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Chapter 3

Proofs as Programs

In this chapter we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional fragment
of logic this is referred to as the Curry-Howard isomorphism [How80]. From the
very outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of this
idea. In a highly influential subsequent paper, Martin-Lof [ML80] developed it
further into a more expressive calculus called type theory.

3.1 Propositions as Types

In order to illustrate the relationship between proofs and programs we introduce
a new judgment:
M:A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We will
also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We either
think of M as a term that represents the proof of A true, or we think of A as the
type of the program M. As we discuss each connective, we give both readings
of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should correspond to a
deduction of A true with an identical structure and vice versa. In other words
we annotate the inference rules of natural deduction with proof terms. The
property above should then be obvious.

Conjunction. Constructively, we think of a proof of A A B true as a pair of
proofs: one for A true and one for B true.

M:A N:B
(M,N): ANB

AN
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28 Proofs as Programs

The elimination rules correspond to the projections from a pair to its first
and second elements.

M:AANB M:ANB
—— ANE}, —A
fst M : A snd M : B

Er

Hence conjunction A A B corresponds to the product type A x B.

Truth. Constructively, we think of a proof of T t¢rue as a unit element that
carries now information.

—TI

(y: T
Hence T corresponds to the unit type 1 with one element. There is no elimina-
tion rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A D B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f
of a variable = by writing f(z) = ... where the right-hand side “...” depends on
x. For example, we might write f(x) = 22 + 2 — 1. In functional programming,
we can instead write f = Az. 22+ x — 1, that is, we explicitly form a functional
object by A-abstraction of a variable (x, in the example).

We now use the notation of A-abstraction to annotate the rule of implication
introduction with proof terms. In the official syntax, we label the abstraction
with a proposition (writing Au:A) in order to specify the domain of a function
unambiguously. In practice we will often omit the label to make expressions
shorter—usually (but not always!) it can be determined from the context.

U
u:A

M:B
Mu:A. M:ADB

oI

The hypothesis label u acts as a variable, and any use of the hypothesis labeled
u in the proof of B corresponds to an occurrence of u in M.
As a concrete example, consider the (trivial) proof of AD A true:

u
A true

— DI%
AD A true

If we annotate the deduction with proof terms, we obtain

U
u:A

oI*
(Aw:A.u): ADA
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3.1 Propositions as Types 29

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (Aw:A. u).

The rule for implication elimination corresponds to function application.
Following the convention in functional programming, we write M N for the
application of the function M to argument N, rather than the more verbose
M(N).

M:ADB N:A
MN : B

DOF

What is the meaning of A D B as a type? From the discussion above it should
be clear that it can be interpreted as a function type A — B. The introduction
and elimination rules for implication can also be viewed as formation rules for
functional abstraction Au:A. M and application M N.

Note that we obtain the usual introduction and elimination rules for impli-
cation if we erase the proof terms. This will continue to be true for all rules
in the remainder of this section and is immediate evidence for the soundness of
the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A A B) D(B A A) true.

u U
AN B true AN B true
ANER AET,
B true A true

vl

B A A true
D)
(AN B)D(BAA) true

u

When we annotate this derivation with proof terms, we obtain a function which
takes a pair (M, N) and returns the reverse pair (N, M).

- wu - wu
u:ANB u:ANB
—— AFEg —— AE;,
sndu: B fstu: A

Vi

(sndu,fstu): BAA
(Au. (sndu, fstu)) : (AN B)D(BAA)

oI*

Disjunction. Constructively, we think of a proof of AV B true as either a
proof of A true or B true. Disjunction therefore corresponds to a disjoint sum
type A+ B, and the two introduction rules correspond to the left and right
injection into a sum type.
M:A e N:B ik
inl® M:AVB inr N: AV B

In the official syntax, we have annotated the injections inl and inr with propo-
sitions B and A, again so that a (valid) proof term has an unambiguous type. In
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30 Proofs as Programs

writing actual programs we usually omit this annotation. The elimination rule
corresponds to a case construct which discriminates between a left and right
injection into a sum types.

M:AVB N:C O:C

\/E’U.,w
case M ofinlu = N |intrw = O : C

Recall that the hypothesis labeled u is available only in the proof of the second
premise and the hypothesis labeled w only in the proof of the third premise.
This means that the scope of the variable w is IV, while the scope of the variable
wis O.

Falsehood. There is no introduction rule for falsehood (). We can therefore
view it as the empty type 0. The corresponding elimination rule allows a term of
1 to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid
program we will never try to evaluate a term of the form abort M.

M: 1

—F |F
abort® M : C

As before, the annotation C' which disambiguates the type of abort M will often
be omitted.

This completes our assignment of proof terms to the logical inference rules.
Now we can interpret the interaction laws we introduced early as programming
exercises. Consider the left-to-right direction of (L11)

(L11a) (AD(BAC)DADB)AN(ADC) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of
type B A C, returns two functions: one which maps A to B and one
which maps A to C.

This is satisfied by the following function:

Au. ((Qw. fst (uw)), (M. snd (uv)))
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3.2 Reduction 31

The following deduction provides the evidence:

u w u v
u: AD(BAC) w:A u: AD(BAC) v:A
DF DF
vw:BAC uv:BAC
— AEp, —— ANEg
fst (uw) : B snd (uv) : C

w v

)\w.fst(uw):ADBD )\v.snd(uv):ADCDI
A\
((Aw. fst (uw)), (Av. snd (uv))) : (ADB)A(ADC) R
Au. {((Aw. fst (vw)), (Av. snd (uv))) : (AD(BAC))D((ADB)A(AD(C))

Programs in constructive propositional logic are somewhat uninteresting in
that they do not manipulate basic data types such as natural numbers, integers,
lists, trees, etc. We introduce such data types in Section 3.5, following the same
method we have used in the development of logic.

