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Warning: In this note we confine our attention to the ⊤∧⊃ fragment of con-
structive logic. The results may be generalized to include disjunction and false-
hood at the expense of some additional complications that would only distract
from the main ideas.

Properties of Normal Proofs

Normal proofs have a restricted form, some aspects of which are captured by
the following lemma.

Lemma 0.1 1. Every normal proof is either neutral, or ends with an appli-

cation of an introduction rule to other normal proofs.1

2. Every neutral proof is either an assumption, or ends with the application

of an elimination rule to another neutral proof.

Proof: By induction on the rules defining normal proofs. 2

Every normal proof is a valid proof. This is called the soundness property

of normal proofs.

Theorem 0.1 1. If P1 ↓, . . . , Pn ↓ ⊢ P ↑, then P1, true, . . . , Pn true ⊢ P true.

2. If P1 ↓, . . . , Pn ↓ ⊢ P ↓, then P1, true, . . . , Pn true ⊢ P true.

Proof: Simply replace each occurrence of P ↑ and of P ↓ with P true, and re-
move all inferences of the form

P true
P true

(↓↑)

which arise from performing this replacement on instances of the ↓↑ rule. The
result is obviously a valid proof. 2

1In the presence of disjunction and falsehood, this statement must be refined.
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The process of replacing arrows by “true” used in the proof of the soundness
theorem is called erasure, because it removes the distinction between normal
and neutral proofs. The reverse process, called decoration, consists of replacing
occurrences of “true” by suitable arrows to obtain a normal proof. If the deco-
ration succeeds, then the original proof was already normal, but not every proof
can be so decorated!

For example, consider a proof of the following form:

D....
Q ⊃ P true

E....
Q true

P true
(⊃ -E)

This proof cannot be decorated, because it is not a normal proof. To see why,
we may assume by induction that we have decorated D and E to obtain normal
proofs D′ of Q ⊃ P ↑ and E ′ of Q ↑. (If we can’t do at least that, then we
certainly cannot decorate the whole proof either.) To complete the decoration,
we must use D′ and E ′ as premises of implication elimination. But to do so
requires that we somehow convert the normal proof D′ into a neutral proof so
that the implication elimination rule applies:

D′

....
Q ⊃ P ↑

Q ⊃ P ↓
(???)

E ′

....
Q ↑

P ↓
(⊃ -E)

The marked rule would be an instance of the forbidden rule

R ↑

R ↓
(↑↓)

,

which obliterates the distinction between normal and neutral proofs.
This example shows that there are proofs that are not normal proofs. This

raises the possibility that there are propositions that have a proof, but no normal
proof. However, the completeness property of normal proofs states that this is
not the case: if a proposition has a proof, then it has a normal proof. We
will prove this by showing that every non-normal proof contains “detours” that
can be removed, resulting in a normal proof of the same proposition. In the
foregoing example, note that the decorated proof D′ might already be neutral
(since every neutral proof is normal), in which case the decoration succeeds.
But it might also end with an instance of implication introduction, and hence is
not neutral. In that case, however, the proof is reducible in that we may apply
the inversion principle for implications to eliminate the detour.

Non-Provability Using Normal Proofs

The restricted form of normal proofs makes it easy to show that certain propo-
sitions have no normal proof. For example, there is no normal proof of the law
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of the excluded middle, P ∨ ¬P . To see why, observe that there are three ways
in which we might obtain a proof of (P ∨ ¬P ) ↑:

1. Show (P ∨¬P ) ↓. But this is impossible; for no Q may we derive Q ↓ from
no assumptions.

2. Show P ↑. This is impossible in general. For example, P might be ⊥.

3. Show ¬P ↑. But this is also impossible, because the only way to achieve
this is to deduce ⊥↑ from the assumption P ↓. Since there is no introduc-
tion rule for ⊥, we have no choice but to derive ⊥↓ from P ↓, which is
impossible in general. For example, P might be ⊤.

By the completeness property of normal proofs, the law of the excluded middle
has no proof at all.

It is instructive to observe that this argument breaks down for general proofs,
precisely because it does not account for the possibility that the proof of P ∨¬P

has the form
D....

Q ⊃ P ∨ ¬P true

E....
Q true

P ∨ ¬P true
(⊃ -E)

,

which, as we saw earlier, is not a normal proof.
Thus, the above argument that the law of the excluded middle has no normal

proof does not immediately imply that it has no general proof. To take this
step requires that we prove completeness, which assures us that if a proposition
has no normal proof, then it has no proof at all.

0.1 Proof Reduction

A digression, or detour, in a proof consists of the application of an elimina-
tion rule for a connective to an instance of an introduction rule for the same
connective. The inversion principle states that such a digression can be elimi-
nated by applying one of the following reduction, or simplification, steps. If no
simplification can be made, we say that the proof is irreducible.

Here are the two proof reduction steps for conjunction:

D1....
P true

D2....
Q true

P ∧ Q true
(∧I)

P true
(∧EL)

 

D1....
P true

D1....
P true

D2....
Q true

P ∧ Q true
(∧I)

Q true
(∧ER)

 

D2....
Q true
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Here is the proof reduction step for implication:

P true
u

· · · P true
u

. . . . .
.

