurrence of such a rule
can be expanded by replacing it with its justification.

A second example of notational definition is logical equivalence “A if and
only if B” (written A≡B). We define

(A≡B) = (A⊃B) ∧ (B⊃A).

That is, two propositions A and B are logically equivalent if A implies B and B
implies A. Under this definition, the following become derived rules of inference
(see Exercise 2.1). They can also be seen as introduction and elimination rules
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for logical equivalence (whence their names).

u
A true

...

B true

w
B true

...

A true
≡Iu,w

A≡B true

A≡B true A true
≡EL

B true

A≡B true B true
≡ER

A true

2.6 Logical Equivalences

We now consider several classes of logical equivalences in order to develop some
intuitions regarding the truth of propositions. Each equivalence has the form
A≡B, but we consider only the basic connectives and constants (∧, ⊃, ∨,
>, ⊥) in A and B. Later on we consider negation as a special case. We use
some standard conventions that allow us to omit some parentheses while writing
propositions. We use the following operator precedences

¬ > ∧ > ∨ > ⊃ > ≡

where ∧, ∨, and ⊃ are right associative. For example

¬A⊃A ∨ ¬¬A⊃⊥

stands for
(¬A)⊃((A ∨ (¬(¬A)))⊃⊥)

In ordinary mathematical usage, A≡B≡C stands for (A≡B)∧(B≡C); in the
formal language we do not allow iterated equivalences without explicit paren-
theses in order to avoid confusion with propositions such as (A ≡ A) ≡ >.

Commutativity. Conjunction and disjunction are clearly commutative, while
implication is not.

(C1) A ∧B ≡ B ∧A true

(C2) A ∨B ≡ B ∨A true

(C3) A⊃B is not commutative

Idempotence. Conjunction and disjunction are idempotent, while self-implication
reduces to truth.

(I1) A ∧A ≡ A true

(I2) A ∨A ≡ A true

(I3) A⊃A ≡ > true
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Interaction Laws. These involve two interacting connectives. In principle,
there are left and right interaction laws, but because conjunction and disjunction
are commutative, some coincide and are not repeated here.

(L1) A ∧ (B ∧ C) ≡ (A ∧B) ∧ C true

(L2) A ∧ > ≡ A true

(L3) A ∧ (B⊃C) do not interact

(L4) A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) true

(L5) A ∧ ⊥ ≡ ⊥ true

(L6) A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) true

(L7) A ∨ > ≡ > true

(L8) A ∨ (B⊃C) do not interact

(L9) A ∨ (B ∨ C) ≡ (A ∨B) ∨ C true

(L10) A ∨ ⊥ ≡ A true

(L11) A⊃(B ∧ C) ≡ (A⊃B) ∧ (A⊃C) true

(L12) A⊃> ≡ > true

(L13) A⊃(B⊃C) ≡ (A ∧B)⊃C true

(L14) A⊃(B ∨ C) do not interact

(L15) A⊃⊥ do not interact

(L16) (A ∧B)⊃C ≡ A⊃(B⊃C) true

(L17) >⊃C ≡ C true

(L18) (A⊃B)⊃C do not interact

(L19) (A ∨B)⊃C ≡ (A⊃C) ∧ (B⊃C) true

(L20) ⊥⊃C ≡ > true

2.7 Summary of Judgments

Judgments.
A prop A is a proposition
A true Proposition A is true

Propositional Constants and Connectives. The following table summa-
rizes the introduction and elimination rules for the propositional constants (>,
⊥) and connectives (∧, ⊃, ∨). We omit the straightforward formation rules.

Draft of January 9, 2003
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Introduction Rules Elimination Rules

A true B true
∧I

A ∧B true

A ∧B true
∧EL

A true

A ∧B true
∧ER

B true

>I
> true no >E rule

u
A true

...

B true
⊃Iu

A⊃B true

A⊃B true A true
⊃E

B true

A true
∨IL

A ∨B true

B true
∨IR

A ∨B true
A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

no ⊥I rule
⊥ true

⊥E
C true

Notational Definitions. We use the following notational definitions.
¬A = A⊃⊥ not A
A≡B = (A⊃B) ∧ (B⊃A) A if and only if B

2.8 A Linear Notation for Proofs

The two-dimensional format for rules of inference and deductions is almost uni-
versal in the literature on logic. Unfortunately, it is not well-suited for writ-
ing actual proofs of complex propositions, because deductions become very un-
wieldy. Instead with use a linearized format explained below. Furthermore,
since logical symbols are not available on a keyboard, we use the following con-
crete syntax for propositions:

A≡B A <=> B A if and only if B
A⊃B A => B A implies B
A ∨B A | B A or B
A ∧B A & B A and B
¬A ~ A not A
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The operators are listed in order of increasing binding strength, and impli-
cation (=>), disjunction (|), and conjunction (&) associate to the right, just like
the corresponding notation from earlier in this chapter.

The linear format is mostly straightforward. A proof is written as a sequence
of judgments separated by semi-colon ‘;’. Later judgements must follow from
earlier ones by simple applications of rules of inference. Since it can easily be
verified that this is the case, explicit justifications of inferences are omitted.
Since the only judgment we are interested in at the moment is the truth of a
proposition, the judgment “A true” is abbreviated simply as “A”.

The only additional notation we need is for hypothetical proofs. A hypo-
thetical proof

A true
...

C true

is written as [A;...;C].

In other words, the hypothesis A is immediately preceded by a square bracket
(‘[’), followed by the lines representing the hypothetical proof of C, followed by
a closing square bracket (‘]’). So square brackets are used to delimit the scope
of an assumption. If we need more than hypothesis, we nest this construct as
we will see in the example below.

As an example, we consider the proof of (A⊃B) ∧ (B⊃C)⊃(A⊃C) true.
We show each stage in the proof during its natural construction, showing both
the mathematical and concrete syntax, except that we omit the judgment “true”
to keep the size of the derivation manageable. We write ‘...’ to indicate that
the following line has not yet been justified.

...
(A⊃B) ∧ (B⊃C)⊃(A⊃C)

...

(A => B) & (B => C) => (A => C);

The first bottom-up step is an implication introduction. In the linear form,
we use our notation for hypothetical judgments.

u
(A⊃B) ∧ (B⊃C)

...

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

...

A => C ];

(A => B) & (B => C) => (A => C);

Again, we proceed via an implication introduction. In the mathematical
notation, the hypotheses are shown next to each other. In the linear notation,
the second hypothesis A is nested inside the first, also making both of them
available to fill the remaining gap in the proof.
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u
(A⊃B) ∧ (B⊃C)

w
A

...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

[ A;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

Now that the conclusion is atomic and cannot be decomposed further, we
reason downwards from the hypotheses. In the linear format, we write the
new line A => B; immediately below the hypothesis, but we could also have
inserted it directly below A;. In general, the requirement is that the lines
representing the premise of an inference rule must all come before the conclusion.
Furthermore, lines cannot be used outside the hypothetical proof in which they
appear, because their proof could depend on the hypothesis.

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A

...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

[ A;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

Nex we apply another straightforward top-down reasoning step. In this case,
there is no choice on where to insert B;.

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A
⊃E

B
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

[ A;

B;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

For the last two steps, we align the derivations vertically. The are both
top-down steps (conjunction elimination followed by implication elimination).
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u
(A⊃B) ∧ (B⊃C)

∧ER
B⊃C

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A
⊃E

B
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

B => C;

[ A;

B;

...

C ];

A => C ];

(A => B) & (B => C) => (A => C);

In the step above we notice that subproofs may be shared in the linearized
format, while in the tree format they appear more than once. In this case it is
only the hypothesis (A⊃B) ∧ (B⊃C) which is shared.

u
(A⊃B) ∧ (B⊃C)

∧ER
B⊃C

u
(A⊃B) ∧ (B⊃C)

∧EL
A⊃B

w
A
⊃E

B
⊃E

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[ (A => B) & (B => C);

A => B;

B => C;

[ A;

B;

C ];

A => C ];

(A => B) & (B => C) => (A => C);

In the last step, the linear derivation only changed in that we noticed that
C already follows from two other lines and is therefore justified.
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For other details of concrete syntax and usage of the proof-checking program
available for this course, please refer to the on-line documentation available
through the course home page.

2.9 Normal Deductions

The strategy we have used so far in proof search is easily summarized: we reason
with introduction rules from the bottom up and with elimination rules from the
top down, hoping that the two will meet in the middle. This description is
somewhat vague in that it is not obvious how to apply it to complex rules such
as disjunction elimination which involve formulas other than the principal one
whose connective is eliminated.

To make this precise we introduce two new judgments
A ↑ A has a normal proof
A ↓ A has a neutral proof

We are primarily interest in normal proofs, which are those that our strategy
can find. Neutral proofs represent an auxiliary concept (sometimes called an
extraction proof ) necessary for the definition of normal proofs.

We will define these judgments via rules, trying to capture the following
intuitions:

1. A normal proof is either neutral, or proceeds by applying introduction
rules to other normal proofs.

2. A neutral proof proceeds by applying elimination rules to hypotheses or
other neutral proofs.

By construction, every A which has a normal (or neutral) proof is true. The
converse, namely that every true A has a normal proof also holds, but is not at
all obvious. We may prove this property later on, at least for a fragment of the
logic.

First, a general rule to express that every neutral proof is normal.

A ↓
↓↑

A ↑

Conjunction. The rules for conjunction are easily annotated.

A ↑ B ↑
∧I

A ∧B ↑

A ∧B ↓
∧EL

A ↓

A ∧B ↓
∧ER

B ↓

Truth. Truth only has an introduction rule and therefore no neutral proof
constructor.

>I
> ↑
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Implication. Implication first fixes the idea that hypotheses are neutral, so
the introduction rule refers to both normal and neutral deductions.

u
A ↓

...

B ↑
⊃Iu

A⊃B ↑

A⊃B ↓ A ↑
⊃E

B ↓

The elimination rule is more difficult to understand. The principal premise
(with the connective “⊃” we are eliminating) should have a neutral proof. The
resulting derivation will once again be neutral, but we can only require the
second premise to have a normal proof.

Disjunction. For disjunction, the introduction rules are straightforward. The
elimination rule requires again the requires the principal premise to have a
neutral proof. An the assumptions introduced in both branches are also neutral.
In the end we can conclude that we have a normal proof of the conclusion, if we
can find a normal proof in each premise.

A ↑
∨IL

A ∨B ↑

B ↑
∨IR

A ∨B ↑ A ∨B ↓

u
A ↓

...

C ↑

w
B ↓

...

C ↑
∨Eu,w

C ↑

Falsehood. Falsehood is analogous to the rules for disjunction. But since
there are no introduction rules, there are no cases to consider in the elimination
rule.

⊥ ↓
⊥E

C ↑

All the proofs we have seen so far in these notes are normal: we can easily
annotate them with arrows using only the rules above. The following is an
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example of a proof which is not normal.

w
¬A true

u
A true

w
¬A true

∧I
A ∧ ¬A true

∧EL
A true

⊃E
⊥ true

⊃Iw
¬A⊃⊥ true

⊃Iu
A⊃¬A⊃⊥ true

If we follow the process of annotation, we fail at only one place as indicated
below.

w
¬A ↓

u
A ↓

w
¬A ↓

∧I
A ∧ ¬A ?

∧EL
A ↓

↓↑
A ↑

⊃E
⊥ ↓

↓↑
⊥ ↑

⊃Iw
¬A⊃⊥ ↑

⊃Iu
A⊃¬A⊃⊥ ↑

The situation that prevents this deduction from being normal is that we
introduce a connective (in this case, A ∧ ¬A) and then immediately eliminate
it. This seems like a detour—why do it at all? In fact, we can just replace this
little inference with the hypothesis A ↓ and obtain a deduction which is now
normal.

w
¬A ↓

u
A ↓

↓↑
A ↑

⊃E
⊥ ↓

↓↑
⊥ ↑

⊃Iw
¬A⊃⊥ ↑

⊃Iu
A⊃¬A⊃⊥ ↑

It turns out that the only reason a deduction may not be normal is an
introduction followed by an elimination, and that we can always simplify such
a derivation to (eventually) obtain a normal one. This process of simplification
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is directly connected to computation in a programming language. We only
need to fix a particular simplification strategy. Under this interpretation, a
proof corresponds to a program, simplification of the kind above corresponds
to computation, and a normal proof corresponds to a value. It is precisely this
correspondence which is the central topic of the next chapter.

We close this chapter with our first easy meta-theorem, that is, a theorem
about a logical system rather than within it. We show that if a the proposition
A has a normal proof then it must be true. In order to verify this, we also need
the auxiliary property that if A has a neutral proof, it is true.

Theorem 2.1 (Soundness of Normal Proofs) For natural deduction with
logical constants ∧, ⊃, ∨, > and ⊥ we have:

1. If A ↑ then A true, and

2. if A ↓ then A true.

Proof: We replace every judgment B ↑ and B ↓ in the deduction of A ↑ or A ↓
by B true and B true. This leads to correct derivation that A true with one
exception: the rule

B ↓
↓↑

B ↑

turns into
B true

B true

We can simply delete this “inference” since premise and conclusion are identical.
2

2.10 Exercises

Exercise 2.1 Show the derivations for the rules ≡I, ≡EL and ≡ER under the
definition of A≡B as (A⊃B) ∧ (B⊃A).
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Chapter 3

Proofs as Programs

In this chapter we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional fragment
of logic this is referred to as the Curry-Howard isomorphism [How80]. From the
very outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of this
idea. In a highly influential subsequent paper, Martin-Löf [ML80] developed it
further into a more expressive calculus called type theory.

3.1 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce
a new judgment:

M : A M is a proof term for proposition A
We presuppose that A is a proposition when we write this judgment. We will

also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We either
think of M as a term that represents the proof of A true, or we think of A as the
type of the program M . As we discuss each connective, we give both readings
of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should correspond to a
deduction of A true with an identical structure and vice versa. In other words
we annotate the inference rules of natural deduction with proof terms. The
property above should then be obvious.

Conjunction. Constructively, we think of a proof of A ∧ B true as a pair of
proofs: one for A true and one for B true.

M : A N : B
∧I

〈M,N〉 : A ∧B
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The elimination rules correspond to the projections from a pair to its first
and second elements.

M : A ∧B
∧EL

fstM : A

M : A ∧B
∧ER

sndM : B

Hence conjunction A ∧B corresponds to the product type A×B.

Truth. Constructively, we think of a proof of > true as a unit element that
carries now information.

>I
〈 〉 : >

Hence > corresponds to the unit type 1 with one element. There is no elimina-
tion rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A⊃B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f
of a variable x by writing f(x) = . . . where the right-hand side “. . .” depends on
x. For example, we might write f(x) = x2 + x− 1. In functional programming,
we can instead write f = λx. x2 + x− 1, that is, we explicitly form a functional
object by λ-abstraction of a variable (x, in the example).

We now use the notation of λ-abstraction to annotate the rule of implication
introduction with proof terms. In the official syntax, we label the abstraction
with a proposition (writing λu:A) in order to specify the domain of a function
unambiguously. In practice we will often omit the label to make expressions
shorter—usually (but not always!) it can be determined from the context.

u
u : A

...

M : B
⊃Iu

λu:A. M : A⊃B

The hypothesis label u acts as a variable, and any use of the hypothesis labeled
u in the proof of B corresponds to an occurrence of u in M .

As a concrete example, consider the (trivial) proof of A⊃A true:

u
A true

⊃Iu
A⊃A true

If we annotate the deduction with proof terms, we obtain

u
u : A

⊃Iu
(λu:A. u) : A⊃A

Draft of January 9, 2003



3.1 Propositions as Types 29

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (λu:A. u).

The rule for implication elimination corresponds to function application.
Following the convention in functional programming, we write M N for the
application of the function M to argument N , rather than the more verbose
M(N).

M : A⊃B N : A
⊃E

M N : B

What is the meaning of A⊃B as a type? From the discussion above it should
be clear that it can be interpreted as a function type A→B. The introduction
and elimination rules for implication can also be viewed as formation rules for
functional abstraction λu:A. M and application M N .

Note that we obtain the usual introduction and elimination rules for impli-
cation if we erase the proof terms. This will continue to be true for all rules
in the remainder of this section and is immediate evidence for the soundness of
the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A ∧B)⊃(B ∧A) true.

u
A ∧B true

∧ER
B true

u
A ∧B true

∧EL
A true

∧I
B ∧A true

⊃Iu
(A ∧B)⊃(B ∧A) true

When we annotate this derivation with proof terms, we obtain a function which
takes a pair 〈M,N〉 and returns the reverse pair 〈N,M〉.

u
u : A ∧B

∧ER
sndu : B

u
u : A ∧B

∧EL
fstu : A

∧I
〈sndu, fstu〉 : B ∧A

⊃Iu
(λu. 〈sndu, fstu〉) : (A ∧B)⊃(B ∧A)

Disjunction. Constructively, we think of a proof of A ∨ B true as either a
proof of A true or B true. Disjunction therefore corresponds to a disjoint sum
type A+B, and the two introduction rules correspond to the left and right
injection into a sum type.

M : A
∨IL

inlB M : A ∨B

N : B
∨IR

inrA N : A ∨B

In the official syntax, we have annotated the injections inl and inr with propo-
sitions B and A, again so that a (valid) proof term has an unambiguous type. In
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writing actual programs we usually omit this annotation. The elimination rule
corresponds to a case construct which discriminates between a left and right
injection into a sum types.

M : A ∨B

u
u : A

...

N : C

w
w : B

...

O : C
∨Eu,w

caseM of inlu⇒ N | inrw ⇒ O : C

Recall that the hypothesis labeled u is available only in the proof of the second
premise and the hypothesis labeled w only in the proof of the third premise.
This means that the scope of the variable u is N , while the scope of the variable
w is O.

Falsehood. There is no introduction rule for falsehood (⊥). We can therefore
view it as the empty type 0. The corresponding elimination rule allows a term of
⊥ to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid
program we will never try to evaluate a term of the form abortM .

M : ⊥
⊥E

abortC M : C

As before, the annotation C which disambiguates the type of abortM will often
be omitted.

This completes our assignment of proof terms to the logical inference rules.
Now we can interpret the interaction laws we introduced early as programming
exercises. Consider the left-to-right direction of (L11)

(L11a) (A⊃(B ∧ C))⊃(A⊃B) ∧ (A⊃C) true

Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of
type B ∧C, returns two functions: one which maps A to B and one
which maps A to C.

This is satisfied by the following function:

λu. 〈(λw. fst (uw)), (λv. snd (u v))〉

Draft of January 9, 2003



3.2 Reduction 31

The following deduction provides the evidence:

u
u : A⊃(B ∧ C)

w
w : A

⊃E
uw : B ∧ C

∧EL
fst (uw) : B

⊃Iw
λw. fst (uw) : A⊃B

u
u : A⊃(B ∧ C)

v
v : A

⊃E
uv : B ∧ C

∧ER
snd (u v) : C

⊃Iv
λv. snd (u v) : A⊃C

∧I
〈(λw. fst (uw)), (λv. snd (u v))〉 : (A⊃B) ∧ (A⊃C)

⊃Iu
λu. 〈(λw. fst (uw)), (λv. snd (u v))〉 : (A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C))

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section 3.5, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

We will prove these in Section 3.4.

3.2 Reduction

In the preceding section, we have introduced the assignment of proof terms to
natural deductions. If proofs are programs then we need to explain how proofs
are to be executed, and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M =⇒M ′, read “M reduces to
M ′”. A computation then proceeds by a sequence of reductions M =⇒M1 =⇒
M2 . . ., according to a fixed strategy, until we reach a value which is the result
of the computation. In this section we cover reduction; we return to reduction
strategies in Section ??.

As in the development of propositional logic, we discuss each of the con-
nectives separately, taking care to make sure the explanations are independent.
This means we can consider various sublanguages and we can later extend our
logic or programming language without invalidating the results from this sec-
tion. Furthermore, it greatly simplifies the analysis of properties of the reduction
rules.
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In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

Truth. The constructor just forms the unit element, 〈 〉. Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by λ-abstraction, while the
destructor applies the function to an argument. In general, the application of
a function to an argument is computed by substitution. As a simple example
from mathematics, consider the following equivalent definitions

f(x) = x2 + x− 1 f = λx. x2 + x− 1

and the computation

f(3) = (λx. x2 + x− 1)(3) = [3/x](x2 + x− 1) = 32 + 3− 1 = 11

In the second step, we substitute 3 for occurrences of x in x2 + x− 1, the body
of the λ-expression. We write [3/x](x2 + x− 1) = 32 + 3− 1.

In general, the notation for the substitution of N for occurrences of u in M
is [N/u]M . We therefore write the reduction rule as

(λu:A. M)N =⇒ [N/u]M

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation which
clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor distin-
guishes cases. We need to use substitution again.

case inlB M of inlu⇒ N | inrw ⇒ O =⇒ [M/u]N

case inrA M of inlu⇒ N | inrw ⇒ O =⇒ [M/w]O

Falsehood. Since there is no constructor for the empty type there is no re-
duction rule for falsehood.
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This concludes the definition of the reduction judgment. In the next section
we will prove some of its properties.