To close this section we recall the guiding principles behind the assignment
of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction of
M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true is
a bijection.

We will prove these in Section 3.4.

3.2 Reduction

In the preceding section, we have introduced the assignment of proof terms to
natural deductions. If proofs are programs then we need to explain how proofs
are to be executed, and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M = M’, read “M reduces to
M". A computation then proceeds by a sequence of reductions M = M; —
Ms ..., according to a fixed strategy, until we reach a value which is the result
of the computation. In this section we cover reduction; we return to reduction
strategies in Section ?7.

As in the development of propositional logic, we discuss each of the con-
nectives separately, taking care to make sure the explanations are independent.
This means we can consider various sublanguages and we can later extend our
logic or programming language without invalidating the results from this sec-
tion. Furthermore, it greatly simplifies the analysis of properties of the reduction
rules.
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32 Proofs as Programs

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst(M\N) = M

snd (M,N) = N

Truth. The constructor just forms the unit element, (). Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by A-abstraction, while the
destructor applies the function to an argument. In general, the application of
a function to an argument is computed by substitution. As a simple example
from mathematics, consider the following equivalent definitions

fla)=a?4+z—-1 f=Xx.2>+x—-1
and the computation
fB =0z 22+2-1)3)=[3/x](2>+2-1)=32+3-1=11
In the second step, we substitute 3 for occurrences of = in 22 + x — 1, the body
of the \-expression. We write [3/z](z? + 2 —1) =32 +3 — 1.

In general, the notation for the substitution of N for occurrences of u in M
is [INV/u]|M. We therefore write the reduction rule as

(AM:A. M)N = [N/ulM

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation which
clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor distin-
guishes cases. We need to use substitution again.

caseinl® M ofinlu = N |inrw = 0 = [M/u]N
caseinr® M of inlu = N |inrw = 0 = [M/w]O

Falsehood. Since there is no constructor for the empty type there is no re-
duction rule for falsehood.
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3.2 Reduction 33

This concludes the definition of the reduction judgment. In the next section
we will prove some of its properties.
As an example we consider a simple program for the composition of two
functions. It takes a pair of two functions, one from A to B and one from B to
C and returns their composition which maps A directly to C.

comp : ((ADB)A(BDC))D(ADCQC)
We transform the following implicit definition into our notation step-by-step:

comp{(f,q) (w) = g(f(w))

comp({f,g) = Aw.g(f(w))
compu = Aw. (sndu) ((fstu)(w))
comp = Au. \w. (sndu) ((fstu) w)

The final definition represents a correct proof term, as witnessed by the following
deduction.

w: (ASB)A(BSC)

[ Ny, w
u:(ADB)AN(BDC) fstu: ADB w: A
ANER DF
sndu: BD>C (fstu)w: B
oF
(sndu) ((fstu) w) : C
D w
Aw. (sndu) ((fstu)w) : ADC
oI

(Au. Aw. (sndu) (fstu)w)) : (ADB)A(BDC))D(ADC)

We now verify that the composition of two identity functions reduces again to
the identity function. First, we verify the typing of this application.

(Au. dw. (sndu) ((fstu) w)) (Az. z),(Ay.y)) :+ ADA

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(Au. dw. (sndu) ((fstu) w)) ((Az. z), (A\y. v))

. (snd (Az. ), (. 9))) (8t (A =), (. ) w)
Aw. (Ay. y) (st (Az. z), (Ay. y))) w)

Aw. (Ay. y) (Az. ) w)

Aw. (Ay. y)

Aw. w

Ry

We see that we may need to apply reduction steps to subterms in order to reduce
a proof term to a form in which it can no longer be reduced. We postpone a
more detailed discussion of this until we discuss the operational semantics in
full.
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34 Proofs as Programs

3.3 Summary of Proof Terms
Judgments.

M:A M is a proof term for proposition A
M = M’ M reduces to M’

Proof Term Assignment.

Constructors Destructors
M:AANB
—— ANE,
M:A N:B fst M : A
——  AER
snd M : B
—TI
O:T no destructor for T
—u
u: A
M:ADB N:A
: DOF
M:B MN:B
oI
AMu:A.M:ADB
. U —w
—M'A VI, u:A w:B
inl® M:AvVB
N:B g M:AVB N:C 0:C
s A R VE®W
inr” N : AV B case M ofinlu = N |intrw =0 :C
M: L
no constructor for L - . . 1E
abort™ M : C
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3.3 Summary of Proof Terms 35

Reductions.
fst (M, N)
snd (M, N)
no reduction for ()
(Aw:A. M) N [N/u|M

=
caseinl® M of inlu = N |inrw = O = [M/u|N
caseinr® M of inlu = N |inrw = 0 = [M/w]O

M
N

I

no reduction for abort

Concrete Syntax. The concrete syntax for proof terms used in the mechan-
ical proof checker has some minor differences to the form we presented above.

U u Variable
(M, N) M,N) Pair
fst M fst M First projection
snd M snd M Second projection
() O Unit element
AuzA. M fn u => M Abstraction
M N M N Application
inl® M inl M Left injection
inr NV inr N Right injection
case M case M Case analysis

ofinlu = N of inl u => N

| inrw = O | inr w => 0
end

abort® M abort M Abort

Pairs and unit element are delimited by parentheses ‘C’ and ‘)’ instead of
angle brackets ( and ). The case constructs requires an end token to mark the
end of the a sequence of cases.

Type annotations are generally omitted, but a whole term can explicitly be
given a type. The proof checker (which here is also a type checker) infers the
missing information. Occasionally, an explicit type ascription M : A is necessary
as a hint to the type checker.

For rules of operator precedence, the reader is refered to the on-line doc-
umentation of the proof checking software available with the course material.
Generally, parentheses can be used to disambiguate or override the standard
rules.

