
Constructive Logic

Frank Pfenning

Carnegie Mellon University

Draft of January 9, 2003

Material for the course Constructive Logic at Carnegie Mellon University, Fall
2000. Material for this course is available at

http://www.cs.cmu.edu/~fp/courses/logic/.

Please send comments to fp@cs.cmu.edu

This material is in rough draft form and is likely to contain errors. Furthermore,
citations are in no way adequate or complete. Please do not cite or distribute
this document.

This work was supported in part by the University Education Council at Carnegie
Mellon University and by NSF Grant CCR-9619684.

Copyright c© 2000, Frank Pfenning

ii

Draft of January 9, 2003

Contents

1 Introduction 1

2 Propositional Logic 5
2.1 Judgments and Propositions . 5
2.2 Hypothetical Judgments . 7
2.3 Disjunction and Falsehood . 11
2.4 Notational Definition . 14
2.5 Derived Rules of Inference . 16
2.6 Logical Equivalences . 17
2.7 Summary of Judgments . 18
2.8 A Linear Notation for Proofs . 19
2.9 Normal Deductions . 23
2.10 Exercises . 26

3 Proofs as Programs 27
3.1 Propositions as Types . 27
3.2 Reduction . 31
3.3 Summary of Proof Terms . 34
3.4 Properties of Proof Terms . 36
3.5 Primitive Recursion . 43
3.6 Booleans . 48
3.7 Lists . 49
3.8 Summary of Data Types . 51
3.9 Predicates on Data Types . 52
3.10 Induction . 55

4 First-Order Logic and Type Theory 59
4.1 Quantification . 60
4.2 First-Order Logic . 64
4.3 Arithmetic . 69
4.4 Contracting Proofs to Programs 75
4.5 Structural Induction . 81
4.6 Reasoning about Data Representations 86
4.7 Complete Induction . 92

Draft of January 9, 2003

iv CONTENTS

4.8 Dependent Types . 97
4.9 Data Structure Invariants . 103

5 Decidable Fragments 111
5.1 Quantified Boolean Formulas . 112
5.2 Boolean Satisfiability . 114
5.3 Constructive Temporal Logic . 115

Bibliography 119

Draft of January 9, 2003

4 CONTENTS

Draft of January 9, 2003

Chapter 2

Propositional Logic

The goal of this chapter is to develop the two principal notions of logic, namely
propositions and proofs. There is no universal agreement about the proper
foundations for these notions. One approach, which has been particularly suc-
cessful for applications in computer science, is to understand the meaning of
a proposition by understanding its proofs. In the words of Martin-Löf [ML96,
Page 27]:

The meaning of a proposition is determined by [. . .] what counts as
a verification of it.

In this chapter we apply Martin-Löf’s approach, which follows a rich philo-
sophical tradition, to explain the basic propositional connectives. We will see
later that universal and existential quantifiers and types such as natural num-
bers, lists, or trees naturally fit into the same framework.

2.1 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of the
notions of judgment and proposition. A judgment is something we may know,
that is, an object of knowledge. A judgment is evident if we in fact know it.

We make a judgment such as “it is raining”, because we have evidence for it.
In everyday life, such evidence is often immediate: we may look out the window
and see that it is raining. In logic, we are concerned with situation where the
evidence is indirect: we deduce the judgment by making correct inferences from
other evident judgments. In other words: a judgment is evident if we have a
proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. In order to reason correctly, we therefore need a second judgment
form “A is a proposition”. But there are many others that have been studied
extensively. For example, “A is false”, “A is true at time t” (from temporal

Draft of January 9, 2003

6 Propositional Logic

logic), “A is necessarily true” (from modal logic), “program M has type τ” (from
programming languages), etc.

Returning to the first two judgments, let us try to explain the meaning of
conjunction. We write A prop for the judgment “A is a proposition” and A true
for the judgment “A is true” (presupposing that A prop). Given propositions
A and B, we want to form the compound proposition “A and B”, written more
formally as A ∧B. We express this in the following inference rule:

A prop B prop
∧F

A ∧B prop

This rule allows us to conclude that A ∧ B prop if we already know that
A prop and B prop. In this inference rule, A and B are schematic variables, and
∧F is the name of the rule (which is short for “conjunction formation”). The
general form of an inference rule is

J1 . . . Jn
name

J

where the judgments J1, . . . , Jn are called the premises, the judgment J is called
the conclusion. In general, we will use letters J to stand for judgments, while
A, B, and C are reserved for propositions.