As an example we consider a simple program for the composition of two
functions. It takes a pair of two functions, one from A to B and one from B to
C and returns their composition which maps A directly to C.

comp : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)

We transform the following implicit definition into our notation step-by-step:

comp 〈f, g〉 (w) = g(f(w))
comp 〈f, g〉 = λw. g(f(w))

compu = λw. (sndu) ((fstu)(w))
comp = λu. λw. (sndu) ((fstu)w)

The final definition represents a correct proof term, as witnessed by the following
deduction.

u
u : (A⊃B) ∧ (B⊃C)

∧ER
sndu : B⊃C

u
u : (A⊃B) ∧ (B⊃C)

∧EL
fstu : A⊃B

w
w : A

⊃E
(fstu)w : B

⊃E
(sndu) ((fstu)w) : C

⊃Iw
λw. (sndu) ((fstu)w) : A⊃C

⊃Iu
(λu. λw. (sndu) ((fstu)w)) : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)

We now verify that the composition of two identity functions reduces again to
the identity function. First, we verify the typing of this application.

(λu. λw. (sndu) ((fstu)w)) 〈(λx. x), (λy. y)〉 : A⊃A

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(λu. λw. (sndu) ((fstu)w)) 〈(λx. x), (λy. y)〉
=⇒ λw. (snd 〈(λx. x), (λy. y)〉) ((fst 〈(λx. x), (λy. y)〉)w)
=⇒ λw. (λy. y) ((fst 〈(λx. x), (λy. y)〉)w)
=⇒ λw. (λy. y) ((λx. x)w)
=⇒ λw. (λy. y)w
=⇒ λw. w

We see that we may need to apply reduction steps to subterms in order to reduce
a proof term to a form in which it can no longer be reduced. We postpone a
more detailed discussion of this until we discuss the operational semantics in
full.
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3.3 Summary of Proof Terms

Judgments.
M : A M is a proof term for proposition A
M =⇒M ′ M reduces to M ′

Proof Term Assignment.

Constructors Destructors

M : A N : B
∧I

〈M,N〉 : A ∧B

M : A ∧B
∧EL

fstM : A

M : A ∧B
∧ER

sndM : B

>I
〈 〉 : > no destructor for >

u
u : A

...

M : B
⊃Iu

λu:A. M : A⊃B

M : A⊃B N : A
⊃E

M N : B

M : A
∨IL

inlB M : A ∨B

N : B
∨IR

inrA N : A ∨B

M : A ∨B

u
u : A

...

N : C

w
w : B

...

O : C
∨Eu,w

caseM of inlu⇒ N | inrw ⇒ O : C

no constructor for ⊥
M : ⊥

⊥E
abortC M : C
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Reductions.

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

no reduction for 〈 〉

(λu:A. M)N =⇒ [N/u]M

case inlB M of inlu⇒ N | inrw ⇒ O =⇒ [M/u]N

case inrA M of inlu⇒ N | inrw ⇒ O =⇒ [M/w]O

no reduction for abort

Concrete Syntax. The concrete syntax for proof terms used in the mechan-
ical proof checker has some minor differences to the form we presented above.

u u Variable

〈M,N〉 (M,N) Pair

fstM fst M First projection

sndM snd M Second projection

〈 〉 () Unit element

λu:A. M fn u => M Abstraction

M N M N Application

inlB M inl M Left injection

inrA N inr N Right injection

case M

of inlu⇒ N

| inrw ⇒ O

case M

of inl u => N

| inr w => O

end

Case analysis

abortC M abort M Abort

Pairs and unit element are delimited by parentheses ‘(’ and ‘)’ instead of
angle brackets 〈 and 〉. The case constructs requires an end token to mark the
end of the a sequence of cases.

Type annotations are generally omitted, but a whole term can explicitly be
given a type. The proof checker (which here is also a type checker) infers the
missing information. Occasionally, an explicit type ascription M : A is necessary
as a hint to the type checker.

For rules of operator precedence, the reader is refered to the on-line doc-
umentation of the proof checking software available with the course material.
Generally, parentheses can be used to disambiguate or override the standard
rules.

As an example, we show the proof term implementing function composition.
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term comp : (A => B) & (B => C) => (A => C) =

fn u => fn x => (snd u) ((fst u) x);

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that A∨B⊃B ∨A, first in the
pure form.

proof orcomm : A | B => B | A =

begin

[ A | B;

[ A;

B | A];

[ B;

B | A];

B | A ];

A | B => B | A

end;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B => B | A =

begin

[ u : A | B;

[ v : A;

inr v : B | A];

[ w : B;

inl w : B | A];

case u

of inl v => inr v

| inr w => inl w

end : B | A ];

fn u => case u

of inl v => inr v

| inr w => inl w

end : A | B => B | A

end;

3.4 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as meta-logical reasoning.
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First, we need some more formal definitions for certain operations on proof
terms, to be used in our meta-logical analysis. One rather intuitive property of
is that variable names should not matter. For example, the identity function at
type A can be written as λu:A. u or λw:A. w or λu′:A. u′, etc. They all denote
the same function and the same proof. We therefore identify terms which differ
only in the names of variables (here called u) bound in λu:A. M , inlu ⇒ M
or inru⇒ O. But there are pitfalls with this convention: variables have to be
renamed consistently so that every variable refers to the same binder before and
after the renaming. For example (omitting type labels for brevity):

λu. u = λw. w
λu. λw. u = λu′. λw. u′

λu. λw. u 6= λu. λw. w
λu. λw. u 6= λw. λw. w
λu. λw. w = λw. λw. w

The convention to identify terms which differ only in the naming of their
bound variables goes back to the first papers on the λ-calculus by Church and
Rosser [CR36], is called the “variable name convention” and is pervasive in the
literature on programming languages and λ-calculi. The term λ-calculus typi-
cally refers to a pure calculus of functions formed with λ-abstraction. Our proof
term calculus is called a typed λ-calculus because of the presence of propositions
(which an be viewed as types).

Following the variable name convention, we may silently rename when con-
venient. A particular instance where this is helpful is substitution. Consider

[u/w](λu. w u)

that is, we substitute u for w in λu. w u. Note that u is a variable visible on
the outside, but also bound by λu. By the variable name convention we have

[u/w](λu. w u) = [u/w](λu′. w u′) = λu′. u u′

which is correct. But we cannot substitute without renaming, since

[u/w](λu. w u) 6= λu. u u

In fact, the right hand side below is invalid, while the left-hand side makes
perfect sense. We say that u is captured by the binder λu. If we assume a
hypothesis u:>⊃A then

[u/w](λu:>. w u) : A

but
λu:>. u u

is not well-typed since the first occurrence of u would have to be of type >⊃A
but instead has type >.

So when we carry out substitution [M/u]N we need to make sure that no
variable in M is captured by a binder in N , leading to an incorrect result.
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Fortunately we can always achieve that by renaming some bound variables in
N if necessary. We could now write down a formal definition of substitution,
based on the cases for the term we are substituting into. However, we hope that
the notion is sufficiently clear that this is not necessary.

Instead we revisit the substitution principle for hypothetical judgments. It
states that if we have a hypothetical proof of C true from A true and we have a
proof of A true, we can substitute the proof of A true for uses of the hypothesis
A true and obtain a (non-hypothetical) proof of A true. In order to state this
more precisely in the presence of several hypotheses, we recall that

A1 true . . . An true
...

C true

can be written as
A1 true, . . . , An true
︸ ︷︷ ︸

∆

` C true

Generally we abbreviate several hypotheses by ∆. We then have the follow-
ing properties, evident from the very definition of hypothetical judgments and
hypothetical proofs

Weakening: If ∆ ` C true then ∆,∆′ ` C true.

Substitution: If ∆, A true,∆′ ` C true and ∆ ` A true then ∆,∆′ ` C true.

As indicated above, weakening is realized by adjoining unused hypotheses, sub-
stitutions is realized by substitution of proofs for hypotheses.

For the proof term judgment, M : A, we use the same notation and write

u1:A1 . . . un:An
...

N : C

as
u1:A1, . . . , un:An
︸ ︷︷ ︸

Γ

` N : C

We use Γ to refer to collections of hypotheses ui:Ai. In the deduction of N : C,
each ui stands for an unknown proof term for Ai, simply assumed to exist. If
we actually find a proof Mi:Ai we can eliminate this assumption, again by sub-
stitution. However, this time, the substitution has to perform two operations:
we have to substitute Mi for ui (the unknown proof term variable), and the
deduction of Mi : Ai for uses of the hypothesis ui:Ai. More precisely, we have
the following two properties:

Weakening: If Γ ` N : C then Γ,Γ′ ` N : C.

Substitution: If Γ, u:A,Γ′ ` N : C and Γ `M : A then Γ,Γ′ ` [M/u]N : C.
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Now we are in a position to state and prove our second meta-theorem, that
is, a theorem about the logic under consideration. The theorem is called subject
reduction because is concerns the subject M of the judgment M : A. It states
that reduction preserves the type of an object. We make the hypotheses explicit
as we have done in the explanations above.

Theorem 3.1 (Subject Reduction)
If Γ `M : A and M =⇒M ′ then Γ `M ′ : A.

Proof: We consider each case in the definition of M =⇒M ′ in turn and show
that the property holds. This is simply an instance of proof by cases.

Case: fst 〈M1,M2〉 =⇒M1. By assumption we also know that

Γ ` fst 〈M1,M2〉 : A.

We need to show that Γ `M1 : A.

Now we inspect all inference rules for the judgment M : A and we see that
there is only one way how the judgment above could have been inferred:
by ∧EL from

Γ ` 〈M1,M2〉 : A ∧A2

for some A2. This step is called inversion, since we infer the premises
from the conclusion of the rule. But we have to be extremely careful to
inspect all possibilities for derivations so that we do not forget any cases.

Next, we apply inversion again: the judgment above could only have been
inferred by ∧I from the two premises

Γ `M1 : A

and

Γ `M2 : A2

But the first of these is what we had to prove in this case and we are done.

Case: snd 〈M1,M2〉 =⇒M2. This is symmetric to the previous case. We write
it an abbreviated form.

Γ ` snd 〈M1,M2〉 : A Assumption
Γ ` 〈M1,M2〉 : A1 ∧A for some A1 By inversion
Γ `M1 : A1 and
Γ `M2 : A By inversion

Here the last judgment is what we were trying to prove.

Case: There is no reduction for > since there is no elimination rule and hence
no destructor.
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Case: (λu:A1. M2)M1 =⇒ [M1/u]M2. By assumption we also know that

Γ ` (λu:A1. M2)M1 : A.

We need to show that Γ ` [M1/u]M2 : A.

Since there is only one inference rule for function application, namely
implication elimination (⊃E), we can apply inversion and find that

Γ ` (λu:A1. M2) : A
′

1
⊃A

and
Γ `M1 : A′

1

for some A′

1
. Now we repeat inversion on the first of these and conclude

that
Γ, u:A1 `M2 : A

and, moreover, that A1 = A′

1
. Hence

Γ `M1 : A1

Now we can apply the substitution property to these to judgments to
conclude

Γ ` [M1/u]M2 : A

which is what we needed to show.

Case: (case inlC M1 of inlu⇒ N | inrw ⇒ O) =⇒ [M1/u]N . By assumption
we also know that

Γ ` (case inlC M1 of inlu⇒ N | inrw ⇒ O) : A

Again we apply inversion and obtain three judgments

Γ ` inlC M1 : B′ ∨ C ′

Γ, u:B′ ` N : A
Γ, w:C ′ ` O : A

for some B′ and C ′.

Again by inversion on the first of these, we find

Γ `M1 : B′

and also C ′ = C. Hence we can apply the substitution property to get

Γ ` [M1/u]N : A

which is what we needed to show.

Case: (case inrB M1 of inlu ⇒ N | inrw ⇒ O) =⇒ [M1/u]N . This is
symmetric to the previous case and left as an exercise.
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Case: There is no introduction rule for ⊥ and hence no reduction rule.

2

The important techniques introduced in the proof above are proof by cases
and inversion. In a proof by cases we simply consider all possibilities for why a
judgment could be evident and show the property we want to establish in each
case. Inversion is very similar: from the shape of the judgment we see it could
have been inferred only in one possible way, so we know the premises of this rule
must also be evident. We see that these are just two slightly different forms of
the same kind of reasoning.

If we look back at our early example computation, we saw that the reduc-
tion step does not always take place at the top level, but that the redex may
be embedded in the term. In order to allow this, we need to introduce some
additional ways to establish that M =⇒ M ′ when the actual reduction takes
place inside M . This is accomplished by so-called congruence rules.

Conjunction. As usual, conjunction is the simplest.

M =⇒M ′

〈M,N〉 =⇒ 〈M ′, N〉

N =⇒ N ′

〈M,N〉 =⇒ 〈M,N ′〉

M =⇒M ′

fstM =⇒ fstM ′

M =⇒M ′

sndM =⇒ sndM ′

Note that there is one rule for each subterm for each construct in the language
of proof terms, just in case the reduction might take place in that subterm.

Truth. There are no rules for truth, since 〈 〉 has no subterms and therefore
permits no reduction inside.

Implication. This is similar to conjunction.

M =⇒M ′

M N =⇒M ′ N

N =⇒ N ′

M N =⇒M N ′

M =⇒M ′

(λu:A. M) =⇒ (λu:A. M ′)
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Disjunction. This requires no new ideas, just more cases.

M =⇒M ′

inlB M =⇒ inlB M ′

N =⇒ N ′

inrA N =⇒ inrA N ′

M =⇒M ′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM ′ of inlu⇒ N | inrw ⇒ O)

N =⇒ N ′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM of inlu⇒ N ′ | inrw ⇒ O)

O =⇒ O′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM of inlu⇒ N | inrw ⇒ O′)

Falsehood. Finally, there is a congruence rule for falsehood, since the proof
term constructor has a subterm.

M =⇒M ′

abortC M =⇒ abortC M ′

We now extend the theorem to the general case of reduction on subterms.
A proof by cases is now no longer sufficient, since the congruence rules have
premises, for which we would have to analyze cases again, and again, etc.

Instead we use a technique called structural induction on proofs. In struc-
tural induction we analyse each inference rule, assuming the desired property
for the premises, proving that they hold for the conclusion. If that is the case
for all inference rules, the conclusion of each deduction must have the property.

Theorem 3.2 (Subterm Subject Reduction)
If Γ ` M : A and M =⇒ M ′ then Γ ` M ′ : A where M =⇒ M ′ refers to the
congruent interpretation of reduction.

Proof: The cases where the reduction takes place at the top level of the term
M , the cases in the proof of Theorem 3.1 still apply. The new cases are all very
similar, and we only show one.

Case: The derivation of M =⇒M ′ has the form

M1 =⇒M ′

1

〈M1,M2〉 =⇒ 〈M ′

1
,M2〉

We also know that Γ ` 〈M1,M2〉 : A. We need to show that

Γ ` 〈M ′

1
,M2〉 : A
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By inversion,
Γ `M1 : A1

and
Γ `M2 : A2

and A = A1 ∧A2.

Since we are proving the theorem by structural induction and we have a
deduction of Γ ` M1 : A1 we can now apply the induction hypothesis to
M1 =⇒M ′

1
. This yields

Γ `M ′

1
: A1

and we can construct the deduction

Γ `M ′

1
: A1 Γ `M2 : A2

∧I
Γ ` 〈M ′

1
,M2〉 : A1 ∧A2

which is what we needed to show since A = A1 ∧A2.

Cases: All other cases are similar and left as an exercise.

2

The importance of the technique of structural induction cannot be overem-
phasized in this domain. We will see it time and again, so the reader should
make sure the understand each step in the proof above.

3.5 Primitive Recursion

In the preceding sections we have developed an interpretation of propositions
as types. This interpretation yields function types (from implication), product
types (from conjunction), unit type (from truth), sum types (from disjunction)
and the empty type (from falsehood). What is missing for a reasonable pro-
gramming language are basic data types such as natural numbers, integers, lists,
trees, etc. There are several approaches to incorporating such types into our
framework. One is to add a general definition mechanism for recursive types or
inductive types. We return to this option later. Another one is to specify each
type in a way which is analogous to the definitions of the logical connectives via
introduction and elimination rules. This is the option we pursue in this section.
A third way is to use the constructs we already have to define data. This was
Church’s original approach culminating in the so-called Church numerals. We
will not discuss this idea in these notes.

After spending some time to illustrate the interpretation of propositions as
types, we now introduce types as a first-class notion. This is not strictly nec-
essary, but it avoids the question what, for example, nat (the type of natural
numbers) means as a proposition. Accordingly, we have a new judgment τ type
meaning “τ is a type”. To understand the meaning of a type means to under-
stand what elements it has. We therefore need a second judgment t ∈ τ (read:
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“t is an element of type τ”) that is defined by introduction rules with their cor-
responding elimination rules. As in the case of logical connectives, computation
arises from the meeting of elimination and introduction rules. Needless to say,
we will continue to use our mechanisms of hypothetical judgments.

Before introducing any actual data types, we look ahead at their use in logic.
We will introduce new propositions of the form ∀x ∈ τ. A(x) (A is true for every
element x of type τ) and ∃x ∈ τ. A(x) (A is true some some element x of type
τ). This will be the step from propositional logic to first-order logic. This logic
is called first-order because we can quantify (via ∀ and ∃) only over elements of
data types, but not propositions themselves.

We begin our presentation of data types with the natural numbers. The
formation rule is trivial: nat is a type.

natF
nat type

Now we state two of Peano’s famous axioms in judgmental form as intro-
duction rules: (1) 0 is a natural numbers, and (2) if n is a natural number then
its successor, s(n), is a natural number. We write s(n) instead of n + 1, since
addition and the number 1 have yet to be defined.

natI0
0 ∈ nat

n ∈ nat
natIs

s(n) ∈ nat

The elimination rule is a bit more difficult to construct. Assume have a
natural number n. Now we cannot directly take its predecessor, for example,
because we do not know if n was constructed using natI0 or natIs. This is
similar to the case of disjunction, and our solution is also similar: we distinguish
cases. In general, it turns out this is not sufficient, but our first approximation
for an elimination rule is

n ∈ nat t0 ∈ τ

x
x ∈ nat

...

ts ∈ τ
x

casen of 0⇒ t0 | s(x)⇒ ts ∈ τ

Note that x is introduced in the third premise; its scope is ts. First, we rewrite
this using our more concise notation for hypothetical judgments. For now, Γ
contains assumptions of the form x ∈ τ . Later, we will add logical assumptions
of the form u:A.

Γ ` n ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat ` ts ∈ τ
x

Γ ` casen of 0⇒ t0 | s(x)⇒ ts ∈ τ

This elimination rule is sound, and under the computational interpretation
of terms, type preservation holds. The reductions rules are

(case 0 of 0⇒ t0 | s(x)⇒ ts) =⇒ t0
(case s(n) of 0⇒ t0 | s(x)⇒ ts) =⇒ [n/x]ts
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Clearly, this is the intended reading of the case construct in programs.
In order to use this in writing programs independently of the logic devel-

oped earlier, we now introduce function types in a way that is isomorphic to
implication.

τ type σ type
→F

τ→σ type

Γ, x ∈ σ ` t ∈ τ
→Ix

Γ ` λx ∈ σ. t ∈ σ→ τ

Γ ` s ∈ τ→σ Γ ` t ∈ τ
→E

Γ ` s t ∈ σ

(λx ∈ σ. s) t =⇒ [t/x]s

Now we can write a function for truncated predecessor: the predecessor of
0 is defined to be 0; otherwise the predecessor of n+ 1 is simply n. We phrase
this as a notational definition.

pred = λx ∈ nat. casex of 0⇒ 0 | s(y)⇒ y

Then ` pred ∈ nat→nat and we can formally calculate the predecessor of 2.

pred(s(s(0))) = (λx ∈ nat. casex of 0⇒ 0 | s(y)⇒ y) (s(s(0)))
=⇒ case s(s(0)) of 0⇒ 0 | s(y)⇒ y
=⇒ s(0)

As a next example, we consider a function which doubles its argument. The
behavior of the double function on an argument can be specified as follows:

double(0) = 0
double(s(n)) = s(s(double(n)))

Unfortunately, there is no way to transcribe this definition into an application
of the case-construct for natural numbers, since it is recursive: the right-hand
side contains an occurrence of double, the function we are trying to define.

Fortunately, we can generalize the elimination construct for natural numbers
to permit this kind of recursion which is called primitive recursion. Note that
we can define the value of a function on s(n) only in terms of n and the value
of the function on n. We write

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natEf,x

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

Here, f may not occur in t0 and can only occur in the form f(x) in ts to denote
the result of the recursive call. Essentially, f(x) is just the mnemonic name of
a new variable for the result of the recursive call. Moreover, x is bound with
scope ts. The reduction rules are now recursive:

(rec 0 of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒ t0
(rec s(n) of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒
[(rec n of f(0)⇒ t0 | f(s(x))⇒ ts)/f(x)] [n/x] ts
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As an example we revisit the double function and give it as a notational defini-
tion.

double = λx ∈ nat. rec x
of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′)))

Now double (s(0)) can be computed as follows

(λx ∈ nat. rec x
of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′))))

(s(0))
=⇒ rec (s(0))

of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′))))

=⇒ s(s(rec 0
of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′)))))

=⇒ s(s(0))

As some other examples, we consider the functions for addition and mul-
tiplication. These definitions are by no means uniquely determined. In each
case we first give an implicit definition, describing the intended behavior of the
function, and then the realization in our language.

plus 0 y = y
plus (s(x′)) y = s(plus x′ y)

plus = λx ∈ nat. λy ∈ nat. rec x
of p(0)⇒ y
| p(s(x′))⇒ s(p(x′))

times 0 y = 0
times (s(x′)) y = plus y (times x′ y)

times = λx ∈ nat. λy ∈ nat. rec x
of t(0)⇒ 0
| t(s(x′))⇒ plus y (t(x′))

The next example requires pairs in the language. We therefore introduce
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pairs which are isomorphic to the proof terms for conjunction from before.