D1....
Q true

P ⊃ Q true
(⊃ Iu)

D2....
P true

Q true
(⊃ E)

 

D2....
P true · · ·

D2....
P true

. . . . .
.

D1....
Q true

The proof D2 may be replicated many times (or no times at all) in the right-hand
side.

Plugging D2 into D1 can introduce new digressions that did not previously
exist. For example, suppose that P = R∧S and that in D1 we have an inference
of the form

R ∧ S true
u

R true
(∧EL)

Once we plug in D2 for this use of the assumption u we obtain the proof

D2....
R ∧ S true

R true
(∧EL)

.

Now if D2 ends, as it may, with ∧I,

D2,1....
R true

D2,2....
S true

R ∧ S true
(∧I)

,

then we have created the digression

D2,1....
R true

D2,2....
S true

R ∧ S true
(∧I)

R true
(∧EL)

,

which must be reduced on the way to a normal proof. Since u may be used many
times in D1, we may obtain many copies of such a digression after reducing the
implication digression.

0.2 Normal Proofs and Irreducible Proofs

It is easy to see that a normal proof is irreducible. For a proof reduction step
to be applicable, we must have an introduction rule for a connective followed
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immediately by an elimination rule for the same connective. But all introduction
rules end with P ↑, and all elimination rules require their “main” premise (the
one with the connective to be eliminated) to be of the form P ↓. Since we cannot
pass from P ↑ to P ↓, there can be no reductions of a normal proof.

It is not much harder to see that an irreducible proof is normal. More
precisely, we may prove the following lemma.

Lemma 0.2

1. If D is an irreducible proof of P true ending with an introduction rule,

then D is normal.

2. If D is an irreducible proof of P true ending with either a hypothesis or an

elimination rule, then D is neutral.

Proof: By induction on proofs of P true, with a case analysis on the last rule
applied.

• Suppose that D ends as follows:

D1....
P true

D2....
Q true

P ∧ Q true
(∧I)

By induction both D1 and D2 are normal (perhaps even neutral), and
hence can be transformed into normal proofs

D′

1....
P ↑

and
D′

2....
Q ↑.

These may be combined to yield the normal proof D′

D′

1....
P ↑

D′

2....
Q ↑

P ∧ Q ↑
(∧I)

.

• Suppose that D ends as follows:

D1....
P ∧ Q true

P true
(∧EL)

.
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Since D is irreducible, it cannot end with (∧I), and so, by induction, can
be transformed into the neutral proof

D′

1....
P ∧ Q ↓.

This may be used with (∧EL) to obtain the neutral proof

D′

1....
P ∧ Q ↓

P ↓
(∧EL)

.

The other cases are handled similarly.
2

Theorem 0.2 A proof is normal iff it is irreducible.

0.3 Normalization

It is not at all obvious that the process proof reduction terminates. Two im-
portant theorems, which we do not prove here, show that this is indeed the
case.

The normalization theorem states that there is always a way to simplify a
proof to obtain an irreducible, hence normal, proof of the same result.

Theorem 0.3 (Normalization) For every proof there is a sequence of reduc-

tions leading to a normal proof of the same proposition.

Proof: (Sketch)
The idea is to assign a measure in some well-founded ordering to digressions

and to derivations in such a way that if we reduce a digression of maximal
measure, then the resulting proof has smaller measure than the original. Since
the ordering on measures is well-founded, we cannot go on forever obtaining
smaller and smaller measures — the process must eventually terminate.

A suitable measure of a derivation D is the pair (d, n), ordered lexicographi-
cally,2 where d is the degree of the derivation D and n is the number of digressions
in D of degree d. The degree of a derivation is defined to be the maximum of the
degrees of the digressions occurring in it; the degree of a digression is defined
to be the degree of the proposition being eliminated. Finally, the degree of the
proposition ⊤ is zero, and the degree of P ⊃ Q and P ∧Q is one more than the
sum of the degrees of P and Q.

The crux of the remainder of the proof is to show that if we reduce a di-
gression of maximal degree in a derivation, then the resulting derivation has a

2This means that (d, n) < (d′, n′) iff d < d′ or d = d′ and n < n′.
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strictly smaller measure — either the maximal degree of digressions has gone
down (even if their count has gone up!), or the maximal degree remains the
same, but their count has gone down.

2

Corollary 0.1 If P true has a proof, then it has a normal proof.

Proof: Let D be a derivation of P true. Using the normalization theorem, apply
simplifications to D until it is irreducible, and hence normal. 2

The strong normalization theorem states that we may apply proof reductions
in any order at all without fear of reducing forever.

Theorem 0.4 (Strong Normalization) There is no infinite sequence of re-

ductions starting from any proof. Every sequence of reductions obtained by

repeatedly simplifying digressions must terminate in a normal proof of P ↑.

Proof: (Sketch)
The proof requires a technique known as Tait’s Method, also known as the

method of logical relations. The main idea is to prove an apparently stronger
property of proofs, called reducibility, which implies strong normalization. The
reducibility property is chosen so that we may prove by induction on proofs that
every proof is reducible. We may then prove separately that every reducible
proof is strongly normalizable.

2
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