Once the rule of conjunction formation (∧F) has been specified, we know
that A∧B is a proposition, if A and B are. But we have not yet specified what
it means, that is, what counts as a verification of A ∧ B. This is accomplished
by the following inference rule:

A true B true
∧I

A ∧B true

Here the name ∧I stands for “conjunction introduction”, since the conjunction
is introduced in the conclusion. We take this as specifying the meaning of A∧B

completely. So what can be deduce if we know that A∧B is true? By the above
rule, to have a verification for A ∧ B means to have verifications for A and B.
Hence the following two rules are justified:

A ∧B true
∧EL

A true

A ∧B true
∧ER

B true

The name ∧EL stands for “left conjunction elimination”, since the conjunction
in the premise has been eliminated in the conclusion. Similarly ∧ER stands for
“right conjunction elimination”.

We will later see what precisely is required in order to guarantee that the
formation, introduction, and elimination rules for a connective fit together cor-
rectly. For now, we will informally argue the correctness of the elimination
rules.

Draft of January 9, 2003

2.2 Hypothetical Judgments 7

As a second example we consider the proposition “truth” written as >.

>F
> prop

Truth should always be true, which means its introduction rule has no premises.

>I
> true

Consequently, we have no information if we know > true, so there is no elimi-
nation rule.

A conjunction of two propositions is characterized by one introduction rule
with two premises, and two corresponding elimination rules. We may think of
truth as a conjunction of zero propositions. By analogy it should then have one
introduction rule with zero premises, and zero corresponding elimination rules.
This is precisely what we wrote out above.

2.2 Hypothetical Judgments

Consider the following derivation, for some arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true
∧ER

B ∧ C true
∧EL

B true

Have we actually proved anything here? At first glance it seems that cannot be
the case: B is an arbitrary proposition; clearly we should not be able to prove
that it is true. Upon closer inspection we see that all inferences are correct,
but the first judgment A ∧ (B ∧ C) has not been justified. We can extract the
following knowledge:

From the assumption that A ∧ (B ∧ C) is true, we deduce that B

must be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical derivation. In general, we may have more than one assumption, so
a hypothetical derivation has the form

J1 · · · Jn
...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judgment J

is the conclusion. Note that we can always substitute a proof for any hypoth-
esis Ji to eliminate the assumption. We call this the substitution principle for
hypotheses.

Draft of January 9, 2003

8 Propositional Logic

Many mistakes in reasoning arise because dependencies on some hidden as-
sumptions are ignored. When we need to be explicit, we write J1, . . . , Jn ` J for
the hypothetical judgment which is established by the hypothetical derivation
above. We may refer to J1, . . . , Jn as the antecedents and J as the succedent of
the hypothetical judgment.

One has to keep in mind that hypotheses may be used more than once, or
not at all. For example, for arbitrary propositions A and B,

A ∧B true
∧ER

B true

A ∧B true
∧EL

A true
∧I

B ∧A true

can be seen a hypothetical derivation of A ∧B true ` B ∧A true.
With hypothetical judgments, we can now explain the meaning of implication

“A implies B” or “if A then B” (more formally: A⊃B). First the formation
rule:

A prop B prop
⊃F

A⊃B prop

Next, the introduction rule: A⊃B is true, if B is true under the assumption
that A is true.

u
A true

...

B true
⊃Iu

A⊃B true

The tricky part of this rule is the label u. If we omit this annotation, the rule
would read

A true
...

B true
⊃I

A⊃B true

which would be incorrect: it looks like a derivation of A⊃B true from the
hypothesis A true. But the assumption A true is introduced in the process of
proving A⊃B true; the conclusion should not depend on it! Therefore we label
uses of the assumption with a new name u, and the corresponding inference
which introduced this assumption into the derivation with the same label u.