Γ ` s ∈ σ Γ ` t ∈ τ
×I

Γ ` 〈s, t〉 ∈ σ× τ

Γ ` t ∈ τ ×σ
×EL

Γ ` fst t ∈ τ

Γ ` t ∈ τ ×σ
×ER

Γ ` snd t ∈ σ

fst 〈t, s〉 =⇒ t
snd 〈t, s〉 =⇒ s

Next the function half , rounding down if necessary. This is slightly trickier
then the examples above, since we would like to count down by two as the
following specification indicates.

half 0 = 0
half (s(0)) = 0

half (s(s(x′))) = s(half (x′))

The first step is to break this function into two, each of which steps down by
one.

half
1
0 = 0

half
1
(s(x′)) = half

2
(x′)

half
2
0 = 0

half
2
(s(x′′)) = s(half

1
(x′′))

Note that half
1
calls half

2
and vice versa. This is an example of so-called mutual

recursion. This can be modeled by one function half
12

returning a pair such
that half

12
(x) = 〈half

1
(x), half

2
(x)〉.

half
12
0 = 〈0,0〉

half
12

(s(x)) = 〈snd (half
12
(x)), s(fst (half

12
(x)))

half x = fst (half
12

x)

In our notation this becomes

half
12

= λx ∈ nat. rec x
of h(0)⇒ 〈0,0〉
| h(s(x′))⇒ 〈snd (h(x)), s(fst (h(x)))

half = λx ∈ nat. fst (half
12

x)

As a last example in the section, consider the subtraction function which
cuts off at zero.

minus 0 y = 0
minus (s(x′))0 = s(x′)

minus (s(x′)) (s(y′)) = minus x′ y′

To be presented in the schema of primitive recursion, this requires two nested
case distinctions: the outermost one on the first argument x, the innermost one
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on the second argument y. So the result of the first application of minus must
be function, which is directly represented in the definition below.

minus = λx ∈ nat. rec x
of m(0)⇒ λy ∈ nat. 0
| m(s(x′))⇒ λy ∈ nat. rec y

of p(0)⇒ s(x′)
| p(s(y′))⇒ (m (x′)) y′

Note that m is correctly applied only to x′, while p is not used at all. So the
inner recursion could have been written as a case-expression instead.

Functions defined by primitive recursion terminate. This is because the be-
havior of the function on s(n) is defined in terms of the behavior on n. We can
therefore count down to 0, in which case no recursive call is allowed. An alterna-
tive approach is to take case as primitive and allow arbitrary recursion. In such
a language it is much easier to program, but not every function terminates. We
will see that for our purpose about integrating constructive reasoning and func-
tional programming it is simpler if all functions one can write down are total,
that is, are defined on all arguments. This is because total functions can be used
to provide witnesses for propositions of the form ∀x ∈ nat. ∃y ∈ nat. P (x, y)
by showing how to compute y from x. Functions that may not return an appro-
priate y cannot be used in this capacity and are generally much more difficult
to reason about.

3.6 Booleans

Another simple example of a data type is provided by the Boolean type with
two elements true and false. This should not be confused with the propositions
> and ⊥. In fact, they correspond to the unit type 1 and the empty type 0.
We recall their definitions first, in analogy with the propositions.

1F
1 type

1I
Γ ` 〈 〉 ∈ 1 no 1 elimination rule

0F
0 type

no 0 introduction rule
Γ ` t ∈ 0

0E
Γ ` abortτ t ∈ τ

There are no reduction rules at these types.
The Boolean type, bool, is instead defined by two introduction rules.

boolF
bool type

boolI1
Γ ` true ∈ bool

boolI0
Γ ` false ∈ bool
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The elimination rule follows the now familiar pattern: since there are two
introduction rules, we have to distinguish two cases for a given Boolean value.
This could be written as

case t of true⇒ s1 | false⇒ s0

but we typically express the same program as an if t then s1 else s0.

Γ ` t ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if t then s1 else s0 ∈ τ

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if true then s1 else s0 =⇒ s1

if false then s1 else s0 =⇒ s0

Now we can define typical functions on booleans, such as and , or , and not .

and = λx ∈ bool. λy ∈ bool.
if x then y else false

or = λx ∈ bool. λy ∈ bool.
if x then true else y

not = λx ∈ bool.
if x then false else true

3.7 Lists

Another more interesting data type is that of lists. Lists can be created with
elements from any type whatsoever, which means that τ list is a type for any
type τ .

τ type
listF

τ list type

Lists are built up from the empty list (nil) with the operation :: (pronounced
“cons”), written in infix notation.

listIn
Γ ` nilτ ∈ τ list

Γ ` t ∈ τ Γ ` s ∈ τ list
listIc

Γ ` t :: s ∈ τ list

The elimination rule implements the schema of primitive recursion over lists. It
can be specified as follows:

f (nil) = sn
f (x :: l) = sc(x, l, f(l))

where we have indicated that sc may mention x, l, and f(l), but no other
occurrences of f . Again this guarantees termination.

Γ ` t ∈ τ list Γ ` sn ∈ σ Γ, x ∈ τ, l ∈ τ list, f(l) ∈ σ ` sc ∈ σ
listE

Γ ` rec t of f(nil)⇒ sn | f(x :: l)⇒ sc ∈ σ
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We have overloaded the rec constructor here—from the type of t we can always
tell if it should recurse over natural numbers or lists. The reduction rules are
once again recursive, as in the case for natural numbers.

(recnil of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒ sn
(rec (h :: t) of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒
[(rec t of f(nil)⇒ sn | f(x :: l)⇒ sc)/f(l)] [h/x] [t/l] sc

Now we can define typical operations on lists via primitive recursion. A
simple example is the append function to concatenate two lists.

append nil k = k
append (x :: l′) k = x :: (append l′ k)

In the notation of primitive recursion:

append = λl ∈ τ list. λk ∈ τ list. rec l
of a(nil)⇒ k
| a(x :: l′)⇒ x :: (a l′)

` append ∈ τ list→ τ list→ τ list

Note that the last judgment is parametric in τ , a situation referred to as
parametric polymorphism. In means that the judgment is valid for every type
τ . We have encountered a similar situation, for example, when we asserted that
(A ∧B)⊃A true. This judgment is parametric in A and B, and every instance
of it by propositions A and B is evident, according to our derivation.

As a second example, we consider a program to reverse a list. The idea is
to take elements out of the input list l and attach them to the front of a second
list a one which starts out empty. The first list has been traversed, the second
has accumulated the original list in reverse. If we call this function rev and the
original one reverse, it satisfies the following specification.

rev ∈ τ list→ τ list→ τ list
rev nil a = a

rev (x :: l′) a = rev l′ (x :: a)

reverse ∈ τ list→ τ list
reverse l = rev l nil

In programs of this kind we refer to a as the accumulator argument since it
accumulates the final result which is returned in the base case. We can see that
except for the additional argument a, the rev function is primitive recursive.
To make this more explicit we can rewrite the definition of rev to the following
equivalent form:

rev nil = λa. a
rev (x :: l) = λa. rev l (x :: a)

Now the transcription into our notation is direct.

rev = λl ∈ τ list. rec l
of r(nil)⇒ λa ∈ τ list. a
| r(x :: l′)⇒ λa ∈ τ list. r (l′) (x :: a)

reverse l = rev l nil
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Finally a few simple functions which mix data types. The first counts the
number of elements in a list.

length ∈ τ list→nat

length nil = 0
length (x :: l′) = s(length (l′))

length = λx ∈ τ list. rec x
of le(nil)⇒ 0
| le(x :: l′)⇒ s(le (l′))

The second compares two numbers for equality.

eq ∈ nat→nat→bool

eq 0 0 = true
eq 0 (s(y′)) = false
eq (s(x′)) 0 = false

eq (s(x′)) (s(y′)) = eq x′ y′

As in the example of subtraction, we need to distinguish two levels.

eq = λx ∈ nat. rec x
of e(0)⇒ λy ∈ nat. rec y

of f(0)⇒ true
| f(s(y′))⇒ false

| e(s(x′))⇒ λy ∈ nat. rec y
of f(0)⇒ false
| f(s(y′))⇒ e(x′) y′

We will see more examples of primitive recursive programming as we proceed
to first order logic and quantification.

3.8 Summary of Data Types

Judgments.

τ type τ is a type
t ∈ τ t is a term of type τ

Type Formation.

natF
nat type

boolF
bool type

τ type
listF

τ list type
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Term Formation.

natI0
0 ∈ nat

n ∈ nat
natIs

s(n) ∈ nat

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natE

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

boolI1
Γ ` true ∈ bool

boolI0
Γ ` false ∈ bool

Γ ` t ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if t then s1 else s0 ∈ τ

listIn
Γ ` nilτ ∈ τ list

Γ ` t ∈ τ Γ ` s ∈ τ list
listIc

Γ ` t :: s ∈ τ list

Γ ` t ∈ τ list Γ ` sn ∈ σ Γ, x ∈ τ, l ∈ τ list, f(l) ∈ σ list ` sc ∈ σ
listE

Γ ` rec t of f(nil)⇒ sn | f(x :: l)⇒ sc ∈ σ

Reductions.

(rec 0 of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒ t0
(rec s(n) of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒

[(rec n of f(0)⇒ t0 | f(s(x))⇒ ts)/f(x)] [n/x] ts

if true then s1 else s0 =⇒ s1

if false then s1 else s0 =⇒ s0

(recnil of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒ sn
(rec (h :: t) of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒

[(rec t of f(nil)⇒ sn | f(x :: l)⇒ sc)/f(l)] [h/x] [t/l] sc

3.9 Predicates on Data Types

In the preceding sections we have introduced the concept of a type which is
determined by its elements. Examples were natural numbers, Booleans, and
lists. In the next chapter we will explicitly quantify over elements of types. For
example, we may assert that every natural number is either even or odd. Or we
may claim that any two numbers possess a greatest common divisor. In order
to formulate such statements we need some basic propositions concerned with
data types. In this section we will define such predicates, following our usual
methodology of using introduction and elimination rules to define the meaning
of propositions.
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We begin with n < m, the less-than relation between natural numbers. We
have the following formation rule:

Γ ` m ∈ nat Γ ` n ∈ nat
<F

Γ ` m < n prop

Note that this formation rule for propositions relies on the judgment t ∈ τ .
Consequently, we have to permit a hypothetical judgment, in case n or m men-
tion variables declared with their type, such as x ∈ nat. Thus, in general, the
question whether A prop may now depend on assumptions of the form x ∈ τ .

This has a consequence for the judgment A true. As before, we now must
allow assumptions of the form B true, but in addition we must permit assump-
tions of the form x ∈ τ . We still call the collection of such assumptions a context
and continue to denote it with Γ.

<I0
Γ ` 0 < s(n) true

Γ ` m < n true
<Is

Γ ` s(m) < s(n) true

The second rule exhibits a new phenomenon: the relation ‘<’ whose meaning
we are trying to define appears in the premise as well as in the conclusion. In
effect, we have not really introduced ‘<’, since it already occurs. However, such
a definition is still justified, since the conclusion defines the meaning of s(m) < ·
in terms of m < ·. We refer to this relation as inductively defined. Actually we
have already seen a similar phenomenon in the second “introduction” rule for
nat:

Γ ` n ∈ nat
natIs

Γ ` s(n) ∈ nat

The type nat we are trying to define already occurs in the premise! So it may
be better to think of this rule as a formation rule for the successor operation on
natural numbers, rather than an introduction rule for natural numbers.

Returning to the less-than relation, we have to derive the elimination rules.
What can we conclude from Γ ` m < n true? Since there are two introduction
rules, we could try our previous approach and distinguish cases for the proof of
that judgment. This, however, is somewhat awkward in this case—we postpone
discussion of this option until later. Instead of distinguishing cases for the proof
of the judgment, we distinguish cases for m and n. In each case, we analyse
how the resulting judgment could be proven and write out the corresponding
elimination rule. First, if n is zero, then the judgment can never have a normal
proof, since no introduction rule applies. Therefore we are justified in concluding
anything, as in the elimination rule for falsehood.

Γ ` m < 0 true
<E0

Γ ` C true

If the m = 0 and n = s(n′), then it could be inferred only by the first introduc-
tion rule <I0. This yields no information, since there are no premises to this
rule. This is just as in the case of the true proposition >.
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The last remaining possibility is that both m = s(m′) and n = s(n′). In
that case we now that m′ < n′, because <Is is the only rule that could have
been applied.

Γ ` s(m′) < s(n′) true
<Es

Γ ` m′ < n′ true

We summarize the formation, introduction, and elimination rules.

Γ ` n ∈ nat Γ ` m ∈ nat
<F

Γ ` n < m prop

<I0
Γ ` 0 < s(n) true

Γ ` m < n true
<Is

Γ ` s(m) < s(n) true

Γ ` m < 0 true
<E0

Γ ` C true

no rule for 0 < s(n′)
Γ ` s(m′) < s(n′) true

<Es

Γ ` m′ < n′ true

Now we can prove some simple relations between natural numbers. For
example:

<I0
· ` 0 < s(0) true

<Is
· ` 0 < s(s(0)) true

We can also establish some simple parametric properties of natural numbers.

u
m ∈ nat,m < 0 true ` m < 0 true

<E0

m ∈ nat,m < 0 true ` ⊥ true
⊃Iu

m ∈ nat ` ¬(m < 0) true

In the application of the <E0 rule, we chose C = ⊥ in order to complete the
proof of ¬(m < 0). Even slightly more complicated properties, such as m <
s(m) require a proof by induction and are therefore postponed until Section 3.10.

We introduce one further relation between natural numbers, namely equality.
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We write m =
N

n. Otherwise we follow the blueprint of the less-than relation.

Γ ` m ∈ nat Γ ` n ∈ nat
=

N
F

Γ ` m =
N

n prop

=
N
I0

Γ ` 0 =
N
0 true

Γ ` m =
N

n true
=

N
Is

Γ ` s(m) =
N
s(n) true

no =
N
E00 elimination rule

Γ ` 0 =
N
s(n) true

=
N
E0s

Γ ` C true

Γ ` s(m) =
N
0 true

=
N
Es0

Γ ` C true

Γ ` s(m) =
N
s(n) true

=
N
Ess

Γ ` m =
N

n true

Note the difference between the function

eq ∈ nat→nat→bool

and the proposition
m =

N
n

The equality function provides a computation on natural numbers, always re-
turning true or false. The proposition m =

N
n requires proof. Using induction,

we can later verify a relationship between these two notions, namely that eq nm
reduces to true if m =

N
n is true, and eq nm reduces to false if ¬(m =

N
n).

3.10 Induction

Now that we have introduced the basic propositions regarding order and equal-
ity, we can consider induction as a reasoning principle. So far, we have consid-
ered the following elimination rule for natural numbers:

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natE

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

This rule can be applied if we can derive t ∈ nat from our assumptions and we
are trying to construct a term s ∈ τ . But how do we use a variable or term
t ∈ nat if the judgment we are trying to prove has the form M : A, that is, if
we are trying the prove the truth of a proposition? The answer is induction.
This is actually very similar to primitive recursion. The only complication is
that the proposition A we are trying to prove may depend on t. We indicate
this by writing A(x) to mean the proposition A with one or more occurrences of
a variable x. A(t) is our notation for the result of substituting t for x in A. We
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could also write [t/x]A, but this is more difficult to read. Informally, induction
says that in order to prove A(t) true for arbitrary t we have to prove A(0) true
(the base case), and that for every x ∈ nat, if A(x) true then A(s(x)) true.

Formally this becomes:

Γ ` t ∈ nat Γ ` A(0) true Γ, x ∈ nat, A(x) true ` A(s(x)) true
natE′

Γ ` A(t) true

Here, A(x) is called the induction predicate. If t is a variable (which is
frequently the case) it is called the induction variable. With this rule, we can
now prove some more interesting properties. As a simple example we show that
m < s(m) true for any natural number m. Here we use D to stand for the
derivation of the third premise in order to overcome the typesetting difficulties.

D =
m ∈ nat, x ∈ nat, x < s(x) true ` x < s(x) true

<Is
m ∈ nat, x ∈ nat, x < s(x) true ` s(x) < s(s(x))

m ∈ nat ` m ∈ nat
<I0

m ∈ nat ` 0 < s(0) D
natE′

m ∈ nat ` m < s(m)

The property A(x) appearing in the induction principle is A(x) = x < s(x). So
the final conclusion is A(m) = m < s(m). In the second premise we have to
prove A(0) = 0 < s(0) which follows directly by an introduction rule.

Despite the presence of the induction rule, there are other properties we
cannot yet prove easily since the logic does not have quantifiers. An example is
the decidability of equality: For any natural numbers m and n, either m =

N
n

or ¬(m =
N

n). This is an example of the practical limitations of quantifier-free
induction, that is, induction where the induction predicate does not contain any
quantifiers.

The topic of this chapter is the interpretation of constructive proofs as pro-
grams. So what is the computational meaning of induction? It actually corre-
sponds very closely to primitive recursion.

Γ ` t ∈ nat Γ `M : A(0) Γ, x ∈ nat, u(x):A(x) ` N : A(s(x))
natE′

Γ ` ind t of u(0)⇒M | u(s(x))⇒ N : A(t)

Here, u(x) is just the notation for a variable which may occur in N . Note that u
cannot occur in M or in N in any other form. The reduction rules are precisely
the same as for primitive recursion.

(ind 0 of u(0)⇒M | u(s(x))⇒ N) =⇒ M
(ind s(n) of u(0)⇒M | u(s(x))⇒ N) =⇒
[(ind n of u(0)⇒M | u(s(x))⇒ N)/u(n)] [n/x]N
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We see that primitive recursion and induction are almost identical. The
only difference is that primitive recursion returns an element of a type, while
induction generates a proof of a proposition. Thus one could say that they are
related by an extension of the Curry-Howard correspondence. However, not
every type τ can be naturally interpreted as a proposition (which proposition,
for example, is expressed by nat?), so we no longer speak of an isomorphism.

We close this section by the version of the rules for the basic relations be-
tween natural numbers that carry proof terms. This annotation of the rules is
straightforward.

Γ ` n ∈ nat Γ ` m ∈ nat
<F

Γ ` n < m prop

<I0
Γ ` lt0 : 0 < s(n)

Γ `M : m < n
<Is

Γ ` lts(M) : s(m) < s(n)

Γ `M : m < 0
<E0

Γ ` ltE0(M) : C

no rule for 0 < s(n′)
Γ `M : s(m′) < s(n′)

<Es

Γ ` ltEs(M) : m′ < n′

Γ ` m ∈ nat Γ ` n ∈ nat
=

N
F

Γ ` m =
N

n prop

=
N
I0

Γ ` eq
0
: 0 =

N
0

Γ `M : m =
N

n
=

N
Is

Γ ` eqs(M) : s(m) =
N
s(n)

no =
N
E00 elimination rule

Γ `M : 0 =
N
s(n)

=
N
E0s

Γ ` eqE
0s(M) : C

Γ `M : s(m) =
N
0
=

N
Es0

Γ ` eqEs0(M) : C

Γ `M : s(m) =
N
s(n)

=
N
Ess

Γ ` eqEss(M) : m =
N

n
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Chapter 4

First-Order Logic and Type

Theory

In the first chapter we developed the logic of pure propositions without reference
to data types such as natural numbers. In the second chapter we explained the
computational interpretation of proofs, and, separately, introduced several data
types and ways to compute with them using primitive recursion.

In this chapter we will put these together, which allows us to reason about
data and programs manipulating data. In other words, we will be able to prove
our programs correct with respect to their expected behavior on data. The
principal means for this is induction, introduced at the end of the last chapter.
There are several ways to employ the machinery we will develop. For example,
we can execute proofs directly, using their interpretation as programs. Or we
can extract functions, ignoring some proof objects that have are irrelevant with
respect to the data our programs return. That is, we can contract proofs to
programs. Or we can simply write our programs and use the logical machinery
we have developed to prove them correct.

In practice, there are situations in which each of them is appropriate. How-
ever, we note that in practice we rarely formally prove our programs to be
correct. This is because there is no mechanical procedure to establish if a given
programs satisfies its specification. Moreover, we often have to deal with input
or output, with mutable state or concurrency, or with complex systems where
the specification itself could be as difficult to develop as the implementation.
Instead, we typically convince ourselves that central parts of our program and
the critical algorithms are correct. Even if proofs are never formalized, this
chapter will help you in reasoning about programs and their correctness.

There is another way in which the material of this chapter is directly relevant
to computing practice. In the absence of practical methods for verifying full
correctness, we can be less ambitious by limiting ourselves to program properties
that can indeed be mechanically verified. The most pervasive application of
this idea in programming is the idea of type systems. By checking the type
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correctness of a program we fall far short of verifying it, but we establish a kind of
consistency statement. Since languages satisfy (or are supposed to satisfy) type
preservation, we know that, if a result is returned, it is a value of the right type.
Moreover, during the execution of a program (modelled here by reduction),
all intermediate states are well-typed which prevents certain absurd situations,
such as adding a natural number to a function. This is often summarized in the
slogan that “well-typed programs cannot go wrong”. Well-typed programs are
safe in this respect. In terms of machine language, assuming a correct compiler,
this guards against irrecoverable faults such as jumping to an address that does
not contain valid code, or attempting to write to inaccessible memory location.