As an example, we show the proof term implementing function composition.
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36 Proofs as Programs

term comp : (A =>B) & (B=>C) => (A =>C) =
fn u => fn x => (snd w) ((fst w) x);

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that AV B D BV A, first in the
pure form.

proof orcomm : A | B=>B | A =

begin
[ Al B;
[ 4;
B | Al;
[ B;
B | Al;
BIl AI;
A | B=>B | A
end;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B=>B | A =
begin
[Lu: A
[ v : A;
inr v : B | Al;
[ w: B;
inl w : B | Al;
case u
of inl v => inr v
| inr w => inl w
end : B | A ];
fn u => case u
of inl v => inr v
| inr w => inl w
end : A| B=>B | A

B;

end;

3.4 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as meta-logical reasoning.
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3.4 Properties of Proof Terms 37

First, we need some more formal definitions for certain operations on proof
terms, to be used in our meta-logical analysis. One rather intuitive property of
is that variable names should not matter. For example, the identity function at
type A can be written as Au:A. u or Aw:A. w or Au':A. v/, etc. They all denote
the same function and the same proof. We therefore identify terms which differ
only in the names of variables (here called u) bound in Auw:A. M, inlu = M
or inru = O. But there are pitfalls with this convention: variables have to be
renamed consistently so that every variable refers to the same binder before and
after the renaming. For example (omitting type labels for brevity):

AL u = Aw.w
Au. dw.u = A w. v
AU Adw. u F Au. dw. w
Au. dw. u £ Aw. Aw. w
AU AW, w = Aw. dw. w

The convention to identify terms which differ only in the naming of their
bound variables goes back to the first papers on the A-calculus by Church and
Rosser [CR36], is called the “variable name convention” and is pervasive in the
literature on programming languages and A-calculi. The term A-calculus typi-
cally refers to a pure calculus of functions formed with A-abstraction. Our proof
term calculus is called a typed A-calculus because of the presence of propositions
(which an be viewed as types).

Following the variable name convention, we may silently rename when con-
venient. A particular instance where this is helpful is substitution. Consider

[w/w](Au. wu)

that is, we substitute u for w in Au. wu. Note that u is a variable visible on
the outside, but also bound by Au. By the variable name convention we have

[u/w](Au. wu) = [u/w](M'. wu') = M’ uu’
which is correct. But we cannot substitute without renaming, since

[u/w](Au. wu) # Au. uu

In fact, the right hand side below is invalid, while the left-hand side makes
perfect sense. We say that u is captured by the binder Au. If we assume a
hypothesis u: T O A then
[u/w)(Aw:T. wu) : A
but
Au:T. uu

is not well-typed since the first occurrence of u would have to be of type T D A
but instead has type T.

So when we carry out substitution [M/u]N we need to make sure that no
variable in M is captured by a binder in IV, leading to an incorrect result.
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38 Proofs as Programs

Fortunately we can always achieve that by renaming some bound variables in
N if necessary. We could now write down a formal definition of substitution,
based on the cases for the term we are substituting into. However, we hope that
the notion is sufficiently clear that this is not necessary.

Instead we revisit the substitution principle for hypothetical judgments. It
states that if we have a hypothetical proof of C' true from A true and we have a
proof of A true, we can substitute the proof of A true for uses of the hypothesis
A true and obtain a (non-hypothetical) proof of A true. In order to state this
more precisely in the presence of several hypotheses, we recall that

Aq true... A, true

C true

can be written as
A true, ..., A, true F C true

A

Generally we abbreviate several hypotheses by A. We then have the follow-
ing properties, evident from the very definition of hypothetical judgments and
hypothetical proofs

Weakening: If At C true then A, A’ F C true.
Substitution: If A, A true, A’ - C true and A F A true then A, A’ + C true.

As indicated above, weakening is realized by adjoining unused hypotheses, sub-
stitutions is realized by substitution of proofs for hypotheses.
For the proof term judgment, M : A, we use the same notation and write

uptAy ... oupiA,

N:C

as
u:Ay, .. upiAy EN:C
—_—

r

We use T to refer to collections of hypotheses u;:A;. In the deduction of N : C,
each u; stands for an unknown proof term for A;, simply assumed to exist. If
we actually find a proof M;:A; we can eliminate this assumption, again by sub-
stitution. However, this time, the substitution has to perform two operations:
we have to substitute M; for u; (the unknown proof term variable), and the
deduction of M; : A; for uses of the hypothesis u;:A;. More precisely, we have
the following two properties:

Weakening: If '+ N : C then I') TV N : C.
Substitution: f T'w: A, TVF N:Cand '+ M : A then I',T" - [M/u]N : C.
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3.4 Properties of Proof Terms 39

Now we are in a position to state and prove our second meta-theorem, that
is, a theorem about the logic under consideration. The theorem is called subject
reduction because is concerns the subject M of the judgment M : A. It states
that reduction preserves the type of an object. We make the hypotheses explicit
as we have done in the explanations above.

Theorem 3.1 (Subject Reduction)
IfTFM:Aand M = M' thenT' F M': A.

Proof: We consider each case in the definition of M = M’ in turn and show
that the property holds. This is simply an instance of proof by cases.

Case: fst (M, Ms) = M;. By assumption we also know that
'+ fst <M1,M2> DA

We need to show that I' = M7 : A.

Now we inspect all inference rules for the judgment M : A and we see that
there is only one way how the judgment above could have been inferred:
by AE, from

'+ <M1,M2> : A/\A2

for some A,. This step is called inversion, since we infer the premises
from the conclusion of the rule. But we have to be extremely careful to
inspect all possibilities for derivations so that we do not forget any cases.

Next, we apply inversion again: the judgment above could only have been
inferred by AI from the two premises

THM:A

and
T l_MQ . AQ

But the first of these is what we had to prove in this case and we are done.

Case: snd (M7, M) = M. This is symmetric to the previous case. We write
it an abbreviated form.