As a concrete example, consider the following proof of A⊃(B⊃(A ∧B)).

u
A true

w
B true

∧I
A ∧B true

⊃Iw

B⊃(A ∧B) true
⊃Iu

A⊃(B⊃(A ∧B)) true

Draft of January 9, 2003

2.2 Hypothetical Judgments 9

Note that this derivation is not hypothetical (it does not depend on any assump-
tions). The assumption A true labeled u is discharged in the last inference, and
the assumption B true labeled w is discharged in the second-to-last inference.
It is critical that a discharged hypothesis is no longer available for reasoning,
and that all labels introduced in a derivation are distinct.

Finally, we consider what the elimination rule for implication should say. By
the only introduction rule, having a proof of A⊃B true means that we have a
hypothetical proof of B true from A true. By the substitution principle, if we
also have a proof of A true then we get a proof of B true.

A⊃B true A true
⊃E

B true

This completes the rule concerning implication.

With the rules so far, we can write out proofs of simple properties con-
cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

u
A ∧B true

∧ER

B true

u
A ∧B true

∧EL

A true
∧Iu

B ∧A true
⊃I

(A ∧B)⊃(B ∧A) true

When we construct such a derivation, we generally proceed by a combination
of bottom-up and top-down reasoning. The next example is a distributivity
law, allowing us to move implications over conjunctions. This time, we show
the partial proofs in each step. Of course, other sequences of steps in proof
constructions are also possible.

...
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

First, we use the implication introduction rule bottom-up.

u
A⊃(B ∧ C) true

...

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Draft of January 9, 2003

10 Propositional Logic

Next, we use the conjunction introduction rule bottom-up.

u
A⊃(B ∧ C) true

...

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

We now pursue the left branch, again using implication introduction bottom-
up.

u
A⊃(B ∧ C) true

w
A true

...

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Note that the hypothesis A true is available only in the left branch, but
not in the right one: it is discharged at the inference ⊃Iw. We now switch to
top-down reasoning, taking advantage of implication elimination.

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

...

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

Now we can close the gap in the left-hand side by conjunction elimination.

Draft of January 9, 2003

2.3 Disjunction and Falsehood 11

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

∧EL

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

...

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.

u
A⊃(B ∧ C) true

w
A true

⊃E
B ∧ C true

∧EL

B true
⊃Iw

A⊃B true

u
A⊃(B ∧ C) true

v
A true

⊃E
B ∧ C true

∧ER

C true
⊃Iv

A⊃C true
∧I

(A⊃B) ∧ (A⊃C) true
⊃Iu

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

2.3 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A ∨ B) is more difficult, but does not
require any new judgment forms.

A prop B prop
∨F

A ∨B prop

Disjunction is characterized by two introduction rules: A∨B is true, if either
A or B is true.

A true
∨IL

A ∨B true

B true
∨IR

A ∨B true

Now it would be incorrect to have an elimination rule such as

A ∨B true
∨EL?

A true

because even if we know that A∨B is true, we do not know whether the disjunct
A or the disjunct B is true. Concretely, with such a rule we could derive the

Draft of January 9, 2003

12 Propositional Logic

truth of every proposition A as follows:

u
B true

⊃Iu

B⊃B true

w
B⊃B true

∨IR

A ∨ (B⊃B) true
∨EL?

A true
⊃Iw

(B⊃B)⊃A true
⊃E

A true

Thus we take a different approach. If we know that A ∨B is true, we must
consider two cases: A true and B true. If we can prove a conclusion C true in
both cases, then C must be true! Written as an inference rule:

A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

Note that we use once again the mechanism of hypothetical judgments. In the
proof of the second premise we may use the assumption A true labeled u, in the
proof of the third premise we may use the assumption B true labeled w. Both
are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first premise
we know A ∨ B true. The premises of the two possible introduction rules are
A true and B true. In case A true we conclude C true by the substitution
principle and the second premise: we substitute the proof of A true for any use
of the assumption labeled u in the hypothetical derivation. The case for B true
is symmetric, using the hypothetical derivation in the third premise.