There is some room for exploring the continuum between types, as present
in current programming languages, and full specifications, the domain of type
theory. By presenting these elements in a unified framework, we have the basis
for such an exploration.

We begin this chapter with a discussion of the universal and existential
quantifiers, followed by a number of examples of inductive reasoning with data
types.

4.1 Quantification

In this section, we introduce universal and existential quantification. As usual,
we follow the method of using introduction and elimination rules to explain
the meaning of the connectives. First, universal quantification, written as
∀x∈τ. A(x). For this to be well-formed, the body must be well-formed under
the assumption that x is a variable of type τ .

τ type Γ, x∈τ ` A(x) prop
∀F

Γ ` ∀x∈τ. A(x) prop

For the introduction rule we require that A(x) be valid for arbitrary x. In other
words, the premise contains a parametric judgment.

Γ, x∈τ ` A(x) true
∀I

Γ ` ∀x∈τ. A(x) true

If we think of this as the defining property of universal quantification, then a
verification of ∀x∈τ. A(x) describes a construction by which an arbitrary t ∈ τ
can be transformed into a proof of A(t) true.

Γ ` ∀x∈τ. A(x) true Γ ` t ∈ τ
∀E

Γ ` A(t) true

We must verify that t ∈ τ so that A(t) is a proposition. We can see that the
computational meaning of a proof of ∀x∈τ. A(x) true is a function which, when
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given an argument t of type τ , returns a proof of A(t). If we don’t mind over-
loading application, the proof term assignment for the universal introduction
and elimination rule is

Γ, x∈τ `M : A(x)
∀I

Γ ` λx∈τ. M : ∀x∈τ. A(x)

Γ `M : ∀x∈τ. A(x) Γ ` t ∈ τ
∀E

Γ `M t : A(t)

The computation rule simply performs the required substitution.

(λx∈τ. M) t =⇒ [t/x]M

The existential quantifier ∃x∈τ. A(x) lies at the heart of constructive math-
ematics. This should be a proposition if A(x) is a proposition under the as-
sumption that x has type τ .

τ type Γ, x∈τ ` A(x) prop
∃F

Γ ` ∃x∈τ. A(x) prop

The introduction rule requires that we have a witness term t and a proof that
t satisfies property A.

Γ ` t ∈ τ Γ ` A(t) true
∃I

Γ ` ∃x∈τ. A(x) true

The elimination rule bears some resemblance to disjunction: if we know that
we have a verification of ∃x∈τ. A(x) we do not know the witness t. As a result
we cannot simply write a rule of the form

Γ ` ∃x∈τ. A(x) true
∃E?

Γ ` t ∈ τ

since we have no way of referring to the proper t. Instead we reason as follows:
If ∃x∈τ. A(x) is true, then there is some element of τ for which A holds. Call
this element x and assume A(x). Whatever we derive from this assumption
must be true, as long as it does not depend on x itself.

Γ ` ∃x∈τ. A(x) true Γ, x∈τ, A(x) true ` C true
∃E

Γ ` C true

The derivation of the second premise is parametric in x and hypothetical in
A(x), that is, x may not occur in Γ or C.

The proof term assignment and computational contents of these rules is not
particularly difficult. The proof term for an existential introduction is a pair
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consisting of the witness t and the proof that t satisfies the stated property. The
elimination rule destructs the pair, making the components accessible.

Γ ` t ∈ τ Γ `M : A(t)
∃I

Γ ` 〈t,M〉 : ∃x∈τ. A(x)

Γ `M : ∃x∈τ. A(x) Γ, x∈τ, u:A(x) ` N : C
∃E

Γ ` let 〈x, u〉 = M in N : C

The reduction rule is straightforward, substituting both the witness and the
proof term certifying its correctness.

let〈x, u〉 = 〈t,M〉 in N =⇒ [M/u] [t/x]N

As in the case of the propositional connectives, we now consider various
interactions between quantifiers and connectives to obtain an intuition regarding
their properties. We continue to denote a proposition A that depends on a
variable x by A(x).

Our first example states that universal quantification distributes over con-
junction. In order to make it fit on the page, we have abbreviated u:∀x∈τ. A(x)∧
B(x) by u:−. Furthermore, we named the parameter introduced into the deriva-
tion a (rather than x), to emphasize the distinction between a bound variable
in a proposition and a parameter which is bound in a derivation.

u
a∈τ, u:− ` ∀x∈τ. A(x) ∧B(x) true

a
a∈τ, u:− ` a ∈ τ

∀E
u:−, a∈τ ` A(a) ∧B(a) true

∧EL
u:−, a∈τ ` A(a) true

∀Ia
u:− ` ∀x∈τ. A(x) true

⊃Iu
` (∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) true

The lists of hypotheses of the form x∈τ and u:A in each line of a natural
deduction can be reconstructed, so we will use the following abbreviated form
familiar from the early development of propositional logic.

u
∀x∈τ. A(x) ∧B(x) true

a
a ∈ τ

∀E
A(a) ∧B(a) true

∧EL
A(a) true

∀Ia
∀x∈τ. A(x) true

⊃Iu
(∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) true

From this deduction it is easy to see that

(∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) ∧ (∀x∈τ. B(x)) true
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By annotating the derivation above we can construct the following proof term
for this judgment (omitting some labels):

` λu. 〈λx∈τ. fst (ux), λx∈τ. snd (ux)〉
: (∀x∈τ. A(x) ∧B(x))⊃(∀x∈τ. A(x)) ∧ (∀x∈τ. B(x))

The opposite direction also holds, which means that we can freely move the
universal quantifier over conjunctions and vice versa. This judgment (and also
the proof above) are parametric in τ . Any instance by a concrete type for τ
will be an evident judgment. We show here only the proof term (again omitting
some labels):

` λp. λx∈τ. 〈(fst p) x, (snd p) x〉
: (∀x∈τ. A(x)) ∧ (∀x∈τ. B(x))⊃(∀x∈τ. A(x) ∧B(x))

The corresponding property for the existential quantifier allows distributing
the existential quantifier over disjunction.

(∃x∈τ. A(x) ∨B(x)) ≡ (∃x∈τ. A(x)) ∨ (∃x∈τ. B(x))

We verify one direction.

u
∃x∈τ. A(x) ∨B(x) true

D
(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

∃Ea,w

(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true
⊃Iu

(∃x∈τ. A(x) ∨B(x))⊃(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

where the deduction D is the following

w
A(a) ∨B(a) true

a
a ∈ τ

v1

A(a) true
∃I

∃x∈τ. A(x) true
∨IL

(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true
...

∨Ev1,v2

(∃x∈τ. A(x)) ∨ (∃x∈τ. B(x)) true

The omitted derivation of the second case in the disjunction elimination is sym-
metric to the given case and ends in ∨IR.

It is important to keep in mind the restriction on the existential elimination
rule, namely that the parameter must be new in the second premise. The
following is an incorrect derivation:

a?
a ∈ nat

natIs
s(a) ∈ nat

u
∃x∈nat. A(s(x)) true

w
A(s(a)) true

∃Ea,w?
A(s(a)) true

∃I
∃y∈nat. A(y) true

⊃Iu
(∃x∈nat. A(s(x)))⊃∃y∈nat. A(y) true
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The problem can be seen in the two questionable rules. In the existential in-
troduction, the term a has not yet been introduced into the derivation and its
use can therefore not be justified. Related is the incorrect application of the ∃E
rule. It is supposed to introduce a new parameter a and a new assumption w.
However, a occurs in the conclusion, invalidating this inference.

In this case, the flaw can be repaired by moving the existential elimination
downward, in effect introducing the parameter into the derivation earlier (when
viewed from the perspective of normal proof construction).

u
∃x∈nat. A(s(x)) true

a
a ∈ nat

natIs
s(a) ∈ nat

w
A(s(a)) true

∃I
∃y∈nat. A(y) true

∃Ea,w

∃y∈nat. A(y) true
⊃Iu

(∃x∈nat. A(s(x)))⊃∃y∈nat. A(y) true

Of course there are other cases where the flawed rule cannot be repaired. For ex-
ample, it is easy to construct an incorrect derivation of (∃x∈τ. A(x))⊃∀x∈τ. A(x).

4.2 First-Order Logic

First-order logic, also called the predicate calculus, is concerned with the study
of propositions whose quantifiers range over a domain about which we make
no assumptions. In our case this means we allow only quantifiers of the form
∀x∈τ. A(x) and ∃x∈τ. A(x) that are parametric in a type τ . We assume only
that τ type, but no other property of τ . When we add particular types, such as
natural numbers nat or lists τ list, we say that we reason within specific theories.
The theory of natural numbers, for example, is called arithmetic. When we
allow essentially arbitrary propositions and types explained via introduction
and elimination constructs (including function types, product types, etc.) we
say that we reason in type theory. It is important that type theory is open-ended:
we can always add new propositions and new types and even new judgment
forms, as long as we can explain their meaning satisfactorily. On the other
hand, first-order logic is essentially closed: when we add new constructs, we
work in other theories or logics that include first-order logic, but we go beyond
it in essential ways.

We have already seen some examples of reasoning in first-order logic in the
previous section. In this section we investigate the truth of various other propo-
sitions in order to become comfortable with first-order reasoning. Just like
propositional logic, first-order logic has both classical and constructive variants.
We pursue the constructive or intuitionistic point of view. We can recover classi-
cal truth either via an interpretation such as Gödel’s translation1, or by adding

1detailed in a separate note by Jeremy Avigad

Draft of January 9, 2003



4.2 First-Order Logic 65

the law of excluded middle. The practical difference at the first-order level is
the interpretation of the existential quantifier. In classical logic, we can prove
a proposition ∃x∈τ. A(x) true by proving ¬∀x∈τ. ¬A(x) true instead. Such a
proof may not yield the witness object t such that A(t) is satisfied, which is
required under the constructive interpretation of the existential quantifier. But
how is it possible to provide witnesses in pure logic, without any assumptions
about the domain of quantifiers? The answer is that assumptions about the
existence of objects will be introduced locally during the proof. But we have to
be careful to verify that the objects we use to witness existential quantifiers or
instantiate universal quantifiers are indeed assumed to exist and are available
at the right point in the derivation.

As a first concrete example, we investigate the interaction between negation
and quantification. We prove

(∃x∈τ. ¬A(x))⊃¬∀x ∈ τ. A(x) true.

The subject of the judgment above is a proposition, assuming τ type and x∈τ `
A(x) prop. Since all quantifiers range over the same type τ , we will omit the
type label from quantification in all propositions below. The reader should keep
in mind that this is merely a shorthand. Furthermore, we will not explicitly
state the assumption about the propositional or predicate parameters such as
A(x).

u
∃x. ¬A(x)

w
¬A(c)

v
∀x. A(x)

c
c ∈ τ

∀E
A(c)

⊃E
⊥
∃Ec,w

⊥
⊃Iv

¬∀x. A(x)
⊃Iu

(∃x. ¬A(x))⊃¬∀x. A(x)

The two-dimensional notation for derivations becomes difficult to manage
for large proofs, so we extend the linear notation from Section 2.8. We use the
following concrete syntax.

∀x∈τ. A(x) !x:t. A(x)

∃x∈τ. A(x) ?x:t. A(x)

c ∈ τ c : t

The quantifiers ∀ and ∃ act like a prefix operator with minimal binding
strength, so that

∀x∈τ. A(x)⊃B

is the same as
∀x∈τ. (A(x)⊃B).

One complication introduced by existential quantification is that the elimina-
tion rule introduces two new assumptions, c ∈ τ and A(c) true. In order to
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distinguish between inferred and assumed judgments, new assumptions are sep-
arated by commas and terminated by semi-colon. Under these conventions, the
four rules for quantification take the following form:

Introduction Elimination

c : t; ?x:t. A(x);

A(c); [c : t, A(c);

?x:t. A(x); . . . ;
B];

B;

[c : t; !x:t. A(x);

. . . ; c : t;

A(c)]; A(c);

!x:t. A(x)

We use c as a new parameter to distinguish parameters more clearly from
bound variables. Their confusion is a common source of error in first-order
reasoning. And we have the usual assumption that the name chosen for c must
be new (that is, may not occur in A(x) or B) in the existential elimination and
universal introduction rules.

Below we restate the proof from above in the linear notation.

[ ?x:t. ~A(x);

[ !x:t. A(x);

[ c : t, ~A(c);

A(c);

F ];

F ];

~!x:t. A(x) ];

(?x:t. ~A(x)) => ~!x:t. A(x);

The opposite implication does not hold: even if we know that it is impos-
sible that A(x) is true for every x, this does not necessarily provide us with
enough information to obtain a witness for ∃x. A(x). In order to verify that
this cannot be proven without additional information about A, we need to ex-
tend our notion of normal and neutral proof. This is straightforward—only the
existential elimination rule requires some thought. It is treated in analogy with
disjunction.

Γ, c∈τ ` A(c) ↑
∀I

Γ ` ∀x∈τ. A(x) ↑

Γ ` ∀x∈τ. A(x) ↓ Γ ` t ∈ τ
∀E

Γ ` A(t) ↓

Γ ` t ∈ τ Γ ` A(t) ↑
∃I

Γ ` ∃x∈τ. A(x) ↑

Γ ` ∃x∈τ. A(x) ↓ Γ, c∈τ, A(c) ↓ ` C ↑
∃E

Γ ` C ↑
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In the case of pure first-order logic (that is, quantification is allowed only
over one unknown type τ), normal proofs remain complete. A correspondingly
strong property fails for arithmetic, that is, when we allow the type nat. This
situation is familiar from mathematics, where we often need to generalize the
induction hypothesis in order to prove a theorem. This generalization means
that the resulting proof does not have a strong normality property. We will
return to this topic in the next section.

Now we return to showing that (¬∀x. A(x))⊃∃x. ¬A(x) true is not deriv-
able. We search for a normal proof, which means the first step in the bottom-up
construction is forced and we are in the state

u
¬∀x. A(x) ↓

...

∃x. ¬A(x) ↑
⊃Iu

(¬∀x. A(x))⊃∃x. ¬A(x) ↑

At this point it is impossible to apply the existential introduction rule, because
no witness object of type τ is available. So we can only apply the implication
elimination rule, which leads us to the following situation.

u
¬∀x. A(x) ↓

u
¬∀x. A(x) ↓

...

∀x. A(x) ↑
⊃E

⊥ ↓
⊥E

∃x. ¬A(x) ↑
⊃Iu

(¬∀x. A(x))⊃∃x. ¬A(x) ↑

Now we can either repeat the negation elimination (which leads nowhere), or
use universal introduction.

u
¬∀x. A(x) ↓

u
¬∀x. A(x) ↓

c
c ∈ τ

...

A(c) ↑
∀Ic

∀x. A(x) ↑
⊃E

⊥ ↓
⊥E

∃x. ¬A(x) ↑
⊃Iu

(¬∀x. A(x))⊃∃x. ¬A(x) ↑

The only applicable rule for constructing normal deductions now is again the
implication elimination rule, applied to the assumption labelled u. This leads to
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the identical situation, except that we have an additional assumption d ∈ τ and
try to prove A(d) ↑. Clearly, we have made no progress (since the assumption
c ∈ τ is now useless). Therefore the given proposition has no normal proof and
hence, by the completeness of normal proofs, no proof.

As a second example, we see that (∀x. A(x))⊃∃x. A(x) true does not have
a normal proof. After one forced step, we have to prove

∀x. A(x) ↓
...

∃x. A(x) ↑

At this point, no rule is applicable, since we cannot construct any term of type
τ . Intuitively, this should make sense: if the type τ is empty, then we cannot
prove ∃x∈τ. A(x) since we cannot provide a witness object. Since we make no
assumptions about τ , τ may in fact denote an empty type (such as 0), the above
is clearly false.

In classical first-order logic, the assumption is often made that the domain of
quantification is non-empty, in which case the implication above is true. In type
theory, we can prove this implication for specific types that are known to be
non-empty (such as nat). We can also model the standard assumption that the
domain is non-empty by establishing the corresponding hypothetical judgment:

c ∈ τ ` (∀x∈τ. A(x))⊃∃x∈τ. A(x)

We just give this simple proof in our linear notation.

[ c : t;

[ !x:t. A(x);

A(c);

?x:t. A(x) ];

(!x:t. A(x)) => ?x:t. A(x)];

We can also discharge this assumption to verify that

∀y. ((∀x. A(x))⊃∃x. A(x)) true

without any additional assumption. This shows that, in general, ∀y. B is not
equivalent to B, even if y does not occur in B! While this may be counterin-
tuitive at first, the example above shows why it must be the case. The point is
that while y does not occur in the proposition, it does occur in the proof and
can therefore not be dropped.
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4.3 Arithmetic

We obtain the system of first-order arithmetic if we restrict quantifiers to el-
ements of type nat. Recall the induction principle for natural numbers and
the rules for equality n =

N
m and the less-than relation n < m summarized in

Section 3.10.
As a reminder, we will prove some frequently needed properties of equality.

The first is reflexivity of equality.

∀x∈nat. x =
N

x

We first give the informal proof, then its translation into a formal proof language.

Proof: The proof is by induction on x.

Case: x = 0. Then 0 =
N
0 by rule =

N
I0.

Case: x = s(x′). Then

x′ =
N

x′ by induction hypothesis
s(x′) =

N
s(x′) by rule =

N
Is.

2

As a formal proof in linear format:

[ x : nat; % assumption

0 = 0; % by =I0 (base case)

[x’ : nat, x’ = x’; % assumptions

s(x’) = s(x’)]; % by =Is (induction step)

x = x ]; % by induction on x

!x:nat. x = x; % by !I

We can also write out the proof term that corresponds to the proof above.

refl : ∀x∈nat. x =
N

x
= λx∈nat. rec x

of r(0)⇒ eq
0

| r(s(x′))⇒ eqs(r(x
′))

As a second example, we consider transitivity of equality.

∀x∈nat. ∀y∈nat. ∀z∈nat. x =
N

y⊃ y =
N

z⊃x =
N

z

This time we will give the proof in three forms: as an informal mathematical
proof, as a formal proof in linear form, and as an equational specification proof
term.

Proof: The proof is by induction on x. We need to distinguish
subcases on y and z.
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Case: x = 0. Then we distinguish subcases on y.

Case: y = 0. Then we distinguish subcases on z.

Case: z = 0. Then 0 =
N
0 by rule =

N
I0.

Case: z = s(z′). Then y =
N

z is impossible by rule
=

N
E0s.

Case: y = s(y′). Then x =
N

y is impossible by rule =
N
E0s.

Case: x = s(x′). We assume the induction hypothesis

∀y∈nat. ∀z∈nat. x′ =
N

y⊃ y =
N

z⊃x′ =
N

z

and distinguish subcases on y.

Case: y = 0. Then x =
N

y is impossible by rule =
N
E0s.

Case: y = s(y′). Then we distinguish subcases on z.

Case: z = 0. Then y =
N

z is impossible by rule =
N
Es0.

Case: z = s(z′). Then we assume s(x′) =
N
s(y′) and

s(y′) =
N
s(z′) and have to show that s(x′) =

N
s(z′).

We continue:

x′ =
N

y′ by rule =
N
Ess

y′ =
N

z′ by rule =
N
Ess

x′ =
N

z′ by universal and implication eliminations
from induction hypothesis

s(x′) =
N
s(z′) by rule =

N
Is.

2

The formal proof of transitivity is a good illustration why mathematical
proofs are not written as natural deductions: the granularity of the steps is too
small even for relatively simple proofs.

