
Constructive Logic

Frank Pfenning

Carnegie Mellon University

Draft of February 5, 2003

Material for the course Constructive Logic at Carnegie Mellon University, Fall
2000. Material for this course is available at

http://www.cs.cmu.edu/~fp/courses/logic/.

Please send comments to fp@cs.cmu.edu

This material is in rough draft form and is likely to contain errors. Furthermore,
citations are in no way adequate or complete. Please do not cite or distribute
this document.

This work was supported in part by the University Education Council at Carnegie
Mellon University and by NSF Grant CCR-9619684.

Copyright c© 2000, Frank Pfenning

ii

Draft of February 5, 2003

Contents

1 Introduction 1

2 Propositional Logic 5
2.1 Judgments and Propositions . 5
2.2 Hypothetical Judgments . 7
2.3 Disjunction and Falsehood . 11
2.4 Notational Definition . 14
2.5 Derived Rules of Inference . 16
2.6 Logical Equivalences . 17
2.7 Summary of Judgments . 18
2.8 A Linear Notation for Proofs . 19
2.9 Normal Deductions . 23
2.10 Exercises . 26

3 Proofs as Programs 27
3.1 Propositions as Types . 27
3.2 Reduction . 31
3.3 Summary of Proof Terms . 34
3.4 Properties of Proof Terms . 36
3.5 Primitive Recursion . 43
3.6 Booleans . 48
3.7 Lists . 49
3.8 Summary of Data Types . 51
3.9 Predicates on Data Types . 52
3.10 Induction . 55

4 First-Order Logic and Type Theory 59
4.1 Quantification . 60
4.2 First-Order Logic . 64
4.3 Arithmetic . 69
4.4 Contracting Proofs to Programs 75
4.5 Structural Induction . 81
4.6 Reasoning about Data Representations 86
4.7 Complete Induction . 92

Draft of February 5, 2003

iv CONTENTS

4.8 Dependent Types . 97
4.9 Data Structure Invariants . 103

5 Decidable Fragments 111
5.1 Quantified Boolean Formulas . 112
5.2 Boolean Satisfiability . 114
5.3 Constructive Temporal Logic . 115

Bibliography 119

Draft of February 5, 2003

Chapter 3

Proofs as Programs

In this chapter we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional fragment
of logic this is referred to as the Curry-Howard isomorphism [How80]. From the
very outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of this
idea. In a highly influential subsequent paper, Martin-Löf [ML80] developed it
further into a more expressive calculus called type theory.

3.1 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce
a new judgment:

M : A M is a proof term for proposition A
We presuppose that A is a proposition when we write this judgment. We will

also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We either
think of M as a term that represents the proof of A true, or we think of A as the
type of the program M . As we discuss each connective, we give both readings
of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should correspond to a
deduction of A true with an identical structure and vice versa. In other words
we annotate the inference rules of natural deduction with proof terms. The
property above should then be obvious.

Conjunction. Constructively, we think of a proof of A ∧ B true as a pair of
proofs: one for A true and one for B true.

M : A N : B
∧I

〈M,N〉 : A ∧B

Draft of February 5, 2003

28 Proofs as Programs

The elimination rules correspond to the projections from a pair to its first
and second elements.

M : A ∧B
∧EL

fstM : A

M : A ∧B
∧ER

sndM : B

Hence conjunction A ∧B corresponds to the product type A×B.

Truth. Constructively, we think of a proof of > true as a unit element that
carries now information.

>I
〈 〉 : >

Hence > corresponds to the unit type 1 with one element. There is no elimina-
tion rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A⊃B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f
of a variable x by writing f(x) = . . . where the right-hand side “. . .” depends on
x. For example, we might write f(x) = x2 + x− 1. In functional programming,
we can instead write f = λx. x2 + x− 1, that is, we explicitly form a functional
object by λ-abstraction of a variable (x, in the example).

We now use the notation of λ-abstraction to annotate the rule of implication
introduction with proof terms. In the official syntax, we label the abstraction
with a proposition (writing λu:A) in order to specify the domain of a function
unambiguously. In practice we will often omit the label to make expressions
shorter—usually (but not always!) it can be determined from the context.

u
u : A

...

M : B
⊃Iu

λu:A. M : A⊃B

The hypothesis label u acts as a variable, and any use of the hypothesis labeled
u in the proof of B corresponds to an occurrence of u in M .

As a concrete example, consider the (trivial) proof of A⊃A true:

u
A true

⊃Iu
A⊃A true

If we annotate the deduction with proof terms, we obtain

u
u : A

⊃Iu
(λu:A. u) : A⊃A

Draft of February 5, 2003

3.1 Propositions as Types 29

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (λu:A. u).

The rule for implication elimination corresponds to function application.
Following the convention in functional programming, we write M N for the
application of the function M to argument N , rather than the more verbose
M(N).

M : A⊃B N : A
⊃E

M N : B

What is the meaning of A⊃B as a type? From the discussion above it should
be clear that it can be interpreted as a function type A→B. The introduction
and elimination rules for implication can also be viewed as formation rules for
functional abstraction λu:A. M and application M N .

Note that we obtain the usual introduction and elimination rules for impli-
cation if we erase the proof terms. This will continue to be true for all rules
in the remainder of this section and is immediate evidence for the soundness of
the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A ∧B)⊃(B ∧A) true.

u
A ∧B true

∧ER
B true

u
A ∧B true

∧EL
A true

∧I
B ∧A true

⊃Iu
(A ∧B)⊃(B ∧A) true

When we annotate this derivation with proof terms, we obtain a function which
takes a pair 〈M,N〉 and returns the reverse pair 〈N,M〉.

u
u : A ∧B

∧ER
sndu : B

u
u : A ∧B

∧EL
fstu : A

∧I
〈sndu, fstu〉 : B ∧A

⊃Iu
(λu. 〈sndu, fstu〉) : (A ∧B)⊃(B ∧A)

Disjunction. Constructively, we think of a proof of A ∨ B true as either a
proof of A true or B true. Disjunction therefore corresponds to a disjoint sum
type A+B, and the two introduction rules correspond to the left and right
injection into a sum type.

M : A
∨IL

inlB M : A ∨B

N : B
∨IR

inrA N : A ∨B

In the official syntax, we have annotated the injections inl and inr with propo-
sitions B and A, again so that a (valid) proof term has an unambiguous type. In

Draft of February 5, 2003

30 Proofs as Programs

writing actual programs we usually omit this annotation. The elimination rule
corresponds to a case construct which discriminates between a left and right
injection into a sum types.

M : A ∨B

u
u : A

...

N : C

w
w : B

...

O : C
∨Eu,w

caseM of inlu⇒ N | inrw ⇒ O : C

Recall that the hypothesis labeled u is available only in the proof of the second
premise and the hypothesis labeled w only in the proof of the third premise.
This means that the scope of the variable u is N , while the scope of the variable
w is O.