Because of the complex nature of the elimination rule, reasoning with dis-
junction is more difficult than with implication and conjunction. As a simple
example, we prove the commutativity of disjunction.

...
(A ∨B)⊃(B ∨A) true

We begin with an implication introduction.

u
A ∨B true

...

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true

Draft of January 9, 2003

2.3 Disjunction and Falsehood 13

At this point we cannot use either of the two disjunction introduction rules.
The problem is that neither B nor A follow from our assumption A∨B! So first
we need to distinguish the two cases via the rule of disjunction elimination.

u
A ∨B true

v
A true

...

B ∨A true

w
B true

...

B ∨A true
∨Ev,w

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true

The assumption labeled u is still available for each of the two proof obligations,
but we have omitted it, since it is no longer needed.

Now each gap can be filled in directly by the two disjunction introduction
rules.

u
A ∨B true

v
A true

∨IR

B ∨A true

w
B true

∨IL

B ∨A true
∨Ev,w

B ∨A true
⊃Iu

(A ∨B)⊃(B ∨A) true

This concludes the discussion of disjunction. Falsehood (written as ⊥, some-
times called absurdity) is a proposition that should have no proof! Therefore
there are no introduction rules, although we of course have the standard forma-
tion rule.

⊥F
⊥ prop

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth of any
arbitrary proposition if we know ⊥ true. This justifies the elimination rule

⊥ true
⊥E

C true

We can also think of falsehood as a disjunction between zero alternatives. By
analogy with the binary disjunction, we therefore have zero introduction rules,
and an elimination rule in which we have to consider zero cases. This is precisely
the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think of the
proposition “not A” (written ¬A) as A⊃⊥. In other words, ¬A is true precisely
if the assumption A true is contradictory because we could derive ⊥ true.

Draft of January 9, 2003

14 Propositional Logic

2.4 Notational Definition

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35]. One of his main motivations was to devise rules
that model mathematical reasoning as directly as possible, although clearly in
much more detail than in a typical mathematical argument.

We now consider how to define negation. So far, the meaning of any logical
connective has been defined by its introduction rules, from which we derived
its elimination rules. The definitions for all the connectives are orthogonal : the
rules for any of the connectives do not depend on any other connectives, only
on basic judgmental concepts. Hence the meaning of a compound proposition
depends only on the meaning of its constituent propositions. From the point
of view of understanding logical connectives this is a critical property: to un-
derstand disjunction, for example, we only need to understand its introduction
rules and not any other connectives.

A frequently proposed introduction rule for “not A” (written ¬A) is

u
A true

...

⊥ true
¬Iu?

¬A true

In words: ¬A is true if the assumption that A is true leads to a contradiction.
However, this is not a satisfactory introduction rule, since the premise relies the
meaning of ⊥, violating orthogonality among the connectives. There are several
approaches to removing this dependency. One is to introduce a new judgment,
“A is false”, and reason explicitly about truth and falsehood. Another em-
ploys schematic judgments, which we consider when we introduce universal and
existential quantification.

Here we pursue a third alternative: for arbitrary propositions A, we think of
¬A as a syntactic abbreviation for A⊃⊥. This is called a notational definition
and we write

¬A = A⊃⊥.

This notational definition is schematic in the proposition A. Implicit here is the
formation rule

A prop
¬F

¬A prop

We allow silent expansion of notational definitions. As an example, we prove

Draft of January 9, 2003

2.4 Notational Definition 15

that A and ¬A cannot be true simultaneously.

u
A ∧ ¬A true

∧ER

¬A true

u
A ∧ ¬A true

∧EL

A true
⊃E

⊥ true
⊃Iu

¬(A ∧ ¬A) true

We can only understand this derivation if we keep in mind that ¬A stands for
A⊃⊥, and that ¬(A ∧ ¬A) stands for (A ∧ ¬A)⊃⊥.

As a second example, we show the proof that A⊃¬¬A is true.

w
¬ A true

u
A true

⊃E
⊥ true

⊃Iw

¬¬A true
⊃Iu

A⊃¬¬A true

Next we consider A ∨ ¬A, the so-called “law” of excluded middle. It claims
that every proposition is either true or false. This, however, contradicts our
definition of disjunction: we may have evidence neither for the truth of A, nor
for the falsehood of A. Therefore we cannot expect A ∨ ¬A to be true unless
we have more information about A.