It snd (M1, Ms): A Assumption
I (My, M) : Ay A A for some A By inversion
'+ Ml : Al and

I'EMy: A By inversion

Here the last judgment is what we were trying to prove.

Case: There is no reduction for T since there is no elimination rule and hence
no destructor.
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40 Proofs as Programs

Case: (Au:dy. My) My = [M;/u]M>. By assumption we also know that
'k (A’U,Al MQ) M1 DA

We need to show that I' = [M7 /u] M, : A.

Since there is only one inference rule for function application, namely
implication elimination (DFE), we can apply inversion and find that

'+ ()\'LLZAl. Mg) : A/1 DA

and
['F M : Al

for some A}. Now we repeat inversion on the first of these and conclude
that
IuwAiFMy: A

and, moreover, that A; = A}. Hence
'+ M1 . A1

Now we can apply the substitution property to these to judgments to
conclude
T'F[My/ulMsy: A

which is what we needed to show.

Case: (caseinl® M; of inlu = N |inrw = Q) = [M; /u]N. By assumption
we also know that

[+ (caseinl® M; of inlu = N | inrw = O) : A

Again we apply inversion and obtain three judgments

T+ inl® M, : B'v '

I'u:B'FN:A

LwC FO:A
for some B’ and C".
Again by inversion on the first of these, we find

'-M,:B
and also C' = C. Hence we can apply the substitution property to get
'F[M;/ulN: A

which is what we needed to show.

Case: (caseinr® M, of inlu = N | inrw = O) = [M;/u]N. This is
symmetric to the previous case and left as an exercise.
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3.4 Properties of Proof Terms 41

Case: There is no introduction rule for L and hence no reduction rule.

The important techniques introduced in the proof above are proof by cases
and inversion. In a proof by cases we simply consider all possibilities for why a
judgment could be evident and show the property we want to establish in each
case. Inversion is very similar: from the shape of the judgment we see it could
have been inferred only in one possible way, so we know the premises of this rule
must also be evident. We see that these are just two slightly different forms of
the same kind of reasoning.

If we look back at our early example computation, we saw that the reduc-
tion step does not always take place at the top level, but that the redex may
be embedded in the term. In order to allow this, we need to introduce some
additional ways to establish that M = M’ when the actual reduction takes
place inside M. This is accomplished by so-called congruence rules.

Conjunction. As usual, conjunction is the simplest.

M= M’ N =N’
(M,N) = (M',N) (M,N) = (M,N’)

M = M’ M = M’
fst M — fst M’ snd M = snd M’

Note that there is one rule for each subterm for each construct in the language
of proof terms, just in case the reduction might take place in that subterm.

Truth. There are no rules for truth, since () has no subterms and therefore
permits no reduction inside.

Implication. This is similar to conjunction.

M = M’ N = N’
MN=—MN MN=— MN'
M= M’

Auw:A. M) = (Auw:A. M")
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Disjunction. This requires no new ideas, just more cases.

M= M’ N =N’

inl®? M — inl® M’ int? N = inr? N’

M= M’
(case M of inlu = N | inrw = O) = (case M’ of inlu = N | inrw = O)

N = N’
(case M of inlu = N | inrw = O) => (case M of inlu = N’ | inrw = O)

0= 0
(case M of inlu = N | inrw = O) = (case M of inlu = N | inrw = O’)

Falsehood. Finally, there is a congruence rule for falsehood, since the proof
term constructor has a subterm.

M = M’

abort® M = abort® M’

We now extend the theorem to the general case of reduction on subterms.
A proof by cases is now no longer sufficient, since the congruence rules have
premises, for which we would have to analyze cases again, and again, etc.

Instead we use a technique called structural induction on proofs. In struc-
tural induction we analyse each inference rule, assuming the desired property
for the premises, proving that they hold for the conclusion. If that is the case
for all inference rules, the conclusion of each deduction must have the property.

Theorem 3.2 (Subterm Subject Reduction)
IfTEM:Aand M = M’ then T+ M’ : A where M = M’ refers to the
congruent interpretation of reduction.

Proof: The cases where the reduction takes place at the top level of the term
M, the cases in the proof of Theorem 3.1 still apply. The new cases are all very
similar, and we only show one.

Case: The derivation of M = M’ has the form
M, = M{
(My, Ma) = (M7, M)

We also know that I' - (M, My) : A. We need to show that
Tk (M, M): A
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By inversion,
kM, : A

and
r |_M2 : A2
and A = A1 /\AQ.

Since we are proving the theorem by structural induction and we have a
deduction of I' = M; : A; we can now apply the induction hypothesis to
M, = Mj. This yields

I'= M : A
and we can construct the deduction
F}_M{Al I‘}_MQZAQ

AN
'k <M{,M2> : A1 /\A2

which is what we needed to show since A = A1 A As.

Cases: All other cases are similar and left as an exercise.

O

The importance of the technique of structural induction cannot be overem-
phasized in this domain. We will see it time and again, so the reader should
make sure the understand each step in the proof above.

3.5 Primitive Recursion

In the preceding sections we have developed an interpretation of propositions
as types. This interpretation yields function types (from implication), product
types (from conjunction), unit type (from truth), sum types (from disjunction)
and the empty type (from falsehood). What is missing for a reasonable pro-
gramming language are basic data types such as natural numbers, integers, lists,
trees, etc. There are several approaches to incorporating such types into our
framework. One is to add a general definition mechanism for recursive types or
inductive types. We return to this option later. Another one is to specify each
type in a way which is analogous to the definitions of the logical connectives via
introduction and elimination rules. This is the option we pursue in this section.
A third way is to use the constructs we already have to define data. This was
Church’s original approach culminating in the so-called Church numerals. We
will not discuss this idea in these notes.