Falsehood. There is no introduction rule for falsehood (⊥). We can therefore
view it as the empty type 0. The corresponding elimination rule allows a term of
⊥ to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid
program we will never try to evaluate a term of the form abortM .

M : ⊥
⊥E

abortC M : C

As before, the annotation C which disambiguates the type of abortM will often
be omitted.

This completes our assignment of proof terms to the logical inference rules.
Now we can interpret the interaction laws we introduced early as programming
exercises. Consider the left-to-right direction of (L11)

(L11a) (A⊃(B ∧ C))⊃(A⊃B) ∧ (A⊃C) true

Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of
type B ∧C, returns two functions: one which maps A to B and one
which maps A to C.

This is satisfied by the following function:

λu. 〈(λw. fst (uw)), (λv. snd (u v))〉

Draft of February 5, 2003

3.2 Reduction 31

The following deduction provides the evidence:

u
u : A⊃(B ∧ C)

w
w : A

⊃E
uw : B ∧ C

∧EL
fst (uw) : B

⊃Iw
λw. fst (uw) : A⊃B

u
u : A⊃(B ∧ C)

v
v : A

⊃E
uv : B ∧ C

∧ER
snd (u v) : C

⊃Iv
λv. snd (u v) : A⊃C

∧I
〈(λw. fst (uw)), (λv. snd (u v))〉 : (A⊃B) ∧ (A⊃C)

⊃Iu
λu. 〈(λw. fst (uw)), (λv. snd (u v))〉 : (A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C))

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section 3.5, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

We will prove these in Section 3.4.

3.2 Reduction

In the preceding section, we have introduced the assignment of proof terms to
natural deductions. If proofs are programs then we need to explain how proofs
are to be executed, and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M =⇒M ′, read “M reduces to
M ′”. A computation then proceeds by a sequence of reductions M =⇒M1 =⇒
M2 . . ., according to a fixed strategy, until we reach a value which is the result
of the computation. In this section we cover reduction; we return to reduction
strategies in Section ??.

As in the development of propositional logic, we discuss each of the con-
nectives separately, taking care to make sure the explanations are independent.
This means we can consider various sublanguages and we can later extend our
logic or programming language without invalidating the results from this sec-
tion. Furthermore, it greatly simplifies the analysis of properties of the reduction
rules.

Draft of February 5, 2003

32 Proofs as Programs

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

Truth. The constructor just forms the unit element, 〈 〉. Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by λ-abstraction, while the
destructor applies the function to an argument. In general, the application of
a function to an argument is computed by substitution. As a simple example
from mathematics, consider the following equivalent definitions

f(x) = x2 + x− 1 f = λx. x2 + x− 1

and the computation

f(3) = (λx. x2 + x− 1)(3) = [3/x](x2 + x− 1) = 32 + 3− 1 = 11

In the second step, we substitute 3 for occurrences of x in x2 + x− 1, the body
of the λ-expression. We write [3/x](x2 + x− 1) = 32 + 3− 1.

In general, the notation for the substitution of N for occurrences of u in M
is [N/u]M . We therefore write the reduction rule as

(λu:A. M)N =⇒ [N/u]M

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation which
clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor distin-
guishes cases. We need to use substitution again.

case inlB M of inlu⇒ N | inrw ⇒ O =⇒ [M/u]N

case inrA M of inlu⇒ N | inrw ⇒ O =⇒ [M/w]O

Falsehood. Since there is no constructor for the empty type there is no re-
duction rule for falsehood.

Draft of February 5, 2003

3.2 Reduction 33

This concludes the definition of the reduction judgment. In the next section
we will prove some of its properties.

As an example we consider a simple program for the composition of two
functions. It takes a pair of two functions, one from A to B and one from B to
C and returns their composition which maps A directly to C.

comp : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)

We transform the following implicit definition into our notation step-by-step:

comp 〈f, g〉 (w) = g(f(w))
comp 〈f, g〉 = λw. g(f(w))

compu = λw. (sndu) ((fstu)(w))
comp = λu. λw. (sndu) ((fstu)w)

The final definition represents a correct proof term, as witnessed by the following
deduction.

u
u : (A⊃B) ∧ (B⊃C)

∧ER
sndu : B⊃C

u
u : (A⊃B) ∧ (B⊃C)

∧EL
fstu : A⊃B

w
w : A

⊃E
(fstu)w : B

⊃E
(sndu) ((fstu)w) : C

⊃Iw
λw. (sndu) ((fstu)w) : A⊃C

⊃Iu
(λu. λw. (sndu) ((fstu)w)) : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)

We now verify that the composition of two identity functions reduces again to
the identity function. First, we verify the typing of this application.

(λu. λw. (sndu) ((fstu)w)) 〈(λx. x), (λy. y)〉 : A⊃A

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(λu. λw. (sndu) ((fstu)w)) 〈(λx. x), (λy. y)〉
=⇒ λw. (snd 〈(λx. x), (λy. y)〉) ((fst 〈(λx. x), (λy. y)〉)w)
=⇒ λw. (λy. y) ((fst 〈(λx. x), (λy. y)〉)w)
=⇒ λw. (λy. y) ((λx. x)w)
=⇒ λw. (λy. y)w
=⇒ λw. w

We see that we may need to apply reduction steps to subterms in order to reduce
a proof term to a form in which it can no longer be reduced. We postpone a
more detailed discussion of this until we discuss the operational semantics in
full.

Draft of February 5, 2003

34 Proofs as Programs

3.3 Summary of Proof Terms

Judgments.
M : A M is a proof term for proposition A
M =⇒M ′ M reduces to M ′

Proof Term Assignment.

Constructors Destructors

M : A N : B
∧I

〈M,N〉 : A ∧B

M : A ∧B
∧EL

fstM : A

M : A ∧B
∧ER

sndM : B

>I
〈 〉 : > no destructor for >

u
u : A

...

M : B
⊃Iu

λu:A. M : A⊃B

M : A⊃B N : A
⊃E

M N : B

M : A
∨IL

inlB M : A ∨B

N : B
∨IR

inrA N : A ∨B

M : A ∨B

u
u : A

...

N : C

w
w : B

...

O : C
∨Eu,w

caseM of inlu⇒ N | inrw ⇒ O : C

no constructor for ⊥
M : ⊥

⊥E
abortC M : C

Draft of February 5, 2003

3.3 Summary of Proof Terms 35

Reductions.

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

no reduction for 〈 〉

(λu:A. M)N =⇒ [N/u]M

case inlB M of inlu⇒ N | inrw ⇒ O =⇒ [M/u]N

case inrA M of inlu⇒ N | inrw ⇒ O =⇒ [M/w]O

no reduction for abort

Concrete Syntax. The concrete syntax for proof terms used in the mechan-
ical proof checker has some minor differences to the form we presented above.

u u Variable

〈M,N〉 (M,N) Pair

fstM fst M First projection

sndM snd M Second projection

〈 〉 () Unit element

λu:A. M fn u => M Abstraction

M N M N Application

inlB M inl M Left injection

inrA N inr N Right injection

case M

of inlu⇒ N

| inrw ⇒ O

case M

of inl u => N

| inr w => O

end

Case analysis

abortC M abort M Abort

Pairs and unit element are delimited by parentheses ‘(’ and ‘)’ instead of
angle brackets 〈 and 〉. The case constructs requires an end token to mark the
end of the a sequence of cases.