[ x : nat;

[ y : nat;

[ z : nat;

[ 0 = 0;

[ 0 = 0;

0 = 0 ]; % eqI0

0 = 0 => 0 = 0 ];

0 = 0 => 0 = 0 => 0 = 0; % case (z = 0)

[ z’ : nat, 0 = 0 => 0 = z’ => 0 = z’;

[ 0 = 0;

[ 0 = s(z’);

0 = s(z’) ]; % eqE0s

0 = s(z’) => 0 = s(z’) ];

0 = 0 => 0 = s(z’) => 0 = s(z’) ]; % case (z = s(z’))

0 = 0 => 0 = z => 0 = z ];

!z:nat. 0 = 0 => 0 = z => 0 = z; % case (y = 0)

[ y’ : nat, !z:nat. 0 = y’ => y’ = z => 0 = z;

Draft of January 9, 2003



4.3 Arithmetic 71

[ z : nat;

[ 0 = s(y’);

[ s(y’) = z;

0 = z ]; % eqE0s

s(y’) = z => 0 = z ];

0 = s(y’) => s(y’) = z => 0 = z ];

!z:nat. 0 = s(y’) => s(y’) = z => 0 = z ]; % case (y = s(y’))

!z:nat. 0 = y => y = z => 0 = z ];

!y:nat. !z:nat. 0 = y => y = z => 0 = z; % base case (x = 0)

[ x’ : nat, !y:nat. !z:nat. x’ = y => y = z => x’ = z; % ind hyp (x)

[ y : nat;

[ z : nat;

[ s(x’) = 0;

[ 0 = z;

s(x’) = z ]; % eqEs0

0 = z => s(x’) = z ];

s(x’) = 0 => 0 = z => s(x’) = z ];

!z:nat. s(x’) = 0 => 0 = z => s(x’) = z; % case (y = 0)

[ y’ : nat, !z:nat. s(x’) = y’ => y’ = z => s(x’) = z;

[ z : nat;

[ s(x’) = s(y’);

[ s(y’) = 0;

s(x’) = 0 ]; % eqEs0

s(y’) = 0 => s(x’) = 0 ];

s(x’) = s(y’) => s(y’) = 0 => s(x’) = 0; % case (z = 0)

[ z’ : nat, s(x’) = s(y’) => s(y’) = z’ => s(x’) = z’;

[ s(x’) = s(y’);

[ s(y’) = s(z’);

x’ = y’; % eqEss

y’ = z’; % eqEss

!z:nat. x’ = y’ => y’ = z => x’ = z;

x’ = y’ => y’ = z’ => x’ = z’;

y’ = z’ => x’ = z’;

x’ = z’;

s(x’) = s(z’) ]; % eqIs

s(y’) = s(z’) => s(x’) = s(z’) ];

s(x’) = s(y’) => s(y’) = s(z’) => s(x’) = s(z’) ];

s(x’) = s(y’) => s(y’) = z => s(x’) = z ];

!z:nat. s(x’) = s(y’) => s(y’) = z => s(x’) = z ]; % case (y = s(y’))

!z:nat. s(x’) = y => y = z => s(x’) = z ];

!y:nat. !z:nat. s(x’) = y => y = z => s(x’) = z ]; % ind step (x = s(x’))

!y:nat. !z:nat. x = y => y = z => x = z ];

!x:nat. !y:nat. !z:nat. x = y => y = z => x = z;
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Instead of giving the proof term in full, we give its specification. Recall that

trans : ∀x∈nat. ∀y∈nat. ∀z∈nat. x =
N

y⊃ y =
N

z⊃x =
N

z

and therefore trans is a function of five arguments: natural numbers x, y, and
z and proof terms u:x =

N
y and w:y =

N
z. It has to return a proof term

M : x =
N

z. The proof above corresponds to the following specification.

trans 0 0 0 u w = eq
0

trans 0 0 (s(z′)) u w = eqE
0s(w)

trans 0 (s(y′)) z u w = eqE
0s(u)

trans (s(x′)) 0 z u w = eqEs0(u)
trans (s(x′)) (s(y′)) 0 u w = eqEs0(w)
trans (s(x′)) (s(y′)) (s(z′)) u w =

eqs(trans x
′ y′ z′ (eqEss(u)) (eqEss(w)))

Note that all but the first and the last case are impossible, for which we provide
evidence by applying the right elimination rule to either u or w. We can also see
that the first argument to the recursive call to trans is at x′ and the specificaton
above therefore satisfies the restriction on primitive recursion. By comparing
this to the formal proof (and also the omitted proof term) we can see the pro-
gramming with equational specifications of this kind is much simpler and more
concise than many other representations. There is ongoing research on directly
verifying and compiling specifications, which is close to actual programming
practice in languages such as ML or Haskell.

Symmetry of equality can be proven in a similar way. This proof and the
corresponding specification and proof term are left as an exercise to the reader.

A second class of example moves us closer the extraction of functional pro-
grams on natural numbers from constructive proofs. Keeping in mind the con-
structive interpretation of the existential quantifier, how could we specify the
predecessor operation? There are many possible answers to this. Here we would
like express that the predecessor should only be applied to positive natural num-
bers.

∀x∈nat. ¬x =
N
0⊃∃y∈nat. s(y) =

N
x

We can prove this by cases on x. Formally, this takes the form of an induction
in which the induction hypothesis is not used.

Proof: The proof proceeds by cases on x.

Case: x = 0. Then the assumption ¬0 =
N
0 is contradictory.

Case: x = s(x′). Assume ¬s(x′) =
N

0. We have to show that
∃y∈nat. s(y) =

N
s(x′). This follows with the witness x′ for y

since s(x′) =
N
s(x′) by reflexivity of equality.

2

Here is the same proof in the linear notation for natural deductions.
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[ x : nat;

[ ~ 0 = 0;

0 = 0;

F;

?y:nat. s(y) = 0 ];

~ 0 = 0 => ?y:nat. s(y) = 0; % case (x = 0)

[ x’ : nat, ~ x’ = 0 => ?y:nat. s(y) = x’;

[ ~ s(x’) = 0;

!z:nat. z = z; % reflexivity lemma

s(x’) : nat;

s(x’) = s(x’);

?y:nat. s(y) = s(x’) ];

~ s(x’) = 0 => ?y:nat. s(y) = s(x’) ]; % case (x = s(x’))

~ x = 0 => ?y:nat. s(y) = x ];

!x:nat. ~ x = 0 => ?y:nat. s(y) = x;

Next we give the equational specification of the function pred ′ corresponding
to this proof. Note that the function takes two arguments: x and a proof u of
¬x =

N
0. It returns a pair consisting of a witness n and proof that s(n) =

N
x.

pred ′ 0 u = abort(u eq
0
)

pred ′ (s(x′)) u = 〈x′, refl (s(x′))

Note that in the case of x = 0 we do not explicitly construct a pair, but
abort the computation, which may have any type. This specification can be
written as a program rather directly.

pred ′ : ∀x∈nat. ¬x =
N
0⊃∃y∈nat. s(y) =

N
x

pred ′ = λx∈nat. rec x
of f(0)⇒ (λu. abort (u eq

0
))

| f(s(x′))⇒ (λu. 〈x′, refl(s(x′))〉)

If we erase the parts of this term that are concerned purely with propositions
and leave only data types we obtain

pred ′ = λx∈nat. rec x
of f(0)⇒
| f(s(x′))⇒ x′

which is close to our earlier implementation of the predecessor. Erasing the
abort clause from the impossible case has left a hole, which we denoted by .
We return to a more detailed specification of this erasure process in the next
section.

First, we discuss and alternative way to connect arithmetic to functional
programming. This is to write the program first and prove its properties. Recall
the definition of pred :

pred = λx∈nat. rec x
of f(0)⇒ 0
| f(s(x′))⇒ x′
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Now we can prove that

∀x ∈ nat. ¬x =
N
0⊃ s(pred(x)) =

N
x

Proof: The proof is by cases over x.

Case: x = 0. Then ¬0 =
N
0 is contradictory.

Case: x = s(x′). Then

s(pred(s(x′)))
=⇒ s(rec s(x′)

of f(0)⇒ 0
| f(s(x′))⇒ x′)

=⇒ s(x′)

and s(x′) =
N
s(x′) by reflexivity.

2

This shows that we must be able to use the rules of computation when
reasoning about functions. This is not a property particular to natural numbers,
but we might have to reason about functions at arbitrary types or proofs of
arbitrary propositions. Reduction therefore has to be an integral part of the
type theory. We will use two rules of the form

Γ `M : A A =⇒ A′ Γ ` A prop
conv

Γ `M : A′

Γ `M : A′ A =⇒ A′ Γ ` A prop
conv ′

Γ `M : A

where A =⇒ A′ allows the reduction of a term occurring in A. A unified
form of this rule where A⇐⇒ A′ allows an arbitrary number of reduction and
expansion steps in both directions is called type conversion. While reduction
generally preserves well-formedness (see Theorem 3.1), the converse does not.
Generally, this is implied either from the premise or the conclusion, depending
on whether we are reasoning backward or forward. Note that the conversion
rules are “silent” in that the proof term M does not change.

In the formal proof, computations are omitted. They are carried out implic-
itly by the type checker. The question whether the resulting checking problem
is decidable varies, depending on the underlying notion of computation. We
return to this question when discussing the operational semantics in Section ??.
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We close this section with the formal version of the proof above. Note the
use of the conversion rule conv ′.

[ x : nat;

[ ~ 0 = 0; 0 = 0; F;

s(pred(0)) = 0 ];

~ 0 = 0 => s(pred(0)) = 0; % case (x = 0)

[ x’ : nat, ~ x’ = 0 => s(pred(x’)) = x’;

[ ~ s(x’) = 0;

!z:nat. z = z; % reflexivity lemma

s(x’) : nat;

s(pred(s(x’))) = s(x’) ]; % since pred(s(x’)) ==> x’

~ s(x’) = 0 => s(pred(s(x’))) = s(x’) ]; % case (x = s(x’))

~ x = 0 => s(pred(x)) = x ];

!x:nat. ~ x = 0 => s(pred(x)) = x

4.4 Contracting Proofs to Programs

In this section we return to an early idea behind the computational interpre-
tation of constructive logic: a proof of ∀x∈τ. ∃y∈σ. A(x, y) should describe a
function f from elements of type τ to elements of type σ such that A(x, f(x))
is true for all x. The proof terms for intuitionistic logic and arithmetic do not
quite fill this role. This is because if M is a proof term for ∀x∈τ. ∃y∈σ. A(x, y),
then it describes a function that returns not only an appropriate term t, but
also a proof term that certifies A(x, t).

Thus we would like to contract proofs to programs, ignoring those parts of a
proof term that are not of interest. Of course, what is and what is not of interest
depends on the application. To illustrate this point and the process of erasing
parts of a proof term, we consider the example of even and odd numbers. We
define the addition function (in slight variation to the definition in Section 3.5)
and the predicates even and odd .

plus : nat→nat→nat
plus = λx∈nat. rec x

of p(0)⇒ λy. y
| p(s(x′))⇒ λy. s(p(x′) y)

even(x) = ∃y∈nat. plus y y =
N

x
odd(x) = ∃y∈nat. s(plus y y) =

N
x

For the rest of this section, we will use the more familiar notation m + n for
plusmn.

We can now prove that every natural number is either even or odd. First,
the informal proof. For this we need a lemma (whose proof is left to the reader)

lmps : ∀x∈nat. ∀y∈nat. x+ s(y) =
N
s(x+ y)
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Now back to the main theorem.

∀x∈nat. (∃y∈nat. y + y =
N

x) ∨ (∃y∈nat. s(y + y) =
N

x)

Proof: The proof is by induction on x.

Case: x = 0. Then x is even, because 0+ 0 =
N
0 by computation

and =
N
I0. The computation needed here is 0+ 0 =⇒ 0

Case: x = s(x′). By induction hypothesis we know that x′ is either
even or odd. We distinguish these two subcases.

Subcase: x′ is even, that is, ∃y∈nat. y + y =
N

x′. Let’s call
this element c. Then c+c =

N
x′ and hence s(c+c) =

N
s(x′)

by rule =
N
Is. Therefore ∃y∈nat. s(y + y) =

N
s(x′) and x

is odd.

Subcase: x′ is odd, that is, ∃y∈nat. s(y + y) =
N

x′. Let’s
call this element d. Then s(d + d) =

N
x′ and s(s(d +

d)) =
N
s(x′) by rule =

N
Is. Now, we compute s(s(d +

d)) =⇒ s(s(d) + d) and apply lemma lmps to conclude
s(d)+s(d) =

N
s(s(d+d)). By transitivity, therefore, s(d)+

s(d) =
N
s(x′). Therefore ∃y∈nat. y + y =

N
s(x′) and x is

even.

2

The proof term corresponding to this informal proof is mostly straightfor-
ward.

ev : ∀x∈nat. (∃y∈nat. y + y =
N

x) ∨ (∃y∈nat. s(y + y) =
N

x)

ev = λx. rec x
of f(0)⇒ inl〈0, eq

0
〉

| f(s(x′))⇒ case f(x′)
of inl(u)⇒ let 〈c, p〉 = u in inr〈c, eqs(p)〉
| inr(w)⇒ let 〈d, q〉 = w in inl〈s(d), r(x′, d, q)〉

Here, r(x′, d, q) is a proof term verifying that s(d) + s(d) =
N
s(x′). It uses

transitivity of equality and the lemma lmps. Its precise form is not important
for the discussion in this section—we give it here only for completeness.

r(x′, d, q) : s(d) + s(d) =
N
s(x′)

r(x′, d, q) = trans (s(d) + s(d)) (s(s(d) + d)) (s(x′)) (lmps (s(d)) d) (eqs q)

Next we consider various versions of this specification and its implementa-
tion, erasing “uninteresting” subterms. For the first version, we would like to
obtain the witnesses y∈nat in each case, but we do not want to carry the proof
that y + y =

N
x. We indicate this by bracketing the corresponding part of the

proposition.

ev1 : ∀x∈nat. (∃y∈nat. [y + y =
N

x]) ∨ (∃y∈nat. [s(y + y) =
N

x])
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We then bracket the corresponding parts of the proof term. Roughly, every
subterm whose type has the form [A] should be bracketed, including variables
whose type has this form. The intent is that these subterms will be completely
erased before the program is run. In the case of the annotation above we obtain:

ev1 : ∀x∈nat. (∃y∈nat. [y + y =
N

x]) ∨ (∃y∈nat. [s(y + y) =
N

x])
ev1 = λx. rec x

of f(0)⇒ inl〈0, [eq
0
]〉

| f(s(x′))⇒ case f(x′)
of inl(u)⇒ let 〈c, [p]〉 = u in inr〈c, [eqs(p)]〉
| inr(w)⇒ let 〈d, [q]〉 = w in inl〈s(d), [r(x′, d, q)]〉

Not every possible bracket annotation of a term is correct. A formal treat-
ment of which bracket annotations are valid is beyond the scope of these notes.
However, the main rule is easy to state informally:

Bracketed variables [x] may occur only inside brackets [. . . x . . .].

This is because bracketed variables are erased before execution of the program.
Therefore, an occurrence of a bracketed variable in a term that is not erased
would lead to a runtime error, since the corresponding value would not be
available. We refer to variables of this form as hidden variables.

In the example above, [p] and [q] are the only hidden variables. Our restric-
tion is satisfied: p occurs only in [eqs(p)] and q only in [r(x′, d, q)].

The actual erasure can be seen as proceding in three steps. In the first step,
we replace every bracketed proposition [A] by > and every subterm [M ] by
its proof term 〈 〉. Furthermore, every bracketed variable [u] is replaced by an
anonymous variable , since this variable is not supposed to occur after erasure.
We obtain:

ev1 : ∀x∈nat. (∃y∈nat. >) ∨ (∃y∈nat. >)
ev1 = λx. rec x

of f(0)⇒ inl〈0, 〈 〉〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ let 〈c, 〉 = u in inr〈c, 〈 〉〉
| inr(w)⇒ let 〈d, 〉 = w in inl〈s(d), 〈 〉〉

In the second step we perform simplifications to obtain a function purely
operating on data types. For this we have to recall that, under the Curry-
Howard isomorphism, for example > is interpreted as the unit type 1, and that
disjunction A ∨B is interpreted as a disjoint sum type τ +σ.

What happens to universal and existential quantification? Recall that the
proof term for ∀x∈nat. A(x) is a function which maps every natural number
n to a proof term for A(n). When we erase all proof terms, n cannot actually
occur in the result of erasing A(n) and the result has the form nat→ τ , where
τ is the erasure of A(x).

Similarly, a proof term for ∃x∈nat. A(x) consists of a pair 〈n,M〉, where n
is a natural number (the witness) and M is a proof term for A(n). When we
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turn propositions into types by erase, we obtain nat× τ , where τ is the erasure
of A(n).

Applying this translation operation to our proof, we obtain:

ev1 : nat→(nat×1)+(nat×1)
ev1 = λx. rec x

of f(0)⇒ inl〈0, 〈 〉〉
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ inr〈fst(u), 〈 〉〉
| inr(w)⇒ inl〈s(fst(w)), 〈 〉〉

Note that our proof term changes in only two places, because the elimination
rules for existentials and pairs do not match up. In all other cases we have
overloaded our notation, precisely in anticipation of this correspondence. For
existentials, we replace

let 〈x, u〉 = M in N

by

[fst(M)/x][snd(M)/u]N

Finally, we apply some optimizations by eliminating unnecessary construc-
tions involving the unit type. We take advantage of isomorphisms such as

τ ×1 7→ τ
1× τ 7→ τ

1→ τ 7→ τ
τ→1 7→ 1

Note that 1+1 can not be simplified: it is a type with two elements, inl 〈 〉 and
inr 〈 〉.

An optimization in a type must go along with a corresponding optimization
in a term so that it remains well-typed. This is accomplished by the following
simplification rules.

〈t, s〉 ∈ τ ×1 7→ t
for t ∈ τ ×1, fst(t) ∈ τ 7→ t
for t ∈ τ ×1, snd(t) ∈ 1 7→ 〈 〉

〈s, t〉 ∈ 1× τ 7→ t
for t ∈ 1× τ , snd(t) ∈ τ 7→ t
for t ∈ 1× τ , fst(t) ∈ 1 7→ 〈 〉

(λx∈1. t) ∈ 1→ τ 7→ t
for t ∈ 1→ τ , t s ∈ τ 7→ t

(λx∈τ. t) ∈ τ→1 7→ 〈 〉
for t ∈ τ→1, t s ∈ 1 7→ 〈 〉

When we apply these transformation to our running example, we obtain
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ev1 : nat→(nat+nat)
ev1 = λx. rec x

of f(0)⇒ inl(0)
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ inr(u)
| inr(w)⇒ inl(s(w))

We can see that this function satisfies the following specification:

ev1 n = inl(n/2) if n is even
ev1 n = inr((n− 1)/2) if n is odd

So ev1(n) returns the floor of n/2, plus a tag which tells us if n was even or
odd.

The whole process by which we arrived at this function, starting from the
bracket annotation of the original specification can be done automatically by a
compiler. A similar process is used, for example, in the Coq system to extract
efficient ML functions from constructive proofs in type theory.

Returning to the original specification, assume we want to return only an
indication whether the argument is even or odd, but not the result of dividing
it by two. In that case, we bracket both existential quantifiers, in effect erasing
the witness in addition to the proof term.

ev2 : ∀x∈nat. [∃y∈nat. y + y =
N

x] ∨ [∃y∈nat. s(y + y) =
N

x]
ev2 = λx. rec x

of f(0)⇒ inl[〈0, eq
0
〉]

| f(s(x′))⇒ case f(x′)
of inl[u]⇒ let [〈c, p〉 = u] in inr[〈c, eqs(p)〉]
| inr[w]⇒ let [〈d, q〉 = w] in inl[〈s(d), r(x′, d, q)〉]

Fortunately, our restriction is once again satisfied: bracketed variables (this
time, u, c, p, w, d, q) appear only within brackets. The occurrences of c and p
in the let-expression should be considered bracketed, because u and therefore
c and p will not be carried when the program is executed. A similar remark
applies to w, d. We now skip several steps, which the reader may want to
reconstruct, to arrive at

ev2 : nat→(1+1)
ev2 = λx. rec x

of f(0)⇒ inl 〈 〉
| f(s(x′))⇒ case f(x′)

of inl ⇒ inr 〈 〉
| inr ⇒ inl 〈 〉

Note that this function simply alternates between inl 〈 〉 and inr 〈 〉 in each
recursive call, thereby keeping track if the number is even or odd. It satisfies
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ev2 n = inl 〈 〉 if n is even
ev2 n = inr 〈 〉 if n is odd

As a third modification, assume we intend to apply ev to even numbers n
to obtain n/2; if n is odd, we just want an indication that it was not even. The
annotation of the type is straightforward.

ev3 : ∀x∈nat. (∃y∈nat. [y + y =
N

x]) ∨ [∃y∈nat. s(y + y) =
N

x]

Applying our annotation algorithm to the proof term leads to the following.

ev3 = λx. rec x
of f(0)⇒ inl〈0, [eq

0
]〉

| f(s(x′))⇒ case f(x′)
of inl(u)⇒ let 〈c, [p]〉 = u in inr[〈c, eqs(p)〉]
| inr[w]⇒ let [〈d, q〉 = w] in inl〈s(d), [r(x′, d, q)]〉

But this version of ev does not satisfy our restriction: in the last line, the
hidden variable [d] occurs outside of brackets. Indeed, if we apply our technique
of erasing computationally irrelevant subterms we obtain

ev3 : nat→(nat+1)
ev3 = λx. rec x

of f(0)⇒ inl(0)
| f(s(x′))⇒ case f(x′)

of inl(u)⇒ inr〈 〉
| inr( )⇒ inl(s(d))

where d is required, but not generated by the recursive call. Intuitively, the
information flow in the program is such that, in order to compute n/2 for even
n, we must compute (n− 1)/2 for odd n.

The particular proof we had did not allow the particular bracket annotation
we proposed. However, we can give a different proof, which permits this anno-
tation. In this example, it is easier to just write the function with the desired
specification directly, using the function ev 1 which preserved the information
for the case of an odd number.

ev3 : nat→(nat+1)

ev3 n = inl(n/2) if n is even
ev3 n = inr 〈 〉 if n is odd

ev3 = λx. case ev1(x)
of inl(c)⇒ inl(c)
| inr(d)⇒ inr 〈 〉

To complete this section, we return to our example of the predecessor spec-
ification and proof.
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pred ′ : ∀x∈nat. ¬x =
N
0⊃∃y∈nat. s(y) =

N
x

pred ′ = λx∈nat. rec x
of f(0)⇒ (λu. abort (u eq

0
))

| f(s(x′))⇒ (λu. 〈x′, refl(s(x′))〉)

If we hide all proof objects we obtain:

pred ′ : ∀x∈nat. [¬x =
N
0]⊃∃y∈nat. [s(y) =

N
x]

pred ′ = λx∈nat. rec x
of f(0)⇒ (λ[u]. abort (u eq

0
))

| f(s(x′))⇒ (λ[u]. 〈x′, [refl(s(x′))]〉)

Note that this function does not satisfy our restriction: the hidden variable u
occurs outside a bracket in the case for f(0). This is because we cannot bracket
any subterm of

abort (u eq
0
) : ∃y∈nat. [s(y) =

N
0]

We conclude that our proof of pred ′ does not lend itself to the particular
given annotation. However, we can give a different proof where we supply an
arbitrary witness c for y in case x is 0 and prove that it satisfies s(y) =

N
0 by

⊥E as before. We chose c = 0.

pred ′ : ∀x∈nat. ¬x =
N
0⊃∃y∈nat. s(y) =

N
x

pred ′ = λx∈nat. rec x
of f(0)⇒ (λu. 〈0,abort (u eq

0
)〉)

| f(s(x′))⇒ (λu. 〈x′, refl(s(x′))〉)

Now annotation and extraction succeeds, yielding pred . Of course, any nat-
ural number would do for the result of pred(0)

pred ′

2
: ∀x∈nat. [¬x =

N
0]⊃∃y∈nat. [s(y) =

N
x]

pred ′

2
= λx∈nat. rec x

of f(0)⇒ (λ[u]. 〈0, [abort (u eq
0
)〉])

| f(s(x′))⇒ (λ[u]. 〈x′, [refl(s(x′))]〉)
pred : nat→nat
pred = λx∈nat. rec x

of f(0)⇒ 0
| f(s(x′))⇒ x′

The reader may test his understanding of the erasure process by transforming
pred ′

2
from above step by step into pred . It requires some of the simplifications

on function types.