After spending some time to illustrate the interpretation of propositions as
types, we now introduce types as a first-class notion. This is not strictly nec-
essary, but it avoids the question what, for example, nat (the type of natural
numbers) means as a proposition. Accordingly, we have a new judgment 7 type
meaning “7 is a type”. To understand the meaning of a type means to under-
stand what elements it has. We therefore need a second judgment ¢ € 7 (read:
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“t is an element of type 7”) that is defined by introduction rules with their cor-
responding elimination rules. As in the case of logical connectives, computation
arises from the meeting of elimination and introduction rules. Needless to say,
we will continue to use our mechanisms of hypothetical judgments.

Before introducing any actual data types, we look ahead at their use in logic.
We will introduce new propositions of the form Va € 7. A(x) (A is true for every
element x of type 7) and Jx € 7. A(x) (A is true some some element x of type
7). This will be the step from propositional logic to first-order logic. This logic
is called first-order because we can quantify (via V and 3) only over elements of
data types, but not propositions themselves.

We begin our presentation of data types with the natural numbers. The
formation rule is trivial: nat is a type.

— natF
nat type

Now we state two of Peano’s famous axioms in judgmental form as intro-
duction rules: (1) 0 is a natural numbers, and (2) if n is a natural number then
its successor, s(n), is a natural number. We write s(n) instead of n + 1, since
addition and the number 1 have yet to be defined.

nat/, n € nat

nat/
0 € nat s(n) € nat ’

The elimination rule is a bit more difficult to construct. Assume have a
natural number n. Now we cannot directly take its predecessor, for example,
because we do not know if n was constructed using natly or natl;. This is
similar to the case of disjunction, and our solution is also similar: we distinguish
cases. In general, it turns out this is not sufficient, but our first approximation
for an elimination rule is

S
T € nat

n € nat toeT ts €T

x

casen of 0 =ty |s(z) =t €T

Note that z is introduced in the third premise; its scope is ts. First, we rewrite
this using our more concise notation for hypothetical judgments. For now, I'
contains assumptions of the form = € 7. Later, we will add logical assumptions
of the form u:A.

I'Fn € nat I'ttoer 'z enatt-t;, et
x

't casenof 0=ty |s(x)=ts €T

This elimination rule is sound, and under the computational interpretation
of terms, type preservation holds. The reductions rules are

(case0of 0 =ty | s(z) = t5) = o
(cases(n) of 0 = tg | s(x) = t,) = [n/z]ts
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Clearly, this is the intended reading of the case construct in programs.

In order to use this in writing programs independently of the logic devel-
oped earlier, we now introduce function types in a way that is isomorphic to
implication.

T type o type

—F
T — 0 type
lNzeokter I'kFserT—o F'kter
—I* —
F'FXxeo teo—r I'kFsteo

(A €0.s)t = [t/x]s

Now we can write a function for truncated predecessor: the predecessor of
0 is defined to be 0; otherwise the predecessor of n + 1 is simply n. We phrase
this as a notational definition.

pred = Ar € nat.casez of 0= 0|s(y) =y

Then + pred € nat — nat and we can formally calculate the predecessor of 2.

pred(s(s(0))) = (A\z € nat. casez of 0 = 0| s(y) = y) (s(s(0)))
= cases(s(0)) of 0=0]s(y) =y
= s(0)

As a next example, we consider a function which doubles its argument. The
behavior of the double function on an argument can be specified as follows:

double(0) = 0
double(s(n)) = s(s(double(n)))

Unfortunately, there is no way to transcribe this definition into an application
of the case-construct for natural numbers, since it is recursive: the right-hand
side contains an occurrence of double, the function we are trying to define.

Fortunately, we can generalize the elimination construct for natural numbers
to permit this kind of recursion which is called primitive recursion. Note that
we can define the value of a function on s(n) only in terms of n and the value
of the function on n. We write

't €nat F'Htoer 'z €enat, f(x) eTkHitseT

nat B/
Ftrectof f(O)=ty| f(s(x))=ts €T

Here, f may not occur in ¢y and can only occur in the form f(z) in ¢4 to denote
the result of the recursive call. Essentially, f(z) is just the mnemonic name of
a new variable for the result of the recursive call. Moreover, = is bound with
scope ts. The reduction rules are now recursive:

(rec 0 of f(0) = tg | f(s(z)) = ts)
(rec s(n) of f(0) = to | f(s(x)) = ts)
[(rec n of f(0) = to | f(s(z)) = ts5)/f(2)] [n/x]ts

== o
—
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As an example we revisit the double function and give it as a notational defini-
tion.

double = Az € nat.rec z
of d(0) =0
| d(s(2')) = s(s(d(z")))

Now double (s(0)) can be computed as follows

(Az € nat. rec z
of d(0)=0
| d(s(z")) = s(s(d(z"))))
(s(0))
= rec (s(0))
of d(0) =0
| d(s(z")) = s(s(d(2"))))
— s(s(rec O
of d(0) =0
| d(s(2')) = s(s(d(z")))))

= s(s(0))

As some other examples, we consider the functions for addition and mul-
tiplication. These definitions are by no means uniquely determined. In each
case we first give an implicit definition, describing the intended behavior of the
function, and then the realization in our language.

plus0y = y
plus (s(z)y = s(plusz’y)
plus = Ar € nat. \y € nat. rec =
of p(0) =y
| p(s(2")) = s(p(z'))
timesQy = 0
times (s(z'))y = plusy (timesa’y)
times = Ax € nat. \y € nat. rec =
of t(0) =0

| t(s(z")) = plusy (t(z"))
The next example requires pairs in the language. We therefore introduce
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pairs which are isomorphic to the proof terms for conjunction from before.