Type annotations are generally omitted, but a whole term can explicitly be
given a type. The proof checker (which here is also a type checker) infers the
missing information. Occasionally, an explicit type ascription M : A is necessary
as a hint to the type checker.

For rules of operator precedence, the reader is refered to the on-line doc-
umentation of the proof checking software available with the course material.
Generally, parentheses can be used to disambiguate or override the standard
rules.

As an example, we show the proof term implementing function composition.

Draft of February 5, 2003

36 Proofs as Programs

term comp : (A => B) & (B => C) => (A => C) =

fn u => fn x => (snd u) ((fst u) x);

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that A∨B⊃B ∨A, first in the
pure form.

proof orcomm : A | B => B | A =

begin

[A | B;

[A;

B | A];

[B;

B | A];

B | A];

A | B => B | A

end;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B => B | A =

begin

[u : A | B;

[v : A;

inr v : B | A];

[w : B;

inl w : B | A];

case u

of inl v => inr v

| inr w => inl w

end : B | A];

fn u => case u

of inl v => inr v

| inr w => inl w

end : A | B => B | A

end;

3.4 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as meta-logical reasoning.

Draft of February 5, 2003

3.4 Properties of Proof Terms 37

First, we need some more formal definitions for certain operations on proof
terms, to be used in our meta-logical analysis. One rather intuitive property of
is that variable names should not matter. For example, the identity function at
type A can be written as λu:A. u or λw:A. w or λu′:A. u′, etc. They all denote
the same function and the same proof. We therefore identify terms which differ
only in the names of variables (here called u) bound in λu:A. M , inlu ⇒ M
or inru⇒ O. But there are pitfalls with this convention: variables have to be
renamed consistently so that every variable refers to the same binder before and
after the renaming. For example (omitting type labels for brevity):

λu. u = λw. w
λu. λw. u = λu′. λw. u′

λu. λw. u 6= λu. λw. w
λu. λw. u 6= λw. λw. w
λu. λw. w = λw. λw. w

The convention to identify terms which differ only in the naming of their
bound variables goes back to the first papers on the λ-calculus by Church and
Rosser [CR36], is called the “variable name convention” and is pervasive in the
literature on programming languages and λ-calculi. The term λ-calculus typi-
cally refers to a pure calculus of functions formed with λ-abstraction. Our proof
term calculus is called a typed λ-calculus because of the presence of propositions
(which an be viewed as types).

Following the variable name convention, we may silently rename when con-
venient. A particular instance where this is helpful is substitution. Consider

[u/w](λu. w u)

that is, we substitute u for w in λu. w u. Note that u is a variable visible on
the outside, but also bound by λu. By the variable name convention we have

[u/w](λu. w u) = [u/w](λu′. w u′) = λu′. u u′

which is correct. But we cannot substitute without renaming, since

[u/w](λu. w u) 6= λu. u u

In fact, the right hand side below is invalid, while the left-hand side makes
perfect sense. We say that u is captured by the binder λu. If we assume a
hypothesis u:>⊃A then

[u/w](λu:>. w u) : A

but
λu:>. u u

is not well-typed since the first occurrence of u would have to be of type >⊃A
but instead has type >.

So when we carry out substitution [M/u]N we need to make sure that no
variable in M is captured by a binder in N , leading to an incorrect result.

Draft of February 5, 2003

38 Proofs as Programs

Fortunately we can always achieve that by renaming some bound variables in
N if necessary. We could now write down a formal definition of substitution,
based on the cases for the term we are substituting into. However, we hope that
the notion is sufficiently clear that this is not necessary.

Instead we revisit the substitution principle for hypothetical judgments. It
states that if we have a hypothetical proof of C true from A true and we have a
proof of A true, we can substitute the proof of A true for uses of the hypothesis
A true and obtain a (non-hypothetical) proof of A true. In order to state this
more precisely in the presence of several hypotheses, we recall that

A1 true . . . An true
...

C true

can be written as
A1 true, . . . , An true
︸ ︷︷ ︸

∆

` C true

Generally we abbreviate several hypotheses by ∆. We then have the follow-
ing properties, evident from the very definition of hypothetical judgments and
hypothetical proofs

Weakening: If ∆ ` C true then ∆,∆′ ` C true.

Substitution: If ∆, A true,∆′ ` C true and ∆ ` A true then ∆,∆′ ` C true.

As indicated above, weakening is realized by adjoining unused hypotheses, sub-
stitutions is realized by substitution of proofs for hypotheses.

For the proof term judgment, M : A, we use the same notation and write

u1:A1 . . . un:An
...

N : C

as
u1:A1, . . . , un:An
︸ ︷︷ ︸

Γ

` N : C

We use Γ to refer to collections of hypotheses ui:Ai. In the deduction of N : C,
each ui stands for an unknown proof term for Ai, simply assumed to exist. If
we actually find a proof Mi:Ai we can eliminate this assumption, again by sub-
stitution. However, this time, the substitution has to perform two operations:
we have to substitute Mi for ui (the unknown proof term variable), and the
deduction of Mi : Ai for uses of the hypothesis ui:Ai. More precisely, we have
the following two properties:

Weakening: If Γ ` N : C then Γ,Γ′ ` N : C.

Substitution: If Γ, u:A,Γ′ ` N : C and Γ `M : A then Γ,Γ′ ` [M/u]N : C.

Draft of February 5, 2003

3.4 Properties of Proof Terms 39

Now we are in a position to state and prove our second meta-theorem, that
is, a theorem about the logic under consideration. The theorem is called subject
reduction because is concerns the subject M of the judgment M : A. It states
that reduction preserves the type of an object. We make the hypotheses explicit
as we have done in the explanations above.

Theorem 3.1 (Subject Reduction)
If Γ `M : A and M =⇒M ′ then Γ `M ′ : A.

Proof: We consider each case in the definition of M =⇒M ′ in turn and show
that the property holds. This is simply an instance of proof by cases.

Case: fst 〈M1,M2〉 =⇒M1. By assumption we also know that

Γ ` fst 〈M1,M2〉 : A.

We need to show that Γ `M1 : A.

Now we inspect all inference rules for the judgment M : A and we see that
there is only one way how the judgment above could have been inferred:
by ∧EL from

Γ ` 〈M1,M2〉 : A ∧A2

for some A2. This step is called inversion, since we infer the premises
from the conclusion of the rule. But we have to be extremely careful to
inspect all possibilities for derivations so that we do not forget any cases.