4.5 Structural Induction

We now leave arithmetic, that is, the theory of natural numbers, and discuss
more general data types. We first return to lists, whose elements are drawn
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from arbitray types. The reader may wish to remind himself of the basic com-
putation constructs given in Section 3.7. We recall here only that there are two
introduction rules for lists:

listIn
Γ ` nilτ ∈ τ list

Γ ` h ∈ τ Γ ` t ∈ τ list
listIc

Γ ` h :: t ∈ τ list

In the induction principle, correspondingly, we have to account for two cases.
We first state it informally.

To prove A(l) true for an arbitrary list l, prove

1. A(nil) true and

2. A(x :: l′) true for an arbitrary x and l′, under the assumption
A(l′) true.

The first is the base case, the second the induction step. When we write this as
a formal inference rules, we obtain the analogue of primitive recursion.

Γ ` l ∈ τ list Γ ` A(nil) true Γ, x∈τ, l′∈τ list, A(l′) true ` A(x :: l′) true
listE

Γ ` A(l) true

This principle is called structural induction over lists. Our first theorem about
lists will be a simple property of the append function. In order to formulate
this property, we need equality over lists. It is defined in analogy with the
propositional equality between natural numbers, based on the structure of lists.

Γ ` l ∈ τ list Γ ` k ∈ τ list
=L F

Γ ` l =L k prop

=L In
Γ ` nil =L nil true

Γ ` l =L k true
=L Ic

Γ ` x :: l =L x :: k true

The second introduction rules requires the heads of the two lists to be identical.
We can not require them to be equal, because they are of unknown type τ and
we do not have a generic equality proposition that works for arbitrary types.
However, in this section, we are interested in proving generic properties of lists,
rather than, say, properties of integer lists. For this purpose, the introduction
rule above, and the three elimination rules below are sufficient.

Γ ` x :: l =L y :: k true
=L Ecc

Γ ` l =L k true

Γ ` nil =L y :: k true
=L Enc

Γ ` C true

Γ ` x :: l =L nil true
=L Ecn

Γ ` C true
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Note that the first elimination rule is incomplete in the sense that we also know
that x must be identical to y, but we cannot obtain this information by the rule.
A solution to this problem is beyond the scope of these notes.

It is straightforward to show that equality is reflexive, symmetric and tran-
sitive, and we will use these properties freely below.

Next we give a definition of a function to append two lists which is a slightly
modified version from that in Section 3.7.

app nil k = k
app (x :: l′) k = x :: (append l′ k)

In the notation of primitive recursion:

app ∈ τ list→ τ list→ τ list

app = λl. rec l
of f(nil)⇒ λk. k
| f(x :: l′)⇒ λk. x :: (f(l′) k)

We now prove
∀l∈τ list. app l nil =L l

Proof: By induction on the structure of l.

Case: l = nil. Then app nil nil =L nil since

app nil nil
=⇒ (rec nil

of f(nil)⇒ λk. k
| f(x :: l′)⇒ λk. x :: f(l′) k)nil

=⇒ (λk. k)nil
=⇒ nil

Case: l = x :: l′. Then app l′ nil =L l′ by induction hypothesis.
Therefore

x :: (app l′ nil) =L x :: l′

by rule =L Ic. We have to show

app (x :: l′) nil =L x :: l′.

This follows entirely by computation. Starting from the term
in the conclusion:

app (x :: l′) nil
=⇒ (rec x :: l′

of f(nil)⇒ λk. k
| f(x :: l′)⇒ λk. x :: f(l′) k)nil

=⇒ (λk. x :: (rec l′

of f(nil)⇒ λk. k
| f(x :: l′)⇒ λk. x :: f(l′) k) k)nil

=⇒ x :: (rec l′

of f(nil)⇒ λk. k
| f(x :: l′)⇒ λk. x :: f(l′) k)nil
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We arrive at the same term if we start from the induction hy-
pothesis.

x :: (app l′ nil)
=⇒ x :: (rec l′

of f(nil)⇒ λk. k
| f(x :: l′)⇒ λk. x :: f(l′) k)nil

Recall that computation is allowed in both directions (see Section 4.3),
thereby closing the gap between the induction hypothesis and the
conclusion. 2

For the next theorem, we recall the specification of the reverse function
on lists from Section 3.7, using an auxiliary function rev with an accumulator
argument a.

rev ∈ τ list→ τ list→ τ list
rev nil a = a

rev (x :: l′) a = rev l′ (x :: a)

reverse ∈ τ list→ τ list
reverse l = rev l nil

The property we will prove is the interaction between reverse and app.

∀l∈τ list. ∀k∈τ list. reverse (app l k) =L app (reverse k) (reverse l)

Based on general heuristics, an induction on l is indicated, since it allows us
to reduce in the left-hand side. However, such a proof attempt will fail. The
reason is that reverse is not itself recursive, but defined in terms of rev . In such
a situation, generalizing the induction hypothesis to express a corresponding
property of the recursive function is almost always indicated.

It is often quite difficult to find an appropriate generalization of the induction
hypothesis. It is useful to analyse the properties of rev in terms of reverse and
app. We generalize from an example

rev (1 :: 2 :: 3 :: nil) (4 :: 5 :: nil) =⇒ 3 :: 2 :: 1 :: 4 :: 5 :: nil

to conjecture that rev l k =L app (reverse l) k (omitting the quanitifers on l
and k for the sake of brevity). We may or may not need this property, but it
will help us to develop conjectures about the interaction between rev and app.
Once again, the problem with this property is that the right-hand side mentions
reverse and is not expressed in terms of rev . If we substitute the right-hand
side will be

rev l k =L app (rev l nil) k

Again this does not appear general enough, because of the occurrence of nil. If
we replace this my a new term m, we also need to modify the left-hand side.
The right generalization is suggested by our observation about the interaction
of reverse, app and rev . We obtain

∀l∈τ list. ∀m∈τ list. ∀k∈τ list. rev l (app m k) =L app (rev l m) k
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Now this can be proven by a straightforward structural induction over l. It most
natural to pick l as the induction variable here, since this allows reduction on
the right-hand side as well as the left-hand side. In general, it a good heuristic
to pick variables that permit reduction when instantiated.

Proof: By structural induction on l.

Case: l = nil. Then we get

left-hand side: rev nil (app m k) =⇒ app m k
right-hand side: app (rev nil m) k =⇒ app m k

so the equality follows by computation and reflexivity of equal-
ity.

Case: l = x::l′. It is often useful to write out the general form of the
induction hypothesis before starting the proof in the induction
step.

∀m∈τ list. ∀k∈τ list. rev l′ (app m k) =L app (rev l′ m) k

As we will see, the quantifiers over m and k are critical here.
Now we follow the general strategy to reduce the left-hand side
and the right-hand side to see if we can close the gap by using
the induction hypothesis.

lhs: rev (x :: l′) (app m k)
=⇒ rev l′ (x :: (app m k))

rhs: app (rev (x :: l′) m) k
=⇒ app (rev l′ (x ::m)) k
=L rev l′ (app (x ::m) k) by ind. hyp
=⇒ rev l′ (x :: (app m k))

So by computation and the induction hypothesis the left-hand
side and the right-hand side are equal. Note that the universal
quantifier on m in the induction hypothesis needed to be instan-
tiated by x :: m. This is a frequent pattern when accumulator
variables are involved.

2

Returning to our original question, we generalize the term on the left-hand
side, reverse (app l k), to rev (app l k) m. The appropriate generalization of
the right-hand side yields

∀l∈τ list. ∀k∈τ list. ∀m∈τ list. rev (app l k) m =L rev k (rev l m)

In this general form we can easily prove it by induction over l.

Proof: By induction over l.
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Case: l = nil. Then

lhs: rev (app nil k) m =⇒ rev k m
rhs: rev k (rev nil m) =⇒ rev k m

So the left- and right-hand side are equal by computation.

Case: l = x :: l′. Again, we write out the induction hypothesis:

∀k∈τ list. ∀m∈τ list. ∀rev (app l′ k) m =L rev k (rev l′ m)

Then
lhs rev (app (x :: l′) k) m

=⇒ rev (x :: (app l′ k)) m
=⇒ rev (app l′ k) (x ::m)

rhs rev k (rev (x :: l′) m)
=⇒ rev k (rev l′ (x ::m))

So the left- and right-hand sides are equal by computation and
the induction hypothesis. Again, we needed to use x ::m for m
in the induction hypothesis.

2

By using these two properties together we can now show that this implies
the original theorem directly.

∀l∈τ list. ∀k∈τ list. reverse (app l k) =L app (reverse k) (reverse l)

Proof: Direct, by computation and previous lemmas.

lhs reverse (app l k)
=⇒ rev (app l k) nil
=L rev k (rev l nil) by lemma

rhs app (reverse k) (reverse l)
=⇒ app (rev k nil) (rev l nil)
=L rev k (app nil (rev l nil)) by lemma
=L rev k (rev l nil)

So the left- and right-hand sides are equal by computation and the
two preceding lemmas. 2

4.6 Reasoning about Data Representations

So far, our data types have been “freely generated” from a set of constructors.
Equality on such types is structural. This has been true for natural numbers,
lists, and booleans. In practice, there are many data representation which does
not have this property. In this section we will examine two examples of this
form.
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The first is a representation of natural numbers in binary form, that is, as bit
string consisting of zeroes and ones. This representation is of course prevalent
in hardware and also much more compact than the unary numbers we have
considered so far. The length of the representation of n is logarithmic in n.
Thus, almost all work both on practical arithmetic and complexity theory uses
binary representations. The main reason to consider unary representations in
our context is the induction principle, and the connection between induction
and primitive recursion.

We define the binary numbers with three constructors. We have the empty
bit string ε, the operation of appending a 0 at the end, and the operation of
appending a 1 at the end. We write the latter two in postfix notation, following
the usual presentation of numbers as sequences of bits.

binF
Γ ` bin type

binIε
Γ ` ε ∈ bin

Γ ` b ∈ bin
binI0

Γ ` b0 ∈ bin

Γ ` b ∈ bin
binI1

Γ ` b1 ∈ bin

The schema of primitive recursion has the following form

f ε = tε
f (b0) = t0(b, f(b))
f (b1) = t1(b, f(b))

Note that f , the recursive function, can occur only applied to b in the last two
cases and not at all in the first case. It should be clear by now how to formulate
the corresponding rec term and proof term construct. The induction principle
is also straightforward.

To prove A(b) true for an arbitrary bit string b, prove

Base Case: A(ε) true.

Step Case 0: A(b′ 0) true assuming A(b′) true for an arbitrary b′.

Step Case 1: A(b′ 1) true assuming A(b′) true for an arbitrary b′.

In order to describe formally how bitstring represent natural numbers, recall
the function on natural numbers doubling its argument, specified as follows:

double ∈ nat→nat
double 0 = 0
double (s(x)) = s(s(double x))

Then we specify

tonat ∈ bin→nat
tonat ε = 0
tonat (b0) = double (tonat b)
tonat (b1) = s(double (tonat b))
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Note that this satisfies the schema of primitive recursion. Now we can see why
we think of binary numbers as satisying some non-structural equality: every
natural number has an infinite number of bit strings as representations, because
we can always add leading zeroes without changing the result of tonat . For
example,

tonat(ε1) =
N
tonat(ε01) =

N
tonat(ε001) =

N
s(0)

This has several consequences. If we think of bit strings only as a means to
represent natural numbers, we would define equality such that ε =B ε0. Sec-
ondly, we can define functions which are ill-defined as far as their interpretation
as natural numbers is concerned. For example,

flip ε = ε
flip (b0) = b1
flip (b1) = b0

may make sense intuitively, but it maps ε and ε0 to different results and thus
does not respect the intended equality.

A general mechanism to deal with such problems is to define quotient types.
This is somewhat more complicated than needed in most instances, so we will
stick to the simpler idea of just verifying that functions implement the intended
operations on natural numbers.

A simple example is the increment function inc on binary numbers. Assume
a bit string b represents a natural number n. When we can show that inc(b)
always represents s(n) we say that inc implements s. In general, a function f
implements g if f(b) represents g(n) whenever b represents n. Representation is
defined via the function tonat , so by definition f implements g if we can prove
that

∀b∈bin. tonat(f b) =
N

g(tonat b)

In our case:

∀b∈bin. tonat(inc b) =
N
s(tonat b)

The increment function is primitive recursive and defined as follows:

inc ∈ bin→bin
inc ε = ε1
inc (b0) = b1
inc (b1) = (inc b)0

Now we can prove that inc correctly implements the successor function.

∀b∈bin. tonat(inc b) =
N
s(tonat b)

Proof: By structural induction on b.
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Case: b = ε.
lhs: tonat(inc ε)

=⇒ tonat(ε1)
=⇒ s(double(tonat ε))
=⇒ s(0)

rhs: s(tonat ε) =⇒ s(0)

Case: b = b′ 0. We simply calculate left- and right-hand side with-
out appeal to the induction hypothesis.

lhs: tonat(inc(b′ 0))
=⇒ tonat(b′ 1)
=⇒ s(double(tonat b′))

rhs: s(tonat(b′ 0))
=⇒ s(double(tonat b′))

Case: b = b′ 1. In this case we need the induction hypothesis.

tonat(inc b′) =
N
s(tonat b′)

Then we compute as usual, starting from the left- and right-
hand sides.

lhs: tonat(inc(b′ 1))
=⇒ tonat((inc b′)0)
=⇒ double(tonat(inc b′))
=⇒ double(s(tonat b′)) by ind. hyp.
=⇒ s(s(double(tonat b′)))

rhs: s(tonat(b′ 1))
=⇒ s(s(double(tonat b′)))

2

The second case of the proof looks straightforward, but we have swept an
important step under the rug. The induction hypothesis had the form s =

N
t.

We used it to conclude double(s) =
N
double(t). This is a case of a general

substitution principle for equality. However, our notion of equality on natural
numbers is defined by introduction and elimination rules, so we need to justify
this principle. In general, an application of substitutivity of equality can have
one of the two forms

Γ ` m =
N

n true Γ ` A(m) true
subst

Γ ` A(n) true

Γ ` m =
N

n true Γ ` A(n) true
subst ′

Γ ` A(m) true

The second one is easy to justify from the first one by symmetry of equality.
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These are examples of admissible rules of inference. We cannot derive them
directly from the elimination rules for equality, but every instance of them is
correct. In general, we say that an inference rule is admissible if every instance
of the rule is valid.

Theorem: The rule subst is admissible.

Proof: By induction on m.

Case: m = 0. Then we distinguish cases on n.

Case: n = 0. Then A(m) = A(0) = A(n) and the right
premise and conclusion are identical.

Case: n = s(n′). Then the right premise is not even needed to
obtain the conclusion.

Γ ` 0 =
N
s(n′) true

=
N
E0s

Γ ` A(s(n′)) true

Case: m = s(m′). Then we distinguish cases on n.

Case: n = 0. Again, the right premise is not needed to justify
the conclusion.

Γ ` s(m′) =
N
0 true

=
N
Es0

Γ ` A(0) true

Case: n = s(n′). Then we derive the rule as follows.

Γ ` s(m′) =
N
s(n′) true

=
N
Ess

Γ ` m′ =
N

n′ true Γ ` A(s(m′)) true
i .h.

Γ ` A(s(n′))

Here, a derivation of the conclusion exists by induction
hypothesis on m′. Critical is to use the induction hy-
pothesis for B(m′) = A(s(m′)) which yields the desired
B(n′) = A(s(n′)) in the conclusion.

2

In this case, we must formulate the desired principle as a rule of inference.
We can write it out as a parametric proposition,

∀m∈nat. ∀n∈nat. m =
N

n⊃A(m)⊃A(n)

but this can not be proven parametrically in A. The problem is that we need to
use the induction hypothesis with a predicate different from A, as the last case
in our proof of admissibility shows. And quantification over A, as in

∀m∈nat. ∀n∈nat. m =
N

n⊃∀A:nat→ prop. A(m)⊃A(n)
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is outside of our language. In fact, quantification over arbitrary propositions
or predicates can not be explained satisfactorily using our approach, since the
domain of quantification (such at nat→ prop in the example), includes the new
kind of proposition we are just defining. This is an instance of impredicativity
which is rejected in constructive type theory in the style of Martin-Löf. The
rules for quantification over propositions would be something like

Γ, p prop ` A(p) prop
∀2F

p

Γ ` ∀2p:prop. A(p) prop

Γ, p prop ` A(p) true
∀2I

p

Γ ` ∀2p:prop. A(p) true

Γ ` ∀2p:prop. A(p) true Γ ` B prop
∀2E

Γ ` A(B) true

The problem is that A(p) is not really a subformula of ∀2p:prop. A(p). For
example, we can instantiate a proposition with itself!

Γ ` ∀2p:prop. p⊃ p true Γ ` ∀2p:prop. p⊃ p prop
∀2E

Γ ` (∀2p:prop. p⊃ p)⊃(∀2p:prop. p⊃ p) true

Nonetheless, it is possible to allow this kind of quantification in constructive
or classical logic, in which case we obtain higher-order logic. Another solution
is to introduce universes. In essence, we do not just have one kind of propo-
sition, by a whole hierarchy of propositions, where higher levels may include
quantification over propositions at a lower level. We will not take this extra
step here and instead simply use admissible rules of inference, as in the case of
substitutivity above.

Returning to data representation, some functions are easy to implement. For
example,

shiftl ∈ bin→bin
shiftl b = b0

implements the double function.

∀b∈bin. tonat(shiftl b) =
N
double(tonat b)

Proof: By computation.

tonat(shiftl b) =⇒ tonat(b0) =⇒ double(tonat b)

2

This trival example illustrates why it is convenient to allow multiple rep-
resentations of natural numbers. According to the definition above, we have
shiftl ε =⇒ ε0. The result has leading zeroes. If we wanted to keep representa-
tions in a standard form without leading zeroes, doubling would have to have
a more complicated definition. The alternative approach to work only with
standard forms in the representation is related to the issue of data structure
invariants, which will be discussed in the next section.
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In general, proving the representation theorem for some functions may re-
quire significant knowledge in the theory under consideration. As an example,
we consider addition on binary numbers.

add ∈ bin→bin→bin

add ε c = c
add (b0) ε = b0
add (b0) (c0) = (add b c)0
add (b0) (c1) = (add b c)1
add (b1) ε = b1
add (b1) (c0) = (add b c)1
add (b1) (c1) = (inc (add b c))0

This specification is primitive recursive: all recursive calls to add are on b.
The representation theorem states

∀b∈bin. ∀c∈bin. tonat(add b c) =
N
plus (tonat b) (tonat c)

The proof by induction on b of this property is left as an exercise to the reader.
One should be careful to extract the needed properties of the natural numbers
and addition and prove them separately as lemmas.

4.7 Complete Induction

In the previous section we have seen an example of a correct rule of inference
which was not derivable, only admissible. This was because our logic was not
expressive enough to capture this inference rule as a proposition. In this section
we investigate a related question: is the logic expressive enough so we can derive
different induction principles?

The example we pick is the principle of complete induction also known as
course-of-values induction. On natural numbers, this allows us to use the induc-
tion hypothesis on any number smaller than the induction induction variable.
The principle of mathematical induction considered so far allows only the im-
mediate predecessor. Corresponding principles exist for structural inductions.
For examples, complete induction for lists allows us to apply the induction hy-
pothesis on any tail of the original list.

Complete induction is quite useful in practice. As an example we consider
the integer logarithm function. First, recall the specification of half .

half ∈ nat→nat
half 0 = 0
half (s(0)) = 0
half (s(s(n))) = s(half (n))

This function is not immediately primitive recursive, but it follows the schema
of course-of-values recursion. This is because the recursive call to half (n +
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2) is on n and n < n + 2. We have seen how this can be transformed into
a primitive recursion using pairs. In a sense, we show in this section that
every function specified using course-of-values recursion can be implemented
by primitive recursion. Since we prove this constructively, we actually have an
effective method to implement course-of-values recursion by primitive recursion.

Next we specify the function lg(n) which calculates the number of bits in
the binary representation of n. Mathematically, we have lg(n) = blog

2
(n+ 1)c.

lg ∈ nat→nat
lg 0 = 0
lg (s(n)) = s(lg(half (s(n))))

This specifies a terminating function because half (s(n)) < s(n). We now intro-
duce the principal of complete induction and then verify the observation that
lg is a terminating function.