One has to be careful how to interpret this statement, however. There are
many propositions A for which it is indeed the case that we know A ∨ ¬A. For
example, > ∨ (¬>) is clearly true because > true. Similarly, ⊥ ∨ (¬⊥) is true
because ¬⊥ is true. To make this fully explicit:

>I
> true

∨IL

> ∨ (¬>) true

u
⊥ true

⊃Iu

¬⊥ true
∨IR

⊥ ∨ (¬⊥) true

In mathematics and computer science, many basic relations satisfy the law of
excluded middle. For example, we will be able to show that for any two numbers
k and n, either k < n or ¬(k < n). However, this requires proof, because for
more complex A propositions we may not know if A true or ¬A true. We will
return to this issue later in this course.

At present we do not have the tools to show formally that A ∨ ¬A should
not be true for arbitrary A. A proof attempt with our generic proof strategy
(reason from the bottom up with introduction rules and from the top down with
elimination rules) fails quickly, no matter which introduction rule for disjunction

Draft of January 9, 2003

16 Propositional Logic

we start with.

...

A true
∨IL

A ∨ ¬A true

u
A true

...

⊥ true
⊃Iu

¬A true
∨IR

A ∨ ¬A true

We will see that this failure is in fact sufficient evidence to know that A ∨ ¬A

is not true for arbitrary A.

2.5 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules of
inference. For example,

A⊃B true B⊃C true

A⊃C true

is a derived rule of inference. Its derivation is the following:

u
A true A⊃B true

⊃E
B true B⊃C true

⊃E
C true

⊃Iu

A⊃C true

Note that this is simply a hypothetical derivation, using the premises of the
derived rule as assumptions. In other words, a derived rule of inference is
nothing but an evident hypothetical judgment; its justification is a hypothetical
derivation.

We can freely use derived rules in proofs, since any occurrence of such a rule
can be expanded by replacing it with its justification.

A second example of notational definition is logical equivalence “A if and
only if B” (written A≡B). We define

(A≡B) = (A⊃B) ∧ (B⊃A).

That is, two propositions A and B are logically equivalent if A implies B and B

implies A. Under this definition, the following become derived rules of inference
(see Exercise 2.1). They can also be seen as introduction and elimination rules

Draft of January 9, 2003

2.6 Logical Equivalences 17

for logical equivalence (whence their names).

u
A true

...

B true

w
B true

...

A true
≡Iu,w

A≡B true

A≡B true A true
≡EL

B true

A≡B true B true
≡ER

A true

2.6 Logical Equivalences

We now consider several classes of logical equivalences in order to develop some
intuitions regarding the truth of propositions. Each equivalence has the form
A≡B, but we consider only the basic connectives and constants (∧, ⊃, ∨,
>, ⊥) in A and B. Later on we consider negation as a special case. We use
some standard conventions that allow us to omit some parentheses while writing
propositions. We use the following operator precedences

¬ > ∧ > ∨ > ⊃ > ≡

where ∧, ∨, and ⊃ are right associative. For example

¬A⊃A ∨ ¬¬A⊃⊥

stands for
(¬A)⊃((A ∨ (¬(¬A)))⊃⊥)

In ordinary mathematical usage, A≡B≡C stands for (A≡B)∧(B≡C); in the
formal language we do not allow iterated equivalences without explicit paren-
theses in order to avoid confusion with propositions such as (A ≡ A) ≡ >.

Commutativity. Conjunction and disjunction are clearly commutative, while
implication is not.

(C1) A ∧B ≡ B ∧A true

(C2) A ∨B ≡ B ∨A true

(C3) A⊃B is not commutative

Idempotence. Conjunction and disjunction are idempotent, while self-implication
reduces to truth.

(I1) A ∧A ≡ A true

(I2) A ∨A ≡ A true

(I3) A⊃A ≡ > true

Draft of January 9, 2003

18 Propositional Logic

Interaction Laws. These involve two interacting connectives. In principle,
there are left and right interaction laws, but because conjunction and disjunction
are commutative, some coincide and are not repeated here.