Next, we apply inversion again: the judgment above could only have been
inferred by ∧I from the two premises

Γ `M1 : A

and

Γ `M2 : A2

But the first of these is what we had to prove in this case and we are done.

Case: snd 〈M1,M2〉 =⇒M2. This is symmetric to the previous case. We write
it an abbreviated form.

Γ ` snd 〈M1,M2〉 : A Assumption
Γ ` 〈M1,M2〉 : A1 ∧A for some A1 By inversion
Γ `M1 : A1 and
Γ `M2 : A By inversion

Here the last judgment is what we were trying to prove.

Case: There is no reduction for > since there is no elimination rule and hence
no destructor.

Draft of February 5, 2003

40 Proofs as Programs

Case: (λu:A1. M2)M1 =⇒ [M1/u]M2. By assumption we also know that

Γ ` (λu:A1. M2)M1 : A.

We need to show that Γ ` [M1/u]M2 : A.

Since there is only one inference rule for function application, namely
implication elimination (⊃E), we can apply inversion and find that

Γ ` (λu:A1. M2) : A
′

1
⊃A

and
Γ `M1 : A′

1

for some A′

1
. Now we repeat inversion on the first of these and conclude

that
Γ, u:A1 `M2 : A

and, moreover, that A1 = A′

1
. Hence

Γ `M1 : A1

Now we can apply the substitution property to these to judgments to
conclude

Γ ` [M1/u]M2 : A

which is what we needed to show.

Case: (case inlC M1 of inlu⇒ N | inrw ⇒ O) =⇒ [M1/u]N . By assumption
we also know that

Γ ` (case inlC M1 of inlu⇒ N | inrw ⇒ O) : A

Again we apply inversion and obtain three judgments

Γ ` inlC M1 : B′ ∨ C ′

Γ, u:B′ ` N : A
Γ, w:C ′ ` O : A

for some B′ and C ′.

Again by inversion on the first of these, we find

Γ `M1 : B′

and also C ′ = C. Hence we can apply the substitution property to get

Γ ` [M1/u]N : A

which is what we needed to show.

Case: (case inrB M1 of inlu ⇒ N | inrw ⇒ O) =⇒ [M1/u]N . This is
symmetric to the previous case and left as an exercise.

Draft of February 5, 2003

3.4 Properties of Proof Terms 41

Case: There is no introduction rule for ⊥ and hence no reduction rule.

2

The important techniques introduced in the proof above are proof by cases
and inversion. In a proof by cases we simply consider all possibilities for why a
judgment could be evident and show the property we want to establish in each
case. Inversion is very similar: from the shape of the judgment we see it could
have been inferred only in one possible way, so we know the premises of this rule
must also be evident. We see that these are just two slightly different forms of
the same kind of reasoning.

If we look back at our early example computation, we saw that the reduc-
tion step does not always take place at the top level, but that the redex may
be embedded in the term. In order to allow this, we need to introduce some
additional ways to establish that M =⇒ M ′ when the actual reduction takes
place inside M . This is accomplished by so-called congruence rules.

Conjunction. As usual, conjunction is the simplest.

M =⇒M ′

〈M,N〉 =⇒ 〈M ′, N〉

N =⇒ N ′

〈M,N〉 =⇒ 〈M,N ′〉

M =⇒M ′

fstM =⇒ fstM ′

M =⇒M ′

sndM =⇒ sndM ′

Note that there is one rule for each subterm for each construct in the language
of proof terms, just in case the reduction might take place in that subterm.

Truth. There are no rules for truth, since 〈 〉 has no subterms and therefore
permits no reduction inside.

Implication. This is similar to conjunction.

M =⇒M ′

M N =⇒M ′ N

N =⇒ N ′

M N =⇒M N ′

M =⇒M ′

(λu:A. M) =⇒ (λu:A. M ′)

Draft of February 5, 2003

42 Proofs as Programs

Disjunction. This requires no new ideas, just more cases.

M =⇒M ′

inlB M =⇒ inlB M ′

N =⇒ N ′

inrA N =⇒ inrA N ′

M =⇒M ′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM ′ of inlu⇒ N | inrw ⇒ O)

N =⇒ N ′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM of inlu⇒ N ′ | inrw ⇒ O)

O =⇒ O′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM of inlu⇒ N | inrw ⇒ O′)

Falsehood. Finally, there is a congruence rule for falsehood, since the proof
term constructor has a subterm.

M =⇒M ′

abortC M =⇒ abortC M ′

We now extend the theorem to the general case of reduction on subterms.
A proof by cases is now no longer sufficient, since the congruence rules have
premises, for which we would have to analyze cases again, and again, etc.

Instead we use a technique called structural induction on proofs. In struc-
tural induction we analyse each inference rule, assuming the desired property
for the premises, proving that they hold for the conclusion. If that is the case
for all inference rules, the conclusion of each deduction must have the property.

Theorem 3.2 (Subterm Subject Reduction)
If Γ ` M : A and M =⇒ M ′ then Γ ` M ′ : A where M =⇒ M ′ refers to the
congruent interpretation of reduction.

Proof: The cases where the reduction takes place at the top level of the term
M , the cases in the proof of Theorem 3.1 still apply. The new cases are all very
similar, and we only show one.

Case: The derivation of M =⇒M ′ has the form

M1 =⇒M ′

1

〈M1,M2〉 =⇒ 〈M ′

1
,M2〉

We also know that Γ ` 〈M1,M2〉 : A. We need to show that

Γ ` 〈M ′

1
,M2〉 : A

Draft of February 5, 2003

3.5 Primitive Recursion 43

By inversion,
Γ `M1 : A1

and
Γ `M2 : A2

and A = A1 ∧A2.

Since we are proving the theorem by structural induction and we have a
deduction of Γ ` M1 : A1 we can now apply the induction hypothesis to
M1 =⇒M ′

1
. This yields

Γ `M ′

1
: A1

and we can construct the deduction

Γ `M ′

1
: A1 Γ `M2 : A2

∧I
Γ ` 〈M ′

1
,M2〉 : A1 ∧A2

which is what we needed to show since A = A1 ∧A2.

Cases: All other cases are similar and left as an exercise.

2

The importance of the technique of structural induction cannot be overem-
phasized in this domain. We will see it time and again, so the reader should
make sure the understand each step in the proof above.

3.5 Primitive Recursion

In the preceding sections we have developed an interpretation of propositions
as types. This interpretation yields function types (from implication), product
types (from conjunction), unit type (from truth), sum types (from disjunction)
and the empty type (from falsehood). What is missing for a reasonable pro-
gramming language are basic data types such as natural numbers, integers, lists,
trees, etc. There are several approaches to incorporating such types into our
framework. One is to add a general definition mechanism for recursive types or
inductive types. We return to this option later. Another one is to specify each
type in a way which is analogous to the definitions of the logical connectives via
introduction and elimination rules. This is the option we pursue in this section.
A third way is to use the constructs we already have to define data. This was
Church’s original approach culminating in the so-called Church numerals. We
will not discuss this idea in these notes.