Principle of Complete Induction. In order to prove A(n), as-
sume ∀z∈nat. z < x⊃A(z) and prove A(x) for arbitrary x.

In order to simplify the discussion below, we say the property A is complete
if ∀x∈nat. (∀z∈nat. z < x⊃A(z))⊃A(x) is true.

Why is this induction principle valid? The idea is as follows: assume A is
complete. We want to show that ∀n∈nat. A(n) holds. Why does A(0) hold?
If A is complete, then A(0) must be true because there is no z < 0. Now,
inductively, if A(0), A(1), . . . , A(n) are all true, then A(s(n)) must also be true,
because A(z) for every z < s(n) and hence A(n) by completeness.

More explicitly, we can prove the principle of complete induction correct as
follows.

(∀x∈nat. (∀z∈nat. z < x⊃A(z))⊃A(x))⊃∀n∈nat. A(n)

However, a direct proof attempt of this theorem fails—the induction hypoth-
esis needs to be generalized. The structure of the brief informal argument tells
us what it must be.

Proof: Assume A is complete, that is

(∀x∈nat. (∀z∈nat. z < x⊃A(z))⊃A(x)).

We show that

∀n∈nat. ∀m∈nat. m < n⊃A(m)

by induction on n. From this the theorem follows immediately. Now
to the proof of the generalized theorem.

Case: n = 0. We have to show ∀m∈nat. m < 0. A(m). So let m
be given and assume m < 0. But this is contradictory, so we
conclude A(m) by rule <E0.
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Case: n = s(n′). We assume the induction hypothesis:

∀m∈nat. m < n′. A(m).

We have to show:

∀m∈nat. m < s(n′). A(m).

So let m be given and assume m < s(n′). Then we distinguish
two cases: m =

N
n′ or m < n′. It is a straightforward lemma

(which have not proven), that m < s(n′)⊃(m =
N

n′∨m < n′).

Subcase: m =
N

n′. From the completeness of A, using n′ for
x, we get

(∀z∈nat. z < n′⊃A(z))⊃A(n′).

But, by renaming z to m the left-hand side of this impli-
cation is the induction hypothesis and we conclude A(n′)
and therefore A(m) by substitution from m =

N
n′.

Subcase: m < n′. Then A(m) follows directly from the in-
duction hypothesis.

2

Now we can use this, for example, to show that the lg function is total.
For this we formalize the specification from above as a proposition. So assume
lg ∈ nat→nat, and assume

(lg 0 =
N
0)∧

(∀n∈nat. lg (s(n)) =
N
s(lg(half (s(n)))))

We prove
∀x∈nat. ∃y∈nat. lg(x) =

N
y

This expresses that lg describes a total function. In fact, from this constructive
proof we can eventually extract a primitive recursive implementation of lg !

Proof: By complete induction on x. Note that in this proof the
property

A(x) = (∃y. lg(x) =
N

y)

Assume the complete induction hypothesis:

∀z. z < x⊃∃y. lg(z) =
N

y

Following the structure of the specification, we distinguish two cases:
x = 0 and x = s(x′).

Case: x = 0. Then y = 0 satisfies the specification since lg(0) =
N

0.
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Case: x = s(x′). Then half (s(x′)) < s(x′) (by an unproven lemma)
and we can use the induction hypothesis to obtain a y′ such
that lg(half (s(x′))) =

N
y′. Then y = s(y′) satisfies

lg(s(x′)) =
N
s(lg(half (s(x′)))) =

N
s(y′)

by the specification of lg and transitivity of equality.

2

Next we examine the computational contents of these proofs. First, the
correctness of the principle of complete induction. For simplicity, we assume
an error element error ∈ 0. Then we hide information in the statement of
completeness in the following manner:

∀x∈nat. (∀z∈nat. [z < x]⊃A(z))⊃A(x)

If we assume that a type τ represents the computational contents of A, then
this corresponds to

c ∈ nat→(nat→ τ)→ τ

In the proof of complete induction, we assume that A is complete. Computa-
tionally, this means we assume a function c of this type. In the inductive part
of the proof we show

∀n∈nat. ∀m∈nat. [m < n]⊃A(m)

The the function h extracted from this proof satisfies

h ∈ nat→nat→ τ
h 0 m = abort(error)
h (s(n′)) m = c m (λm′. h(n′) m′) for m =

N
n′

h (s(n′)) m = h(n′) m for m < n′

Note that h is clearly primitive recursive in its first argument. In this specifica-
tion the nature of the proof and the cases it distinguishes are clearly reflected.
The overall specification

∀n∈nat. A(n)

is contracted to a function f where

f : nat→ τ
f n = h (s(n)) n

which is not itself recursive, but just calls h.
Assume a function f is defined by the schema of complete recursion and we

want to compute f(n). We compute it by primitive recursion on h, starting
with h (s(n)) n. The first argument to h is merely a counter. We start at s(n)
and count it down all the way to s(0). This is what makes the definition of h
primitive recursive.
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Meanwhile, in the second argument to h (which is always smaller than the
first), we compute as prescribed by f . Assume f(n′) calls itself recursively on
g(n′) < n′. Then we compute h (s(n′)) n′ by computing h n′ (g(n′)), which is a
legal recursive call for h. The situation is complicated by the fact that f might
call itself recursively several times on different arguments, so we may need to
call h recursively several times. Each time, however, the first argument will be
decreased, making the recursion legal.

As an example, consider the specification of lg that satisfies the schema of
complete recursion since half (s(n)) < s(n).

(lg 0 =
N
0)∧

(∀n∈nat. lg (s(n)) =
N
s(lg(half (s(n)))))

The function c that is extracted from the proof of

∀x∈nat. ∃y∈nat. [lg(x) =
N

y]

assuming completeness is

c ∈ nat→(nat→nat)→nat
c 0 r = 0
c (s(n′)) r = s(r (half (s(n′))))

Note that the second argument to c called r represents the induction hypothesis.
c itself is not recursive since we only assumed the principle of complete induction.
To obtain an implementation of lg we must use the proof of the principle of
complete induction. Next, the helper function h is

h ∈ nat→nat→nat
h 0 m = abort(error)
h (s(n′)) m = c m (λm′. h(n′) m′) for m =

N
n′

h (s(n′)) m = h(n′) m for m < n′

We can expand the definition of c on the right-hand side for the special case of
the logarithm and obtain:

h 0 m = abort(error)
h (s(0)) 0 = 0
h (s(s(n′′))) (s(n′′)) = s(h(s(n′′)) (half (s(n′))))
h (s(n′)) m = h(n′) m for m < n′

and
lg : nat→nat

lg n : h (s(n)) n

which can easily be seen as a primitive recursive definition of lg since equality
and less-than are decidable and we can eliminate the dependency on error by
returning an arbitrary number in the (impossible) first case in the definition of
h.
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4.8 Dependent Types

We have encountered a number of constructors for propositions and types. Gen-
erally, propositions are constructed from simpler propositions, and types are
constructed from simpler types. Furthermore, propositions refer to types (such
as ∀x∈τ. A(x)), and propositions refer to terms (such as n =

N
m). However, we

have not seen a type that refers to either a term or a proposition. In this section
we consider the former. As we will see, allowing types to be constructed from
terms has a number of applications, but it also creates a number of problems.

As an example we consider lists. Rather than simply keeping track of the
types of their elements as we have done so far, we keep track of the length of
the list as part of the type. We obtain the following formation rule:

Γ ` τ type Γ ` n ∈ nat
listF

Γ ` τ list(n) type

Note that we now make a context Γ explicit in this judgment, since the term
n which occurs inside the type τ list(n) may contain variables. We call τ list a
type family and n its index term.

The meaning of the type τ list(n) is the type of lists with elements of type
τ and length n. The introduction rules for this type track the length of the
constructed list.

listIn
Γ ` nilτ ∈ τ list(0)

Γ ` s ∈ τ Γ ` l ∈ τ list(n)
listIc

Γ ` s :: l ∈ τ list(s(n))

The elimination rule now must track the length of the list as well. Written as a
schema of primitive recursion, we obtain

f (0,nil) = sn
f (s(n′), x :: l′) = sc(n

′, x, l′, f(n′, l′))

where sn contains no occurrence of f , and all occurrences of f in sc have the
indicated form of f(n′, l′). Note that coupling occurrences of n and l in the
schema guarantees that the typing remains consistent: even occurrence of f(n, l)
contains a list l in the second argument and its length in the first argument.
Transforming this rule into an elimination rule yields

Γ ` l ∈ τ list(n)
Γ ` sn ∈ σ(0,nil)
Γ, n′∈nat, x∈τ, l′∈τ list(n′), f(n′, l′)∈σ(n′, l′) ` sc ∈ σ(s(n′), x :: l′)

listE
Γ ` (rec l of f(0,nil)⇒ sn | f(s(n

′), x :: l′)⇒ sc) ∈ σ(n, l)

Here we have written the premises on top of each other for typographical reasons.
There are two complications in this rule. The first is that we have to iterate
over the lists and its length at the same time. The second is that now types
may depend on terms. Therefore the type σ may actually depend on both n

Draft of January 9, 2003



98 First-Order Logic and Type Theory

and l, and this must be reflected in the rule. In fact, it looks very much like a
rule of induction if we read the type σ(n, l) as a proposition A(n, l). Allowing
types to depend on terms make types look even more like propositions than
before. In fact, we are close to extending the Curry-Howard isomorphism from
the propositional to the first-order case.

Next we consider how to use elements of this new type in some examples.
The first is appending of two lists. We would like to say

app ∈ τ list(n)→ τ list(m)→ τ list(n+m)

that is, app takes a list of length n and a list of length m and returns a list
of length n + m. But what is the status of n and m in this declaration? We
can see that at least n cannot be a global parameter (as τ , for example, since it
changes during the recursion. Instead, we make it explicit in the type, using a
new type constructor Π. This constructor acts on types exactly the way that ∀
acts on propositions. With it, we can write

app ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→ τ list(n+m)

so that app is now a function of four arguments: a number n, a list of length n,
a number m, and then a list of length m. The function returns a list of length
n+m.

The rules for Π are constructed in complete analogy with ∀.

Γ ` τ type Γ, x∈τ ` σ(x) type
ΠF

Γ ` Πx∈τ. σ(x) type

Γ, x∈τ ` s ∈ σ(x)
ΠI

Γ ` λx∈τ. s ∈ Πx∈τ. σ(x)

Γ ` s ∈ Πx∈τ. σ(x) Γ ` t ∈ τ
ΠE

Γ ` s t ∈ σ(t)

Πx ∈ τ. σ(x) is called a dependent function type, because it denotes a function
whose result type depends on the value of the argument. As for universal
quantification, substitution is required in the elimination rule. With this in
mind, we can first write and then type-check the specification of app.

app ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→ τ list(n+m)

app 0 nil m k = k
app (s(n′)) (x :: l′) m k = x :: (app n′ l′ m k)

For each equation in this specification we type-check both the left- and the right-
hand side and verify that they are the same. We show the checking of subterm
to help the understanding of the type-checking process. First, the left-hand side
of the first equation.

app 0 ∈ τ list(0)→Πm∈nat. τ list(m)→ τ list(0+m)
app 0 nil ∈ Πm∈nat. τ list(m)→ τ list(0+m)
app 0 nil m ∈ τ list(m)→ τ list(0+m) for m∈nat
app 0 nil m k ∈ τ list(0+m) for k∈τ list(m)

k ∈ τ list(m)
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While the two types are different, the first one can be reduced to the second.
Just like previously for propositions, we therefore need rules of computation for
types.

Γ ` s : σ σ =⇒ σ′ Γ ` σ type
conv

Γ ` s : σ′

Γ ` s : σ′ σ =⇒ σ′ Γ ` σ type
conv ′

Γ ` s : σ

Next, we consider the second equation, first the left-hand and then the right-
hand side.

app (s(n′)) ∈ τ list(s(n′))→Πm∈nat. τ list(m)→ τ list(s(n′) +m)
for n′ ∈ nat

app (s(n′)) (x :: l′) ∈ Πm∈nat. τ list(m)→ τ list(s(n′) +m)
for x ∈ τ and l′ ∈ τ list(n′)

app (s(n′)) (x :: l′) m ∈ τ list(m)→ τ list(s(n′) +m) for m∈nat
app (s(n′)) (x :: l′) m k ∈ τ list(s(n′) +m) for k∈τ list(m)

app n′ l′ m k ∈ τ list(n′ +m)
x :: (app n′ l′ m k) ∈ τ list(s(n′ +m))

Again, we can obtain the right-hand side by computation from the left-hand
side

τ list(s(n′) +m) =⇒ τ list(s(n′ +m))

since addition is defined by primitive recursion over the first argument.
For the sake of completeness, we now show an explicit definition of app by

primitive recursion.

app = λn∈nat. λl∈τ list(n).
rec l
of f(0,nil)⇒ λm∈nat. λk∈τ list(m). k
| f(s(n′), x :: l′)⇒ λm∈nat. λk∈τ list(m). x :: (f(n′, l′) m k)

From the practical point of view, we would like to avoid passing the lengths
of the lists as arguments to app. In the end, we are interested in the list as
a result, and not its length. In order to capture this, we extend the erasure
notation [A] and [M ] from propositions and proof terms to types [τ ] and terms
[t]. The meaning is completely analogous. Since we don’t want to pass length
information, we obtain

app ∈ Π[n]∈[nat]. τ list[n]→Π[m]∈[nat]. τ list[m]→ τ list[n+m]

app [0] nil [m] k = k
app [s(n′)] (x :: l′) [m] k = x :: (app [n′] l′ [m] k)

Fortunately, this annotation is consistent: we never use a bracketed variable
outside of brackets. That is, we never try to construct an answer out of a
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variable that will not be carried at runtime. After erasure of the bracketed
terms and types and simplification, we obtain the prior definition of app on lists
that are not indexed by their length.

But not every function can be consistently annotated. As a simple coun-
terexample consider the following length function:

length ∈ Πn∈nat. τ list(n)→nat
length n l = n

This is a perfectly valid implementation of length: from type-checking we know
that l must have length n. However, if we try to annotate this function

length ∈ Π[n]∈[nat]. τ list[n]→nat
length [n] l = n

we observe a use of n outside of brackets which is illegal. Indeed, if n is not
passed at run-time, then we cannot “compute” the length in this way. Fortu-
nately, there is another obvious definition of length that can be annotated in
the desired way.

length [0] nil = 0
length [s(n′)] (x :: l′) = s(length [n′] l′)

which has the property that the bracketed variable n′ from the left-hand side
also occurs only bracketed on the right-hand side. Note that dependent type-
checking does not verify the correctness of this second implementation of length
in the sense that the type does not exhibit a connection between the length
argument n and the natural number that is returned.

The use of dependent types goes very smoothly for the examples above,
but what happens when the length of an output list to a function is unknown?
Consider the filter function which retains only those elements of a list that
satisfy a given predicate p. We first give the definition with the ordinary lists
not indexed by their length.

filter ∈ (τ→bool)→ τ list→ τ list
filter p nil = nil
filter p (x :: l′) = if p x

then x :: filter p l′

else filter p l′

There is no type of the form

filter ∈ (τ→bool)→Πn∈nat. τ list(n)→ τ list(?)

we can assign to filter , since the length of the result depends on p and the length
of the input. For this we need an existential type. It works analogously to the
existential quantifier on propositions and is written as Σx∈τ. σ(x). With it, we
would specify the type as

filter ∈ (τ→bool)→Πn∈nat. τ list(n)→Σm∈nat. τ list(m)
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We can read this as “the function returns a list of length m for some m” or
as “the function returns a pair consisting of an m and a list of length m”,
depending on whether we intend to carry the lengths are runtime. Before we
show the specification of filter with this new type, we give the rules for Σ types.

Γ ` τ type Γ, x∈τ ` σ(x) type
ΣF

Γ ` Σx∈τ. σ(x)

Γ ` t ∈ τ Γ ` s ∈ σ(t)
ΣI

Γ ` 〈t, s〉 ∈ Σx∈τ. σ(x)

Γ ` t ∈ Σx∈τ. σ(x) Γ, x∈τ, y∈σ(x) ` r ∈ ρ
ΣE

Γ ` (let 〈x, y〉 = t in r) ∈ ρ

If we read σ(x) as a proposition A(x) instead of a type, we obtain the usual
rules for the existential quantifier. Returning to the function filter , we have

filter ∈ (τ→bool)→Πn∈nat. τ list(n)→Σm∈nat. τ list(m)

filter p 0 nil = 〈0,nil〉
filter p (s(n′)) (x :: l′) = let 〈m′, k′〉 = filter p n′ l′

in if p x
then 〈s(m′), x :: k′〉
else 〈m′, k′〉

In this code, k′ stands for the list resulting from the recursive call, and m′ for
its length. Now type-checking succeeds, since each branch in each case has type
Σm∈nat. τ list(m). Again, we can annotate the type and implementation to
erase the part of the code which is not computationally relevant.

filter ∈ (τ→bool)→Π[n]∈[nat]. τ list[n]→Σ[m]∈[nat]. τ list[m]

filter p [0] nil = 〈[0],nil〉
filter p [s(n′)] (x :: l′) = let 〈[m′], k′〉 = filter p [n′] l′

in if p x
then 〈[s(m′)], x :: k′〉
else 〈[m′], k′〉

This annotation is consistent, and erasure followed by simplification produces
the previous version of filter with lists not carrying their length.

Existential types solve a number of potential problems, but they incur a loss
of information which may render dependent type-checking less useful than it
might first appear. Recall the function rev , the generalized version of reverse
carrying an accumulator argument a.

rev ∈ τ list→ τ list→ τ list

rev nil a = a
rev (x :: l′) a = rev l′ (x :: a)
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We would like to verify that

rev ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→ τ list(n+m)

where

rev 0 nil m a = a
rev (s(n′)) (x :: l′) m a = rev n′ l′ (s(m)) (x :: a)

While everything goes according to plan for the first equation, the second equa-
tion yields

rev (s(n′)) (x :: l′) m a ∈ τ list(s(n′) +m)

for the left-hand side, and

rev n′ l′ (s(m)) (x :: a) ∈ τ list(n′ + s(m))

for the right hand side. There is no way to bridge this gap by comptutation
alone; we need to prove that s(n′)+m =

N
n′+s(m) by induction. Clearly, type-

checking can not accomplish this—it would require type-checking to perform
theorem proving which would not be feasible inside a compiler.

What can we do? One option is the simply hide the length of the output
list by using an existential type.

rev ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)→Σx∈nat. τ list(x)

However, this means type-checking guarantees much less about our function
than we might hope for. The other is to reintroduce propositions and change
our type to something like

rev ∈ Πn∈nat. τ list(n)→Πm∈nat. τ list(m)
→Σx∈nat. [x =

N
n+m]× τ list(x).

That is, we allow the output to be list of length x which is provably, but not
necessarily computationally equal to the sum of n and m. Here we consider
[x =

N
n + m] as a type, even though x =

N
n + m is a proposition. This is

consistent with our interpretation of erasure, which converts propositions to
types before running a program.

As a practical matter, in extensions of programming language with some
limited form of dependent types, there are other ways to ensure feasibility of
type-checking. Rather than base the comparison of types entirely on computa-
tion of the terms embedded in them, we can base it instead on any decidable
theory (which is feasible in practice). This is the approach we have taken in
the design of DML [XP98, XP99]. In the simplest application, index objects
may contain only linear equalities and inequalities between integers, which can
be solved effectively during type-checking. As we have seen in the examples
above, dependent types (especially when we can also mention propositions [A])
permit a continuum of properties of programs to be expressed and verified at
type-checking time, all the way from simple types to full specifications. For the
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latter, the proof objects either have to be expressed directly in the program or
extracted as obligations and verified separately.

We now briefly reexamine the Curry-Howard isomorphism, when extended
to the first-order level. We have the following correspondence:

Propositions ∧ ⊃ > ∨ ⊥ ∀ ∃
Types × → 1 + 0 Π Σ

Note that under erasure, ∀ is related to→ and ∃ is related to ×. The analogous
property holds for Π and Σ: Πx:τ. σ corresponds to τ→σ if x does not occur
in σ, and Σx:τ. σ simplifies to τ ×σ if x does not occur in σ.

In view of this strong correspondence, one wonders if propositions are really
necessary as a primitive concept. In some systems, they are introduced in order
to distinguish those elements with computational contents from those without.
However, we have introduced the bracket annotation to serve this purpose, so
one can streamline and simplify type theory by eliminating the distinction be-
tween propositions and types. Similarly, there is no need to distinguish between
terms and proof terms. In fact, we have already used identical notations for
them. Propositional constructs such as n =

N
m are then considered as types

(namely: the types of their proof terms).

Because of the central importance of types and their properties in the design
and theory of programming languages, there are many other constructions that
are considered both in the literature and in practical languages. Just to name
some of them, we have polymorphic types, singleton types, intersection types,
union types, subtypes, record types, quotient types, equality types, inductive
types, recursive types, linear types, strict types, modal types, temporal types,
etc. Because of the essentially open-ended nature of type theory, all of these
could be considered in the context of the machinery we have built up so far.
We have seen most of the principles which underly the design of type systems
(or corresponding logics), thereby providing a foundation for understanding the
vast literature on the subject.

Instead of discussing these (which could be subject of another course) we
consider one further application of dependent types and then consider theorem
proving in various fragments of the full type theory.