I'Fseo I'bter

x I
'k {(s,t)eoxrt
I'Hterxo I'Hterxo
— xFEp <
I'Hfstter I'tsndteo

fst (t,s) =1
snd (t,s) = s

Next the function half, rounding down if necessary. This is slightly trickier
then the examples above, since we would like to count down by two as the
following specification indicates.

halfO = 0
half (s(0)) = 0
half (s(s(z'))) = s(half(z'))

The first step is to break this function into two, each of which steps down by
one.

half{0 = 0

half, (s(2)) = half 5 (2")
half, 0 = 0

half, (s(2”)) = s(half,(2"))

Note that half; calls half 5 and vice versa. This is an example of so-called mutual
recursion. This can be modeled by one function half 5 returning a pair such

that half 5(x) = (half (x), half 5(x)).

half 150 = (0,0)

half 15 (s(z)) = (snd (half 5(x)), s(fst (half 15(2)))
half © = fst (half, @)

In our notation this becomes

half 1o = Az € nat.recz
of h(0) = (0, 0)
| h(s(z")) = (snd (h(z)),s(fst (h(z)))
half = Az € nat. fst (half 5 x)

As a last example in the section, consider the subtraction function which
cuts off at zero.

minus0y = 0
minus (s(z'))0 = s(a’)
minus (s(z')) (s(y')) = minusz’y

To be presented in the schema of primitive recursion, this requires two nested
case distinctions: the outermost one on the first argument z, the innermost one
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on the second argument y. So the result of the first application of minus must
be function, which is directly represented in the definition below.

minus = Az € nat.rec x
of m(0) = \y € nat. 0
| m(s(z')) = Ay € nat. rec y
of p(0) = s(z’)
| p(s(y)) = (m(2'))y

Note that m is correctly applied only to z’, while p is not used at all. So the
inner recursion could have been written as a case-expression instead.

Functions defined by primitive recursion terminate. This is because the be-
havior of the function on s(n) is defined in terms of the behavior on n. We can
therefore count down to 0, in which case no recursive call is allowed. An alterna-
tive approach is to take case as primitive and allow arbitrary recursion. In such
a language it is much easier to program, but not every function terminates. We
will see that for our purpose about integrating constructive reasoning and func-
tional programming it is simpler if all functions one can write down are total,
that is, are defined on all arguments. This is because total functions can be used
to provide witnesses for propositions of the form Vz € nat. 3y € nat. P(x,y)
by showing how to compute y from x. Functions that may not return an appro-
priate y cannot be used in this capacity and are generally much more difficult
to reason about.

/

3.6 Booleans

Another simple example of a data type is provided by the Boolean type with
two elements true and false. This should not be confused with the propositions
T and L. In fact, they correspond to the unit type 1 and the empty type O.
We recall their definitions first, in analogy with the propositions.

1F

1 type

I-{)e1 17 no 1 elimination rule

OF
0 type

I'kteo
I'Fabort"ter

no 0 introduction rule

There are no reduction rules at these types.
The Boolean type, bool, is instead defined by two introduction rules.

boolF
bool type

booll; booll,
I' - true € bool I' - false € bool
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The elimination rule follows the now familiar pattern: since there are two
introduction rules, we have to distinguish two cases for a given Boolean value.
This could be written as

caset of true = s; | false = sg

but we typically express the same program as an if ¢t then s; else sg.
I't € bool I'Fsier I'kFsper
I'+ift then s; else s € 7

boolE

The reduction rules just distinguish the two cases for the subject of the if-
expression.

if true then s; else sy — s

if false then s; else s — s

Now we can define typical functions on booleans, such as and, or, and not.

and = Az € bool. A\y € bool.
if z then y else false

or = Az € bool. \y € bool.
if x then true else y
not = Az € bool.

if 2 then false else true

3.7 Lists

Another more interesting data type is that of lists. Lists can be created with
elements from any type whatsoever, which means that 7 list is a type for any

type 7.
T type
— listF
T list type
Lists are built up from the empty list (nil) with the operation :: (pronounced
“cons”), written in infix notation.

— - liStIn I'kter F}_SETIiStliStI
T nil” € 7list THt:serlist ‘

The elimination rule implements the schema of primitive recursion over lists. It
can be specified as follows:

f (nll) = Sn
flx=l) = selxl, f(1))

where we have indicated that s. may mention z, [, and f(I), but no other
occurrences of f. Again this guarantees termination.

't e Tlist I'ks,€o0 Fzernlerlist,f(l)eoks. €0
listE

I'Frectof f(nil) = s, | flx:])=s. €0
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We have overloaded the rec constructor here—from the type of ¢t we can always
tell if it should recurse over natural numbers or lists. The reduction rules are
once again recursive, as in the case for natural numbers.

(recnil of f(nil) = s, | f(x =) = s.) = s,
(rec(h::t) of f(nil) = s, | f(x:]) = s5.) =
[(vect of f(nil) = 5, | f(::1) = )/ (D) [h/a] /1] 5.
Now we can define typical operations on lists via primitive recursion. A
simple example is the append function to concatenate two lists.

appendnilk = k
append (z :: 1Yk = x:: (appendl’ k)

In the notation of primitive recursion:

append = A € Tlist. Ak € Tlist. rec [
of a(nil) = k
| a(x = l') =z (al’)
F append € 7list — 7list — 7list

Note that the last judgment is parametric in 7, a situation referred to as
parametric polymorphism. In means that the judgment is valid for every type
7. We have encountered a similar situation, for example, when we asserted that
(A A B) D A true. This judgment is parametric in A and B, and every instance
of it by propositions A and B is evident, according to our derivation.