After spending some time to illustrate the interpretation of propositions as
types, we now introduce types as a first-class notion. This is not strictly nec-
essary, but it avoids the question what, for example, nat (the type of natural
numbers) means as a proposition. Accordingly, we have a new judgment τ type
meaning “τ is a type”. To understand the meaning of a type means to under-
stand what elements it has. We therefore need a second judgment t ∈ τ (read:

Draft of February 5, 2003

44 Proofs as Programs

“t is an element of type τ”) that is defined by introduction rules with their cor-
responding elimination rules. As in the case of logical connectives, computation
arises from the meeting of elimination and introduction rules. Needless to say,
we will continue to use our mechanisms of hypothetical judgments.

Before introducing any actual data types, we look ahead at their use in logic.
We will introduce new propositions of the form ∀x ∈ τ. A(x) (A is true for every
element x of type τ) and ∃x ∈ τ. A(x) (A is true some some element x of type
τ). This will be the step from propositional logic to first-order logic. This logic
is called first-order because we can quantify (via ∀ and ∃) only over elements of
data types, but not propositions themselves.

We begin our presentation of data types with the natural numbers. The
formation rule is trivial: nat is a type.

natF
nat type

Now we state two of Peano’s famous axioms in judgmental form as intro-
duction rules: (1) 0 is a natural numbers, and (2) if n is a natural number then
its successor, s(n), is a natural number. We write s(n) instead of n + 1, since
addition and the number 1 have yet to be defined.

natI0
0 ∈ nat

n ∈ nat
natIs

s(n) ∈ nat

The elimination rule is a bit more difficult to construct. Assume have a
natural number n. Now we cannot directly take its predecessor, for example,
because we do not know if n was constructed using natI0 or natIs. This is
similar to the case of disjunction, and our solution is also similar: we distinguish
cases. In general, it turns out this is not sufficient, but our first approximation
for an elimination rule is

n ∈ nat t0 ∈ τ

x
x ∈ nat

...

ts ∈ τ
x

casen of 0⇒ t0 | s(x)⇒ ts ∈ τ

Note that x is introduced in the third premise; its scope is ts. First, we rewrite
this using our more concise notation for hypothetical judgments. For now, Γ
contains assumptions of the form x ∈ τ . Later, we will add logical assumptions
of the form u:A.

Γ ` n ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat ` ts ∈ τ
x

Γ ` casen of 0⇒ t0 | s(x)⇒ ts ∈ τ

This elimination rule is sound, and under the computational interpretation
of terms, type preservation holds. The reductions rules are

(case 0 of 0⇒ t0 | s(x)⇒ ts) =⇒ t0
(case s(n) of 0⇒ t0 | s(x)⇒ ts) =⇒ [n/x]ts

Draft of February 5, 2003

3.5 Primitive Recursion 45

Clearly, this is the intended reading of the case construct in programs.
In order to use this in writing programs independently of the logic devel-

oped earlier, we now introduce function types in a way that is isomorphic to
implication.

τ type σ type
→F

τ→σ type

Γ, x ∈ σ ` t ∈ τ
→Ix

Γ ` λx ∈ σ. t ∈ σ→ τ

Γ ` s ∈ τ→σ Γ ` t ∈ τ
→E

Γ ` s t ∈ σ

(λx ∈ σ. s) t =⇒ [t/x]s

Now we can write a function for truncated predecessor: the predecessor of
0 is defined to be 0; otherwise the predecessor of n+ 1 is simply n. We phrase
this as a notational definition.

pred = λx ∈ nat. casex of 0⇒ 0 | s(y)⇒ y

Then ` pred ∈ nat→nat and we can formally calculate the predecessor of 2.

pred(s(s(0))) = (λx ∈ nat. casex of 0⇒ 0 | s(y)⇒ y) (s(s(0)))
=⇒ case s(s(0)) of 0⇒ 0 | s(y)⇒ y
=⇒ s(0)

As a next example, we consider a function which doubles its argument. The
behavior of the double function on an argument can be specified as follows:

double(0) = 0
double(s(n)) = s(s(double(n)))

Unfortunately, there is no way to transcribe this definition into an application
of the case-construct for natural numbers, since it is recursive: the right-hand
side contains an occurrence of double, the function we are trying to define.

Fortunately, we can generalize the elimination construct for natural numbers
to permit this kind of recursion which is called primitive recursion. Note that
we can define the value of a function on s(n) only in terms of n and the value
of the function on n. We write

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natEf,x

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

Here, f may not occur in t0 and can only occur in the form f(x) in ts to denote
the result of the recursive call. Essentially, f(x) is just the mnemonic name of
a new variable for the result of the recursive call. Moreover, x is bound with
scope ts. The reduction rules are now recursive:

(rec 0 of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒ t0
(rec s(n) of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒
[(rec n of f(0)⇒ t0 | f(s(x))⇒ ts)/f(x)] [n/x] ts

Draft of February 5, 2003

46 Proofs as Programs

As an example we revisit the double function and give it as a notational defini-
tion.

double = λx ∈ nat. rec x
of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′)))

Now double (s(0)) can be computed as follows

(λx ∈ nat. rec x
of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′))))

(s(0))
=⇒ rec (s(0))

of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′))))

=⇒ s(s(rec 0
of d(0)⇒ 0
| d(s(x′))⇒ s(s(d(x′)))))

=⇒ s(s(0))

As some other examples, we consider the functions for addition and mul-
tiplication. These definitions are by no means uniquely determined. In each
case we first give an implicit definition, describing the intended behavior of the
function, and then the realization in our language.

plus 0 y = y
plus (s(x′)) y = s(plus x′ y)

plus = λx ∈ nat. λy ∈ nat. rec x
of p(0)⇒ y
| p(s(x′))⇒ s(p(x′))

times 0 y = 0
times (s(x′)) y = plus y (times x′ y)

times = λx ∈ nat. λy ∈ nat. rec x
of t(0)⇒ 0
| t(s(x′))⇒ plus y (t(x′))

The next example requires pairs in the language. We therefore introduce

Draft of February 5, 2003

3.5 Primitive Recursion 47

pairs which are isomorphic to the proof terms for conjunction from before.