4.9 Data Structure Invariants

An important application of dependent types is capturing representation in-
variants of data structures. An invariant on a data structure restricts valid
elements of a type. Dependent types can capture such invariants, so that only
valid elements are well-typed.

Our example will be an efficient implementation of finite sets of natural
numbers. We start with a required lemma and auxiliary function.

∀x∈nat. ∀y∈nat. [x < y] ∨ [x =
N

y] ∨ [x > y]
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From the straightforward proof we can extract a function

compare ∈ nat→nat→1+ 1+ 1.

For obvious reasons we use the abbreviations

less = inl 〈 〉
equal = inr (inl 〈 〉)

greater = inr (inr 〈 〉)

and

case r
of less ⇒ t<
| equal ⇒ t=
| greater ⇒ t>

= case r
of inl ⇒ t<
| inr r′ ⇒ (case r′

of inl ⇒ t=
| inr ⇒ t>)

We give an interface for which we want to supply an implementation.

set type
empty ∈ set
insert ∈ nat→ set→ set

member ∈ nat→ set→bool

We do not give interfaces a first-class status in our development of type theory,
but it is nonetheless a useful conceptual device. We would like to given an
implementation via definitions of the form

set = . . .
empty = . . .
insert = . . .

member = . . .

that satisfy the types specified in the interface.

The idea is to implement a set as a red-black tree. Red-black trees are an
efficient data structure for representing dictionaries whose keys are ordered.
Here we follow the presentation by Chris Okasaki [Oka99]. The underlying data
structure is a binary tree whose nodes are labelled with the members of the set.
If we can ensure that the tree is sufficiently balanced, the height of such a tree
will be logarithmic in the number of elements of the set. If we also maintain
that the tree is ordered, lookup and insertion of an element can be performed
in time proportional to the logarithm of the size of the set. The mechanism for
ensuring that the tree remains balanced is the coloring of the nodes and the
invariants maintained in the representation.

A tree is either empty or consists of a black or red node labelled with a
natural number x and two subtrees a and b
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We maintain the following representation invariants:

1. The tree is ordered : all elements in the left subtree a are smaller than x,
while all elements in the right subtree b are larger than x.

2. The tree is uniform: every path from the root to a leaf contains the same
number of black nodes. This defines the black height of a tree, where the
black height of the empty tree is taken to be zero.

3. The tree is well-colored : the children of red node are always black, where
empty trees count as black.

Uniform and well-colored trees are sufficiently balanced to ensure worst-case
logarithmic membership test for elements in the set. Other operations can be
implemented with similar efficiency, but we concentrate on membership test and
insertion.

The ordering invariant is difficult to enforce by dependent types, since it
requires propositional reasoning about the less-than relation. We will capture
the uniformity invariant via dependent types. It is also possible to capture the
coloring invariant via dependencies, but this is more complicated, and we do
not attempt it here.

We index a red-black tree by its black height.

Γ ` n ∈ nat
treeF

Γ ` tree(n) type

There are three introduction rules, incorporating the three types of nodes (empty,
black, red).

treeIE
Γ ` E ∈ tree(0)

Γ ` a ∈ tree(n) Γ ` x ∈ nat Γ ` b ∈ tree(n)
treeIB

Γ ` B a x b ∈ tree(s(n))

Γ ` a ∈ tree(n) Γ ` x ∈ nat Γ ` b ∈ tree(n)
treeIR

Γ ` R a x b ∈ tree(n)

The index is increased by one for a black node B, but not for a red nodeR. Note
that in either case, both subtrees a and b must have the same black height. This
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use of indices is different from their use for lists. Any list formed from nil and
cons (::) without the length index will in fact have a valid length. Here, there
are many trees that are ruled out as invalid because of the dependent types.
In other words, the dependent types guarantee a data structure invariant by
type-checking alone.

Now we can begin filling in the implementation, according to the given in-
terface.

set = Σn∈nat. tree(n)
empty = 〈0,E〉
insert = . . .

member = . . .

Our intent is not to carry the black height n at run-time. If we wanted to make
this explicit, we would write Σ[n]∈[nat]. tree[n].

Before we program the insert and member functions, we write out the elim-
ination form as a schema of primitive recursion.

f(0,E) = tE
f(s(n′),B a x b) = tB(n

′, a, x, b, f(n′, a), f(n′, b))
f(n,R a x b) = tR(n, a, x, b, f(n, a), f(n, b))

Using this schema, we can define the set membership function.

mem : nat→Πn∈nat. tree(n)→bool

mem x 0 E = false
mem x (s(n′)) (B a y b) = case compare x y

of less ⇒ mem x n′ a
| equal ⇒ true
| greater ⇒ mem x n′ b

mem x n (R a y b) = case compare x y
of less ⇒ mem x n a
| equal ⇒ true
| greater ⇒ mem x n b

Note that the cases for black and red nodes are identical, except for their treat-
ment of the indices. This is the price we have to pay for our representation.
However, in practice this can be avoided by allowing some type inference rather
than just type checking.

From mem we can define the member function:

member ∈ nat→ set→bool

member = λx∈nat. λs∈set . let 〈n, t〉 = s in mem x n t

Insertion is a much trickier operation. We have to temporarily violate our
color invariant and then restore it by a re-balancing operation. Moreover, we
sometimes need to increase the black height of the tree (essentially, when we
run out of room at the current level). We need an auxiliary function

ins ∈ nat→Πn∈nat. tree(n)→ tree(n)
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which preserves the black height n, but may violate the red-black invariant at
the root. That is, the resulting tree must be a valid red-black tree, except that
the root might be red and either the left or the right subtree could also have a
red root. At the top-level, we re-establish the color invariant by re-coloring the
root black. We first show this step, assuming a function ins according to our
specification above. Recall that set = Σn∈nat. tree(n)

recolor ∈ Πn∈nat. tree(n)→ set

recolor 0 E = 〈0,E〉
recolor (s(n′)) (B a x b) = 〈s(n′),B a x b〉
recolor n (R a x b) = 〈s(n),B a x b〉

insert ∈ nat→ set→ set

insert = λx ∈ nat. λs ∈ set .
let 〈n, t〉 = s in recolor n (ins x t)

Note that recolor returns a tree of black height n if the root node is black,
and s(n) if the root node is red. This is how the black height can grow after
successive insertion operations.

Now to the auxiliary function ins. Recall:

ins ∈ nat→Πn∈nat. tree(n)→ tree(n)

It is critical that the black height of the output tree is the same as the input tree,
so that the overall balance of the tree is not compromised during the recursion.
This forces, for example, the case of insertion into an empty tree to color the
new node red.

ins x 0 E = R E x E
ins x (s(n′)) (B a y b) = case compare x y

of less ⇒ balanceL n′ (ins x n′ a) y b
| equal ⇒ B a y b
| greater ⇒ balanceR n′ a y (ins x n′ a)

ins x n (R a y b) = case compare x y
of less ⇒ R (ins x n a) y b
| equal ⇒ R a y b
| greater ⇒ R a y (ins x n a)

We need two auxiliary functions balanceL and balanceR to repair any possible
violation of the color invariant in either the left or right subtree, in case the root
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node is black.

balanceL ∈ Πn′∈nat. tree(n′)→nat→ tree(n′)→ tree(s(n′))

balanceL n′ (R (R a x b) y c) z d = B (R a x b) y (R c z d)
balanceL n′ (R a x (R b y c)) z d = B (R a x b) y (R c z d)

balanceL n′ a x b = B a x b in all other cases

balanceR ∈ Πn′∈nat. tree(n′)→nat→ tree(n′)→ tree(s(n′))

balanceR n′ a x (R (R b y c) z d) = B (R a x b) y (R c z d)
balanceR n′ a x (R b y (R c z d)) = B (R a x b) y (R c z d)

balanceR n′ a x b = B a x b in all other cases

We have taken the liberty of combining some cases to significantly simplify the
specification. It should be clear that this can indeed be implemented. In fact,
there is no recursion, only several nested case distinctions.

The following picture illustrates the operation performed by balanceL. Note
that the tree input trees to the left and the right are never actually built, but
that balanceL directly receives the left subtree, z and d as arguments.
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Type-checking will verify that the black-height remains invariant under the
balancing operation: initially, it is n′ for each subtree a, b, c, and d and s(n′)
for the whole tree, which is still the case after re-balancing.

Similarly, the order is preserved. Writing t < x to mean that every element
in tree t is less than x, we extract the order

a < x < b < y < c < z < d

from all three trees by traversing it in a “smallest first” fashion.
Finally, we can see that the tree resulting from balancing always satisfies the

red-black invariant, if the pictures on the left and right indicate the only place
where the invariant is violated before we start.

All these proofs can be formalized, using an appropriate formalization of
these color and ordering invariants. The only important consideration we have
not mentioned is that in the case of insertion into a tree with a red root, we
do not to apply the re-balancing operation to the result. This is because (a)
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the two immediate subtrees must be black, and (b) inserting into a black tree
always yields a valid red-black tree (with no possible violation at the root).

This example illustrates how dependent types can be used to enforce a con-
tinuum of properties via type-checking, while others are left to explicit proof.
From the software engineering point of view, any additional invariants that can
be enforced statically without an explosion in the size of the program is likely
to be beneficial by catching programming errors early.
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Chapter 5

Decidable Fragments

In previous chapters we have concentrated on the basic laws of reasoning and
their relationship to types and programming languages. The logics and type
theories we considered are very expressive. This is important in many applica-
tions, but it has the disadvantage that the question if a given proposition is true
is undecidable in general. That is, there is no terminating mechanical procedure
which, given a proposition, will tell us whether it is true or not. This is true
for first-order logic, arithmetic, and more complex theories such as the theory
of lists. Furthermore, the proof that no decision procedure exists (which we do
not have time to consider in this course), does not depend on whether we allow
the law of excluded middle or not.

In programming language application, we can sometimes work around this
limitation, because we are often not interested in theorem proving, but in type-
checking. That is, we are given a program (which corresponds to a proof) and
a type (which corresponds to a proposition) and we have to check its validity.
This is a substantially easier problem than deciding the truth of a proposition—
essentially we have to verify the correctness of the applications of inference rules,
rather than to guess which rules might have been applied.

However, there are a number of important applications where we would like
to solve the theorem proving problem: given a proposition, is it true? This can
come about either directly (verify a logic property of a program or system) or
indirectly (take a general problem and translate it into logic).

In this chapter we consider such applications of logic, mostly to problems in
computer science. We limit ourselves to fragments of logic that can be mechan-
ically decided, that is, there is a terminating algorithm which decides whether
a given proposition is true or not. This restricts the set of problems we can
solve, but it means that in practice we can often obtain answers quickly and
reliably. It also means that in principle these developments can be carried out
within type theory itself. We demonstrate this for our first application, based
on quantified Boolean formulas.

The material here is not intended as an independent introduction, but com-
plements the treatment by Huth and Ryan [HR00].
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5.1 Quantified Boolean Formulas

In Section 3.6 we have introduced the data type bool of Booleans with two ele-
ments, true and false. We have seen how to define such operations as boolean
negation, conjunction, and disjunction using the elimination rule for this type
which corresponds to an if-then-else construct. We briefly review these con-
structs and also the corresponding principle of proof by cases. In accordance
with the notation in the literature on this particular subject (and the treatment
in Huth and Ryan [HR00]), we write 0 for false, 1 for true, b · c for and , b+ c
for or , and b for not .

The Boolean type, bool, is defined by two introduction rules.

boolF
bool type

boolI0
Γ ` 0 ∈ bool

boolI1
Γ ` 1 ∈ bool

The elimination rule distinguishes the two cases for a given Boolean value.

Γ ` b ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if b then s1 else s0 ∈ τ

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if 0 then s1 else s0 =⇒ s0

if 1 then s1 else s0 =⇒ s1

Now we can define typical functions on booleans, such as and , or , and
not , transcribing their truth tables. We make no attempt here to optimize the
definitions, but simply distinguish all possible cases for the inputs.

x · y = if x then (if y then 1 else 0) else (if y then 0 else 0)

x+ y = if x then (if y then 1 else 1) else (if y then 1 else 0)

x = if x then 0 else 1

Following this line of thought, it is quite easy to define universal and existential
quantification over Booleans. The idea is that ∀x∈bool. f(x) where f is a
Boolean term dependent on x is representated by forall(λx∈bool. f(x)) so that

forall ∈ (bool→bool)→bool
forall = λf∈bool→bool. f 0 · f 1

Somewhat more informally, we write

∀x. f(x) = f(0) · f(1)

but this should only be considered a shorthand for the above definition. The
existential quantifier works out similarly, replacing conjunction by disjunction.
We have

exists ∈ (bool→bool)→bool
exists = λf∈bool→bool. f 0 + f 1
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or, in alternate notation,

∃x. f(x) = f(0) + f(1)

The resulting language (formed by 0, 1,+, ·, ,∀,∃) is that of quantified Boolean
formulas. As the definitions above show, the value of each quantified Boolean
formula (without free variables) can simply be computed, using the definitions
of the operations in type theory.

Unfortunately, such a computation is extremely inefficient, taking exponen-
tial time in the number of quantified variables, not only in the worst, but the
typical case. Depending on the operational semantics we employ in type theory,
the situation could be even worse, require exponential time in every case.

There are two ways out of this dilemma. One is to leave type theory and
give an efficient imperative implementation using, for example, ordered binary
decision diagrams as shown in Huth and Ryan. While this does not improve
worst-case complexity, it is practical for a large class of examples.

Another possibility is to replace computation by reasoning. Rather than
computing the value of an expression, we prove that it is equal to 1 or 0. For
example, it is easy to prove that (∀x1 . . . ∀xn. x1 · · ·xn · 0) =B 0 even though
it may take exponential time to compute the value of the left-hand side of
the equation. In order to model such reasoning, we need the propositional
counterpart of the elimination rule for bool.

Γ ` b ∈ bool Γ `M1 : A(1) Γ `M0 : A(0)
boolE

Γ ` case b of 1⇒M1 | 0⇒M0 : A(t)

The rules for propositional equality between Booleans follow the pattern estab-
lished by equality on natural numbers and lists.

Γ ` b ∈ nat Γ ` c ∈ nat
=B F

Γ ` b =B c prop

=B I0
Γ ` 0 =B 0 true

=B I1
Γ ` 1 =B 1 true

no =B E00 elimination rule no =B E11 elimination rule

Γ ` 0 =B 1 true
=B E01

Γ ` C true

Γ ` 1 =B 0 true
=B E10

Γ ` C true

As a simple example, we prove that for every b∈bool we have b · 0 =B 0.
The proof proceeds by cases on b.

Case: b = 0. Then we compute 0 · 0 =B 0 so by conversion we have 0 · 0 =
N
0.

Case: b = 1. Then we compute 1 · 0 =B 0 so by conversion we have 1 · 0 =
N
1
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Note that we can use this theorem for arbitrarily complex terms b. Its transcrip-
tion into a formal proof using the rules above is straightforward and omitted.

An interesting proposal regarding the combination of efficient computation
(using OBDDs) and proof has been made by Harrison [Har95]. From a trace of
the operation of the OBDD implementation we can feasibly extract a proof in
terms of the primitive inference rules and some other derived rules. This means
what we can have a complex, optimizing implementation without giving up the
safety of proof by generating a proof object rather than just a yes-or-no answer.

5.2 Boolean Satisfiability

A particularly important problem is Boolean satisfiability (SAT):

Given a Boolean formula ∃x1 . . . ∃xn. f(x1, . . . , xn) without free vari-
ables where f(x1, . . . , xn) does not contain quantifiers. Is the for-
mula equal to 1?

Alternatively, we can express this as follows:

Given a quantifier-free Boolean formula f(x1, . . . , xn), is there an
assignment of 0 and 1 to each of the variables xi which makes f
equal to 1?

SAT is an example of an NP-complete problem: it can be solved in non-
deterministic polynomial time (by guessing and then checking the satisfying
assignment), and every other problem in NP can be translated to SAT in poly-
nomial time. What is perhaps surprising is that this can be practical in many
cases. The dual problem of validity (deciding if ∀x1 . . . ∀xn. f(x1, . . . , xn) is
equal to 1) is also often of interest and is co-NP complete.

There are many graph-based and related problems which can be translated
into SAT. As a simple example we consider the question of deciding whether
the nodes of a graph can be colored with k colors such that no two nodes that
are connected by an edge have the same color.

Assume we are given a graph with nodes numbered 1, . . . , n and colors
1, . . . , k. We introduce Boolean variables cij with the intent that

cij = 1 iff node i has color j

We now have to express that constraints on the colorings by Boolean formulas.
First, each node as exactly one color. For each node 1 ≤ i ≤ n we obtain a
formula

ui = ci1 · ci2 · · · cik
+ ci1 · ci2 · · · cik
+ · · ·
+ ci1 · ci2 · · · cik

There are n such formulas, each of size O(n× k). Secondly we want to express
that two nodes connected by an edge do not have the same color. For any two
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nodes i and m we have

wim = ci1 · cm1 · · · cik · cmk if there is an edge between i and m
wim = 1 otherwise

There are n × n such formulas, each of size O(k) or O(1). The graph can be
colored with k colors if each of the ui and wim are satisfied simultaneously. Thus
the satisfiability problem associated with a graph is

(u1 · · ·un) · (w11 · · ·w1n) · · · (wn1 · · ·wnn)

The total size of the resulting formula is O(n2 × k) and contains n× k Boolean
variables. Thus the translation is clearly polynomial.

5.3 Constructive Temporal Logic

An important application of logic is model-checking, as explained in Huth and
Ryan. Another excellent source on this topic is the book by Clarke, Grumberg
and Peled [CGP99].

Here we give a constructive development of a small fragment of Computation
Tree Logic (CTL). I am not aware of any satisfactory constructive account for
all of CTL1.

In order to model temporal logic we need to relativize our main judgment
A true to particular states. We have the following judgments:

s state s is a state
s→ s′ we can transition from state s to s′ in one step
A @ s proposition A is true in state s

We presuppose that s and s′ are states when we write s → s′ and that A is a
proposition and s a state when writing A @ s.

Now all logical rules are viewed as rules for reasoning entirely within a given
state. For example:

A @ s B @ s
∧I

A ∧B @ s

A ∧B @ s
∧EL

A @ s

A ∧B @ s
∧ER

B @ s

For disjunction and falsehood elimination, there are two choices, depending on
whether we admit conclusions in an arbitrary state s′ or only in s, the state in
which we have derived the disjunction or falsehood. It would seem that both
choices are consistent and lead to slightly different logics.

1For linear time temporal logic, Davies [Dav96] gives an extension of the Curry-Howard
isomorphism with an interesting application to partial evaluation
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Next, we model the AX and EX connectives. AX A is true in state s if
A is true in every successor state s′. To express “in every successor state” we
introduce the assumption s→ S ′ for a new parameter S′.

u
s→ S′

...

A @ S′

AXIS
′,u

AX A @ s

The elimination rule allows us to infer that A is true in state s′ if AX A is true
in s, and s′ is a successor state to s.

AX A @ s s→ s′
AXE

A @ s′

It is easy to see that this elimination rule is locally sound.
The rules for the EX connective follow from similar considerations.

s→ s′ A @ s′
EXI

EX A @ s

EX A @ s

u
s→ S′

w
A @ S′

...

C @ r
EXES′,u,w

C @ r

We can now prove general laws, such as

AX (A ∧B) ≡ (AX A) ∧ (AX B)

Such proofs are carried out parametrically in the sense that we do not assume
any particular set of states or particular transition relations. Laws derived in
this manner will be true for any particular set of states and transitions.

If we want to reason about a particular system (which is done in model-
checking), we have to specify the atomic propositions, states, and transitions.
For example, the system on page 157 in Huth and Ryan is represented by the
assumptions

p prop, q prop, r prop,
s0 state, s1 state, s2 state,
s0 → s1, s0 → s2,
s1 → s0, s1 → s2,
s2 → s2,
p @ s0, q @ s0,¬r @ s0,
¬p @ s1, q @ s1, r @ s1,
¬p @ s2,¬q @ s2, r @ s1
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Unfortunately, this is not yet enough. We can think of the transition rules
above as introduction rules for the s → s′, but we also need elimination rules.
Because of the nature of the AX and EX connectives, it appears sufficient if we
can distinguish cases on the target of a transition.

s0 → s A @ s1 A @ s2

s0 →E
A @ s

s1 → s A @ s0 A @ s2

s1 →E
A @ s

s2 → s A @ s2

s2 →E
A @ s

In general, this would have to be augmented with additional rules, for example,
letting is infer anything from an assumption that s2 → s1 if there is in fact no
such transition.2 Now we can prove, for example, that AX r @ s0 as follows

u
s0 → S r @ s1 r @ s2

s1 →E
r @ S

AXIS,u
AX r @ s0

Despite the finiteness of the sets of states and the transition relations, the
logic presented here is different from the classical formulation of CTL usually
used, because we do not assume the law of excluded middle. Of course, this can
be done which brings us back to the usual interpretation of the logic.

It is not clear how to carry this constructive development forward to encom-
pass other connectives such as AG, AF, EG, etc. The difficulty here is that
paths are infinite, yet we need to reason about global or eventual truth along
such paths. In the classical development this is easily handled by introduc-
ing appropriate laws for negation and least and greatest fixpoint operations on
monotone state transformations. We are currently investigating type-theoretic
expressions of this kind of reasoning using inductive and co-inductive techniques.

2For the connectives given here, I do not believe that this is necessary.
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