As a second example, we consider a program to reverse a list. The idea is
to take elements out of the input list [ and attach them to the front of a second
list @ one which starts out empty. The first list has been traversed, the second
has accumulated the original list in reverse. If we call this function rev and the
original one reverse, it satisfies the following specification.

rev € 7list —7list — 7 list
revnila = a
rev (x=1U') a revl (z::a)

reverse € 7list — 7list
reversel = rev | nil

In programs of this kind we refer to a as the accumulator argument since it
accumulates the final result which is returned in the base case. We can see that
except for the additional argument a, the rev function is primitive recursive.
To make this more explicit we can rewrite the definition of rev to the following
equivalent form:
revnil = MAa.a
rev (x 1) = Aa.revl (z::a)
Now the transcription into our notation is direct.

rev = M € 7list. rec !
of r(nil) = Xa € 7list. a
| r(x=l') = Aa € rlist. r (I') (x::a)
reverse |l = rev [ nil
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Finally a few simple functions which mix data types. The first counts the

number of elements in a list.

length € 7list — nat

length nil = 0
length (z::1') = s(length (I'))
length = Az € 7list. rec x

of le(nil) = 0
| le(x 1) = s(le (1))

The second compares two numbers for equality.

e € mnat— nat— bool

eq00 = true
eq 0 (s(y")) = false
eq (s(z’')) 0 = false
eq (s(2)) (s(v')) = eqa'y

As in the example of subtraction, we need to distinguish two levels.

e = Mxr €nat.rec z
of ¢(0) = \y € nat. rec y
of f(0) = true
| f(s(y')) = false
| e(s(z’)) = Ay € nat. rec y
of f(0) = false
| f(s(y)) = e(@’) ¢

We will see more examples of primitive recursive programming as we proceed

to first order logic and quantification.

3.8 Summary of Data Types

Judgments.
T type T is a type
ter t is a term of type 7

Type Formation.

——natF ———— boolF TP i
nat type bool type T list type
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Term Formation.

nat], n € nat natl,

0 € nat s(n) € nat

't € nat F'ktyer Iz €enat, f(zr)eThtseT

natly
Fkrectof f(0)=ty| f(s(x)) =ts €T
booll; booll
I' - true € bool I' - false € bool
I't € bool I'kFsier I'kFsper
boolE
I'+ift then s; else sp € T
list], I'kFter I'serlist list]
[ nil" € 7list I'Ht:serlist ‘

I'terlist 'ts,€o Fzerlerlist, f(l) eolistFs. €0
listE/

I'Frectof f(nil) = s, | flx:])=s. €0

Reductions.

(rec0of f(0) =ty | f(s(x)) =1ts) = to
(recs(n) of f(0) =ty | f(s(x)) = t5) =
[(rec n of f(0) = to | f(s(z)) = ts)/f(2)] [n/z] s
if true then s; else sy — s;
if false then s; else s — s

(recnil of f(nil) = s, | f(z::1) = s¢)
(rec (h::t) of f(nil) = s, | f(z 1) = sc)
[(rect of f(nil) = s, | f(z 1) = o)/ (D) [h/] (/1] 5.

= s,
=

3.9 Predicates on Data Types

In the preceding sections we have introduced the concept of a type which is
determined by its elements. Examples were natural numbers, Booleans, and
lists. In the next chapter we will explicitly quantify over elements of types. For
example, we may assert that every natural number is either even or odd. Or we
may claim that any two numbers possess a greatest common divisor. In order
to formulate such statements we need some basic propositions concerned with
data types. In this section we will define such predicates, following our usual
methodology of using introduction and elimination rules to define the meaning
of propositions.
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We begin with n < m, the less-than relation between natural numbers. We
have the following formation rule:

I'Fm&nat I'kn € nat
<F

I'Fm < n prop

Note that this formation rule for propositions relies on the judgment ¢ € 7.
Consequently, we have to permit a hypothetical judgment, in case n or m men-
tion variables declared with their type, such as € nat. Thus, in general, the
question whether A prop may now depend on assumptions of the form z € 7.

This has a consequence for the judgment A true. As before, we now must
allow assumptions of the form B true, but in addition we must permit assump-
tions of the form = € 7. We still call the collection of such assumptions a context
and continue to denote it with I'.

<I, T'tEm < n true
[0 <s(n) true 'k s(m) < s(n) true

The second rule exhibits a new phenomenon: the relation ‘<’ whose meaning
we are trying to define appears in the premise as well as in the conclusion. In
effect, we have not really introduced ‘<’, since it already occurs. However, such
a definition is still justified, since the conclusion defines the meaning of s(m) < -
in terms of m < .. We refer to this relation as inductively defined. Actually we
have already seen a similar phenomenon in the second “introduction” rule for
nat:

I'Fn € nat

————natl;
'k s(n) € nat

The type nat we are trying to define already occurs in the premise! So it may
be better to think of this rule as a formation rule for the successor operation on
natural numbers, rather than an introduction rule for natural numbers.

Returning to the less-than relation, we have to derive the elimination rules.
What can we conclude from I' - m < n true? Since there are two introduction
rules, we could try our previous approach and distinguish cases for the proof of
that judgment. This, however, is somewhat awkward in this case—we postpone
discussion of this option until later. Instead of distinguishing cases for the proof
of the judgment, we distinguish cases for m and n. In each case, we analyse
how the resulting judgment could be proven and write out the corresponding
elimination rule. First, if n is zero, then the judgment can never have a normal
proof, since no introduction rule applies. Therefore we are justified in concluding
anything, as in the elimination rule for falsehood.

I'm <0 true
T'FC true

<Ey

If the m = 0 and n = s(n’), then it could be inferred only by the first introduc-
tion rule <Iy. This yields no information, since there are no premises to this
rule. This is just as in the case of the true proposition T.
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The last remaining possibility is that both m = s(m’) and n = s(n’). In
that case we now that m’ < n’, because <I; is the only rule that could have
been applied.

[+ s(m’) <s(n') true
<E

IL'm' <n true

We summarize the formation, introduction, and elimination rules.