Γ ` s ∈ σ Γ ` t ∈ τ
×I

Γ ` 〈s, t〉 ∈ σ× τ

Γ ` t ∈ τ ×σ
×EL

Γ ` fst t ∈ τ

Γ ` t ∈ τ ×σ
×ER

Γ ` snd t ∈ σ

fst 〈t, s〉 =⇒ t
snd 〈t, s〉 =⇒ s

Next the function half , rounding down if necessary. This is slightly trickier
then the examples above, since we would like to count down by two as the
following specification indicates.

half 0 = 0
half (s(0)) = 0

half (s(s(x′))) = s(half (x′))

The first step is to break this function into two, each of which steps down by
one.

half
1
0 = 0

half
1
(s(x′)) = half

2
(x′)

half
2
0 = 0

half
2
(s(x′′)) = s(half

1
(x′′))

Note that half
1
calls half

2
and vice versa. This is an example of so-called mutual

recursion. This can be modeled by one function half
12

returning a pair such
that half

12
(x) = 〈half

1
(x), half

2
(x)〉.

half
12

0 = 〈0,0〉
half

12
(s(x)) = 〈snd (half

12
(x)), s(fst (half

12
(x)))

half x = fst (half
12

x)

In our notation this becomes

half
12

= λx ∈ nat. rec x
of h(0)⇒ 〈0,0〉
| h(s(x′))⇒ 〈snd (h(x)), s(fst (h(x)))

half = λx ∈ nat. fst (half
12

x)

As a last example in the section, consider the subtraction function which
cuts off at zero.

minus 0 y = 0
minus (s(x′))0 = s(x′)

minus (s(x′)) (s(y′)) = minus x′ y′

To be presented in the schema of primitive recursion, this requires two nested
case distinctions: the outermost one on the first argument x, the innermost one

Draft of February 5, 2003

48 Proofs as Programs

on the second argument y. So the result of the first application of minus must
be function, which is directly represented in the definition below.

minus = λx ∈ nat. rec x
of m(0)⇒ λy ∈ nat. 0
| m(s(x′))⇒ λy ∈ nat. rec y

of p(0)⇒ s(x′)
| p(s(y′))⇒ (m (x′)) y′

Note that m is correctly applied only to x′, while p is not used at all. So the
inner recursion could have been written as a case-expression instead.

Functions defined by primitive recursion terminate. This is because the be-
havior of the function on s(n) is defined in terms of the behavior on n. We can
therefore count down to 0, in which case no recursive call is allowed. An alterna-
tive approach is to take case as primitive and allow arbitrary recursion. In such
a language it is much easier to program, but not every function terminates. We
will see that for our purpose about integrating constructive reasoning and func-
tional programming it is simpler if all functions one can write down are total,
that is, are defined on all arguments. This is because total functions can be used
to provide witnesses for propositions of the form ∀x ∈ nat. ∃y ∈ nat. P (x, y)
by showing how to compute y from x. Functions that may not return an appro-
priate y cannot be used in this capacity and are generally much more difficult
to reason about.

3.6 Booleans

Another simple example of a data type is provided by the Boolean type with
two elements true and false. This should not be confused with the propositions
> and ⊥. In fact, they correspond to the unit type 1 and the empty type 0.
We recall their definitions first, in analogy with the propositions.

1F
1 type

1I
Γ ` 〈 〉 ∈ 1 no 1 elimination rule

0F
0 type

no 0 introduction rule
Γ ` t ∈ 0

0E
Γ ` abortτ t ∈ τ

There are no reduction rules at these types.
The Boolean type, bool, is instead defined by two introduction rules.

boolF
bool type

boolI1
Γ ` true ∈ bool

boolI0
Γ ` false ∈ bool

Draft of February 5, 2003

3.7 Lists 49

The elimination rule follows the now familiar pattern: since there are two
introduction rules, we have to distinguish two cases for a given Boolean value.
This could be written as

case t of true⇒ s1 | false⇒ s0

but we typically express the same program as an if t then s1 else s0.

Γ ` t ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if t then s1 else s0 ∈ τ

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if true then s1 else s0 =⇒ s1

if false then s1 else s0 =⇒ s0

Now we can define typical functions on booleans, such as and , or , and not .

and = λx ∈ bool. λy ∈ bool.
if x then y else false

or = λx ∈ bool. λy ∈ bool.
if x then true else y

not = λx ∈ bool.
if x then false else true

3.7 Lists

Another more interesting data type is that of lists. Lists can be created with
elements from any type whatsoever, which means that τ list is a type for any
type τ .

τ type
listF

τ list type

Lists are built up from the empty list (nil) with the operation :: (pronounced
“cons”), written in infix notation.

listIn
Γ ` nilτ ∈ τ list

Γ ` t ∈ τ Γ ` s ∈ τ list
listIc

Γ ` t :: s ∈ τ list

The elimination rule implements the schema of primitive recursion over lists. It
can be specified as follows:

f (nil) = sn
f (x :: l) = sc(x, l, f(l))

where we have indicated that sc may mention x, l, and f(l), but no other
occurrences of f . Again this guarantees termination.

Γ ` t ∈ τ list Γ ` sn ∈ σ Γ, x ∈ τ, l ∈ τ list, f(l) ∈ σ ` sc ∈ σ
listE

Γ ` rec t of f(nil)⇒ sn | f(x :: l)⇒ sc ∈ σ

Draft of February 5, 2003

50 Proofs as Programs

We have overloaded the rec constructor here—from the type of t we can always
tell if it should recurse over natural numbers or lists. The reduction rules are
once again recursive, as in the case for natural numbers.

(recnil of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒ sn
(rec (h :: t) of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒
[(rec t of f(nil)⇒ sn | f(x :: l)⇒ sc)/f(l)] [h/x] [t/l] sc

Now we can define typical operations on lists via primitive recursion. A
simple example is the append function to concatenate two lists.

append nil k = k
append (x :: l′) k = x :: (append l′ k)

In the notation of primitive recursion:

append = λl ∈ τ list. λk ∈ τ list. rec l
of a(nil)⇒ k
| a(x :: l′)⇒ x :: (a l′)

` append ∈ τ list→ τ list→ τ list

Note that the last judgment is parametric in τ , a situation referred to as
parametric polymorphism. In means that the judgment is valid for every type
τ . We have encountered a similar situation, for example, when we asserted that
(A ∧B)⊃A true. This judgment is parametric in A and B, and every instance
of it by propositions A and B is evident, according to our derivation.

As a second example, we consider a program to reverse a list. The idea is
to take elements out of the input list l and attach them to the front of a second
list a one which starts out empty. The first list has been traversed, the second
has accumulated the original list in reverse. If we call this function rev and the
original one reverse, it satisfies the following specification.

rev ∈ τ list→ τ list→ τ list
rev nil a = a

rev (x :: l′) a = rev l′ (x :: a)

reverse ∈ τ list→ τ list
reverse l = rev l nil

In programs of this kind we refer to a as the accumulator argument since it
accumulates the final result which is returned in the base case. We can see that
except for the additional argument a, the rev function is primitive recursive.
To make this more explicit we can rewrite the definition of rev to the following
equivalent form:

rev nil = λa. a
rev (x :: l) = λa. rev l (x :: a)

Now the transcription into our notation is direct.

rev = λl ∈ τ list. rec l
of r(nil)⇒ λa ∈ τ list. a
| r(x :: l′)⇒ λa ∈ τ list. r (l′) (x :: a)

reverse l = rev l nil

Draft of February 5, 2003

3.8 Summary of Data Types 51

Finally a few simple functions which mix data types. The first counts the
number of elements in a list.

length ∈ τ list→nat

length nil = 0
length (x :: l′) = s(length (l′))

length = λx ∈ τ list. rec x
of le(nil)⇒ 0
| le(x :: l′)⇒ s(le (l′))

The second compares two numbers for equality.

eq ∈ nat→nat→bool

eq 0 0 = true
eq 0 (s(y′)) = false
eq (s(x′)) 0 = false

eq (s(x′)) (s(y′)) = eq x′ y′

As in the example of subtraction, we need to distinguish two levels.

eq = λx ∈ nat. rec x
of e(0)⇒ λy ∈ nat. rec y

of f(0)⇒ true
| f(s(y′))⇒ false

| e(s(x′))⇒ λy ∈ nat. rec y
of f(0)⇒ false
| f(s(y′))⇒ e(x′) y′

We will see more examples of primitive recursive programming as we proceed
to first order logic and quantification.