I'Fnéenat I'Fm € nat
<F

I'Fn < mprop

<I, I'Em < n true
I'0 <s(n) true I'Fs(m) < s(n) true

<

I'tm <0 true

I'EC true

I'Es(m’) <s(n) true
no rule for 0 < s(n') <Es
I'Em’ <n' true

<Fy

Now we can prove some simple relations between natural numbers. For
example:

<Iy
- 0 < s(0) true

<Is
- 0 < s(s(0)) true

We can also establish some simple parametric properties of natural numbers.

u
m € nat,m < 0 true m < 0 true

<Ly

m € nat,m < 0 truet L true
u

m € nat - —(m < 0) true

In the application of the <FEj rule, we chose C = L in order to complete the
proof of =(m < 0). Even slightly more complicated properties, such as m <
s(m) require a proof by induction and are therefore postponed until Section 3.10.

We introduce one further relation between natural numbers, namely equality.
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We write m =, n. Otherwise we follow the blueprint of the less-than relation.

I'm € nat I'né€nat

N

F

I'-m =, n prop

-7 I'Em =, n true
RN _
[0 =y 0true '+ s(m) =, s(n) true

'k 0=, s(n) true
no =, Eyo elimination rule =y Los
N '+ C true "
L't s(m) =, 0 true L't s(m) =, s(n) true
= s0 = ss
T'EC true " I'tm =, n true "

Note the difference between the function
eq € nat — nat — bool

and the proposition
m=,n

The equality function provides a computation on natural numbers, always re-
turning true or false. The proposition m =, n requires proof. Using induction,
we can later verify a relationship between these two notions, namely that eq nm
reduces to true if m =, n is true, and eqnm reduces to false if =(m =, n).

3.10 Induction

Now that we have introduced the basic propositions regarding order and equal-
ity, we can consider induction as a reasoning principle. So far, we have consid-
ered the following elimination rule for natural numbers:

'kt € nat F'Ftyer 'z € nat, f(x) eTkHts €T
IF'krectof f(0)=ty]| f(s(x)) =ts €T

natF

This rule can be applied if we can derive t € nat from our assumptions and we
are trying to construct a term s € 7. But how do we use a variable or term
t € nat if the judgment we are trying to prove has the form M : A, that is, if
we are trying the prove the truth of a proposition? The answer is induction.
This is actually very similar to primitive recursion. The only complication is
that the proposition A we are trying to prove may depend on t. We indicate
this by writing A(z) to mean the proposition A with one or more occurrences of
a variable z. A(t) is our notation for the result of substituting ¢ for z in A. We
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could also write [t/x]A, but this is more difficult to read. Informally, induction

says that in order to prove A(t) true for arbitrary ¢ we have to prove A(0) true

(the base case), and that for every x € nat, if A(z) true then A(s(x)) true.
Formally this becomes:

't €nat I' - A(0) true I,z € nat, A(z) true - A(s(z)) true
[+ A(t) true

natFL’

Here, A(x) is called the induction predicate. If t is a variable (which is
frequently the case) it is called the induction variable. With this rule, we can
now prove some more interesting properties. As a simple example we show that
m < s(m) true for any natural number m. Here we use D to stand for the
derivation of the third premise in order to overcome the typesetting difficulties.

p_ mEnatz€mnat,z < s(z) true - z < s(x) true

m € nat, z € nat, z < s(z) truet s(z) < s(s(x))

<I
m € nat - m € nat m € nat - 0 < s(0) D

natF’
m € nat - m < s(m)

The property A(z) appearing in the induction principle is A(x) = = < s(x). So
the final conclusion is A(m) = m < s(m). In the second premise we have to
prove A(0) = 0 < s(0) which follows directly by an introduction rule.

Despite the presence of the induction rule, there are other properties we
cannot yet prove easily since the logic does not have quantifiers. An example is
the decidability of equality: For any natural numbers m and n, either m =, n
or ~(m =, n). This is an example of the practical limitations of quantifier-free
induction, that is, induction where the induction predicate does not contain any
quantifiers.

The topic of this chapter is the interpretation of constructive proofs as pro-
grams. So what is the computational meaning of induction? It actually corre-
sponds very closely to primitive recursion.

I'kt € nat '+ M: A(0) I,z € nat,u(x):A(x) b N : A(s(x))
I'kind ¢t of u(0) = M | u(s(z)) = N : A(t)

natFE’

Here, u(x) is just the notation for a variable which may occur in N. Note that u
cannot occur in M or in N in any other form. The reduction rules are precisely
the same as for primitive recursion.

(ind 0 of u(0) = M | u(s(z)) = N) M
(ind s(n) of u(0) = M | u(s(z)) = N)

[(ind n of u(0) = M | u(s(x)) = N)/u(n)] [n/z]N

—
=
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We see that primitive recursion and induction are almost identical. The
only difference is that primitive recursion returns an element of a type, while
induction generates a proof of a proposition. Thus one could say that they are
related by an extension of the Curry-Howard correspondence. However, not
every type 7 can be naturally interpreted as a proposition (which proposition,
for example, is expressed by nat?), so we no longer speak of an isomorphism.

We close this section by the version of the rules for the basic relations be-
tween natural numbers that carry proof terms. This annotation of the rules is
straightforward.

I'bnenat I'Fm € nat
<F
I'n < m prop

<Iy 'EM:m<n
T +1to: 0 <s(n) T+ 1t,(M) : s(m) < s(n)

<[

I'EFM:m<O0 <
F'FIEN(M): C

'k M:s(m') <s(n)
no rule for 0 < s(n’) <Ej
T+ WE, (M) :m’ </

Ey

I'm € nat F}—nenat_

N

F
I'm =, n prop

_ 'EFM:m=,n -

I'Feqy:0=,0 I'-eq (M) :s(m) =, s(n) "

'EM:0=, s(n)
no =, Foo elimination rule =xEos
I'teqEq (M):C

'-M:s(m)=,0 5 't M:s(m)=, s(n) 5
= s0 = ss
I'FeqE, (M):C TheqE, (M) m=,n
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