3.8 Summary of Data Types

Judgments.

τ type τ is a type
t ∈ τ t is a term of type τ

Type Formation.

natF
nat type

boolF
bool type

τ type
listF

τ list type

Draft of February 5, 2003

52 Proofs as Programs

Term Formation.

natI0
0 ∈ nat

n ∈ nat
natIs

s(n) ∈ nat

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natE

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

boolI1
Γ ` true ∈ bool

boolI0
Γ ` false ∈ bool

Γ ` t ∈ bool Γ ` s1 ∈ τ Γ ` s0 ∈ τ
boolE

Γ ` if t then s1 else s0 ∈ τ

listIn
Γ ` nilτ ∈ τ list

Γ ` t ∈ τ Γ ` s ∈ τ list
listIc

Γ ` t :: s ∈ τ list

Γ ` t ∈ τ list Γ ` sn ∈ σ Γ, x ∈ τ, l ∈ τ list, f(l) ∈ σ list ` sc ∈ σ
listE

Γ ` rec t of f(nil)⇒ sn | f(x :: l)⇒ sc ∈ σ

Reductions.

(rec 0 of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒ t0
(rec s(n) of f(0)⇒ t0 | f(s(x))⇒ ts) =⇒

[(rec n of f(0)⇒ t0 | f(s(x))⇒ ts)/f(x)] [n/x] ts

if true then s1 else s0 =⇒ s1

if false then s1 else s0 =⇒ s0

(recnil of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒ sn
(rec (h :: t) of f(nil)⇒ sn | f(x :: l)⇒ sc) =⇒

[(rec t of f(nil)⇒ sn | f(x :: l)⇒ sc)/f(l)] [h/x] [t/l] sc

3.9 Predicates on Data Types

In the preceding sections we have introduced the concept of a type which is
determined by its elements. Examples were natural numbers, Booleans, and
lists. In the next chapter we will explicitly quantify over elements of types. For
example, we may assert that every natural number is either even or odd. Or we
may claim that any two numbers possess a greatest common divisor. In order
to formulate such statements we need some basic propositions concerned with
data types. In this section we will define such predicates, following our usual
methodology of using introduction and elimination rules to define the meaning
of propositions.

Draft of February 5, 2003

3.9 Predicates on Data Types 53

We begin with n < m, the less-than relation between natural numbers. We
have the following formation rule:

Γ ` m ∈ nat Γ ` n ∈ nat
<F

Γ ` m < n prop

Note that this formation rule for propositions relies on the judgment t ∈ τ .
Consequently, we have to permit a hypothetical judgment, in case n or m men-
tion variables declared with their type, such as x ∈ nat. Thus, in general, the
question whether A prop may now depend on assumptions of the form x ∈ τ .

This has a consequence for the judgment A true. As before, we now must
allow assumptions of the form B true, but in addition we must permit assump-
tions of the form x ∈ τ . We still call the collection of such assumptions a context
and continue to denote it with Γ.

<I0
Γ ` 0 < s(n) true

Γ ` m < n true
<Is

Γ ` s(m) < s(n) true

The second rule exhibits a new phenomenon: the relation ‘<’ whose meaning
we are trying to define appears in the premise as well as in the conclusion. In
effect, we have not really introduced ‘<’, since it already occurs. However, such
a definition is still justified, since the conclusion defines the meaning of s(m) < ·
in terms of m < ·. We refer to this relation as inductively defined. Actually we
have already seen a similar phenomenon in the second “introduction” rule for
nat:

Γ ` n ∈ nat
natIs

Γ ` s(n) ∈ nat

The type nat we are trying to define already occurs in the premise! So it may
be better to think of this rule as a formation rule for the successor operation on
natural numbers, rather than an introduction rule for natural numbers.

Returning to the less-than relation, we have to derive the elimination rules.
What can we conclude from Γ ` m < n true? Since there are two introduction
rules, we could try our previous approach and distinguish cases for the proof of
that judgment. This, however, is somewhat awkward in this case—we postpone
discussion of this option until later. Instead of distinguishing cases for the proof
of the judgment, we distinguish cases for m and n. In each case, we analyse
how the resulting judgment could be proven and write out the corresponding
elimination rule. First, if n is zero, then the judgment can never have a normal
proof, since no introduction rule applies. Therefore we are justified in concluding
anything, as in the elimination rule for falsehood.

Γ ` m < 0 true
<E0

Γ ` C true

If the m = 0 and n = s(n′), then it could be inferred only by the first introduc-
tion rule <I0. This yields no information, since there are no premises to this
rule. This is just as in the case of the true proposition >.

Draft of February 5, 2003

54 Proofs as Programs

The last remaining possibility is that both m = s(m′) and n = s(n′). In
that case we now that m′ < n′, because <Is is the only rule that could have
been applied.

Γ ` s(m′) < s(n′) true
<Es

Γ ` m′ < n′ true

We summarize the formation, introduction, and elimination rules.

Γ ` n ∈ nat Γ ` m ∈ nat
<F

Γ ` n < m prop

<I0
Γ ` 0 < s(n) true

Γ ` m < n true
<Is

Γ ` s(m) < s(n) true

Γ ` m < 0 true
<E0

Γ ` C true

no rule for 0 < s(n′)
Γ ` s(m′) < s(n′) true

<Es

Γ ` m′ < n′ true

Now we can prove some simple relations between natural numbers. For
example:

<I0
· ` 0 < s(0) true

<Is
· ` 0 < s(s(0)) true

We can also establish some simple parametric properties of natural numbers.

u
m ∈ nat,m < 0 true ` m < 0 true

<E0

m ∈ nat,m < 0 true ` ⊥ true
⊃Iu

m ∈ nat ` ¬(m < 0) true

In the application of the <E0 rule, we chose C = ⊥ in order to complete the
proof of ¬(m < 0). Even slightly more complicated properties, such as m <
s(m) require a proof by induction and are therefore postponed until Section 3.10.

We introduce one further relation between natural numbers, namely equality.

Draft of February 5, 2003

3.10 Induction 55

We write m =
N

n. Otherwise we follow the blueprint of the less-than relation.

Γ ` m ∈ nat Γ ` n ∈ nat
=

N
F

Γ ` m =
N

n prop

=
N
I0

Γ ` 0 =
N

0 true

Γ ` m =
N

n true
=

N
Is

Γ ` s(m) =
N

s(n) true

no =
N
E00 elimination rule

Γ ` 0 =
N

s(n) true
=

N
E0s

Γ ` C true

Γ ` s(m) =
N

0 true
=

N
Es0

Γ ` C true

Γ ` s(m) =
N

s(n) true
=

N
Ess

Γ ` m =
N

n true

Note the difference between the function

eq ∈ nat→nat→bool

and the proposition
m =

N
n

The equality function provides a computation on natural numbers, always re-
turning true or false. The proposition m =

N
n requires proof. Using induction,

we can later verify a relationship between these two notions, namely that eq nm
reduces to true if m =

N
n is true, and eq nm reduces to false if ¬(m =

N
n).

3.10 Induction

Now that we have introduced the basic propositions regarding order and equal-
ity, we can consider induction as a reasoning principle. So far, we have consid-
ered the following elimination rule for natural numbers:

Γ ` t ∈ nat Γ ` t0 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` ts ∈ τ
natE

Γ ` rec t of f(0)⇒ t0 | f(s(x))⇒ ts ∈ τ

This rule can be applied if we can derive t ∈ nat from our assumptions and we
are trying to construct a term s ∈ τ . But how do we use a variable or term
t ∈ nat if the judgment we are trying to prove has the form M : A, that is, if
we are trying the prove the truth of a proposition? The answer is induction.
This is actually very similar to primitive recursion. The only complication is
that the proposition A we are trying to prove may depend on t. We indicate
this by writing A(x) to mean the proposition A with one or more occurrences of
a variable x. A(t) is our notation for the result of substituting t for x in A. We

Draft of February 5, 2003

56 Proofs as Programs

could also write [t/x]A, but this is more difficult to read. Informally, induction
says that in order to prove A(t) true for arbitrary t we have to prove A(0) true
(the base case), and that for every x ∈ nat, if A(x) true then A(s(x)) true.

Formally this becomes:

Γ ` t ∈ nat Γ ` A(0) true Γ, x ∈ nat, A(x) true ` A(s(x)) true
natE′

Γ ` A(t) true

Here, A(x) is called the induction predicate. If t is a variable (which is
frequently the case) it is called the induction variable. With this rule, we can
now prove some more interesting properties. As a simple example we show that
m < s(m) true for any natural number m. Here we use D to stand for the
derivation of the third premise in order to overcome the typesetting difficulties.

D =
m ∈ nat, x ∈ nat, x < s(x) true ` x < s(x) true

<Is
m ∈ nat, x ∈ nat, x < s(x) true ` s(x) < s(s(x))

m ∈ nat ` m ∈ nat
<I0

m ∈ nat ` 0 < s(0) D
natE′

m ∈ nat ` m < s(m)

The property A(x) appearing in the induction principle is A(x) = x < s(x). So
the final conclusion is A(m) = m < s(m). In the second premise we have to
prove A(0) = 0 < s(0) which follows directly by an introduction rule.

Despite the presence of the induction rule, there are other properties we
cannot yet prove easily since the logic does not have quantifiers. An example is
the decidability of equality: For any natural numbers m and n, either m =

N
n

or ¬(m =
N

n). This is an example of the practical limitations of quantifier-free
induction, that is, induction where the induction predicate does not contain any
quantifiers.

The topic of this chapter is the interpretation of constructive proofs as pro-
grams. So what is the computational meaning of induction? It actually corre-
sponds very closely to primitive recursion.

Γ ` t ∈ nat Γ `M : A(0) Γ, x ∈ nat, u(x):A(x) ` N : A(s(x))
natE′

Γ ` ind t of u(0)⇒M | u(s(x))⇒ N : A(t)

Here, u(x) is just the notation for a variable which may occur in N . Note that u
cannot occur in M or in N in any other form. The reduction rules are precisely
the same as for primitive recursion.

(ind 0 of u(0)⇒M | u(s(x))⇒ N) =⇒ M
(ind s(n) of u(0)⇒M | u(s(x))⇒ N) =⇒
[(ind n of u(0)⇒M | u(s(x))⇒ N)/u(n)] [n/x]N

Draft of February 5, 2003

3.10 Induction 57

We see that primitive recursion and induction are almost identical. The
only difference is that primitive recursion returns an element of a type, while
induction generates a proof of a proposition. Thus one could say that they are
related by an extension of the Curry-Howard correspondence. However, not
every type τ can be naturally interpreted as a proposition (which proposition,
for example, is expressed by nat?), so we no longer speak of an isomorphism.

We close this section by the version of the rules for the basic relations be-
tween natural numbers that carry proof terms. This annotation of the rules is
straightforward.

Γ ` n ∈ nat Γ ` m ∈ nat
<F

Γ ` n < m prop

<I0
Γ ` lt0 : 0 < s(n)

Γ `M : m < n
<Is

Γ ` lts(M) : s(m) < s(n)

Γ `M : m < 0
<E0

Γ ` ltE0(M) : C

no rule for 0 < s(n′)
Γ `M : s(m′) < s(n′)

<Es

Γ ` ltEs(M) : m′ < n′

Γ ` m ∈ nat Γ ` n ∈ nat
=

N
F

Γ ` m =
N

n prop

=
N
I0

Γ ` eq
0
: 0 =

N
0

Γ `M : m =
N

n
=

N
Is

Γ ` eqs(M) : s(m) =
N

s(n)

no =
N
E00 elimination rule

Γ `M : 0 =
N

s(n)
=

N
E0s

Γ ` eqE
0s(M) : C

Γ `M : s(m) =
N

0
=

N
Es0

Γ ` eqEs0(M) : C

Γ `M : s(m) =
N

s(n)
=

N
Ess

Γ ` eqEss(M) : m =
N

n

Draft of February 5, 2003

118 Proofs as Programs

Draft of February 5, 2003

Bibliography

[CGP99] E.M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Dav96] Rowan Davies. A temporal logic approach to binding-time analysis.
In E. Clarke, editor, Proceedings of the Eleventh Annual Symposium
on Logic in Computer Science, pages 184–195, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation
in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

[Har95] John Harrison. Binary decision diagrams as a HOL derived rule. The
Computer Journal, 38:162–170, 1995.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980. Hitherto unpublished note of 1969, rearranged,
corrected, and annotated by Howard.

[HR00] Michael R.A. Huth and Mark D. Ryan. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge University Press,
2000.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages
153–175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of February 5, 2003

120 BIBLIOGRAPHY

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of
Functional Programming, 9(4):471–477, July 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI’98), pages 249–257, Montreal, Canada, June 1998. ACM Press.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In A. Aiken, editor, Conference Record of the 26th Sym-
posium on Principles of Programming Languages (POPL’99), pages
214–227. ACM Press, January 1999.

Draft of February 5, 2003