(L1) A ∧ (B ∧ C) ≡ (A ∧B) ∧ C true

(L2) A ∧ > ≡ A true

(L3) A ∧ (B⊃C) do not interact

(L4) A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) true

(L5) A ∧ ⊥ ≡ ⊥ true

(L6) A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) true

(L7) A ∨ > ≡ > true

(L8) A ∨ (B⊃C) do not interact

(L9) A ∨ (B ∨ C) ≡ (A ∨B) ∨ C true

(L10) A ∨ ⊥ ≡ A true

(L11) A⊃(B ∧ C) ≡ (A⊃B) ∧ (A⊃C) true

(L12) A⊃> ≡ > true

(L13) A⊃(B⊃C) ≡ (A ∧B)⊃C true

(L14) A⊃(B ∨ C) do not interact

(L15) A⊃⊥ do not interact

(L16) (A ∧B)⊃C ≡ A⊃(B⊃C) true

(L17) >⊃C ≡ C true

(L18) (A⊃B)⊃C do not interact

(L19) (A ∨B)⊃C ≡ (A⊃C) ∧ (B⊃C) true

(L20) ⊥⊃C ≡ > true

2.7 Summary of Judgments

Judgments.
A prop A is a proposition
A true Proposition A is true

Propositional Constants and Connectives. The following table summa-
rizes the introduction and elimination rules for the propositional constants (>,
⊥) and connectives (∧, ⊃, ∨). We omit the straightforward formation rules.

Draft of January 9, 2003

2.8 A Linear Notation for Proofs 19

Introduction Rules Elimination Rules

A true B true
∧I

A ∧B true

A ∧B true
∧EL

A true

A ∧B true
∧ER

B true

>I
> true no >E rule

u
A true

...

B true
⊃Iu

A⊃B true

A⊃B true A true
⊃E

B true

A true
∨IL

A ∨B true

B true
∨IR

A ∨B true
A ∨B true

u
A true

...

C true

w
B true

...

C true
∨Eu,w

C true

no ⊥I rule
⊥ true

⊥E
C true

Notational Definitions. We use the following notational definitions.
¬A = A⊃⊥ not A

A≡B = (A⊃B) ∧ (B⊃A) A if and only if B

2.8 A Linear Notation for Proofs

The two-dimensional format for rules of inference and deductions is almost uni-
versal in the literature on logic. Unfortunately, it is not well-suited for writ-
ing actual proofs of complex propositions, because deductions become very un-
wieldy. Instead with use a linearized format explained below. Furthermore,
since logical symbols are not available on a keyboard, we use the following con-
crete syntax for propositions:

A≡B A <=> B A if and only if B
A⊃B A => B A implies B

A ∨B A | B A or B

A ∧B A & B A and B

¬A ~ A not A

Draft of January 9, 2003

20 Propositional Logic

The operators are listed in order of increasing binding strength, and impli-
cation (=>), disjunction (|), and conjunction (&) associate to the right, just like
the corresponding notation from earlier in this chapter.

The linear format is mostly straightforward. A proof is written as a sequence
of judgments separated by semi-colon ‘;’. Later judgements must follow from
earlier ones by simple applications of rules of inference. Since it can easily be
verified that this is the case, explicit justifications of inferences are omitted.
Since the only judgment we are interested in at the moment is the truth of a
proposition, the judgment “A true” is abbreviated simply as “A”.

The only additional notation we need is for hypothetical proofs. A hypo-
thetical proof

A true
...

C true

is written as [A;...;C].

In other words, the hypothesis A is immediately preceded by a square bracket
(‘[’), followed by the lines representing the hypothetical proof of C, followed by
a closing square bracket (‘]’). So square brackets are used to delimit the scope
of an assumption. If we need more than hypothesis, we nest this construct as
we will see in the example below.

As an example, we consider the proof of (A⊃B) ∧ (B⊃C)⊃(A⊃C) true.
We show each stage in the proof during its natural construction, showing both
the mathematical and concrete syntax, except that we omit the judgment “true”
to keep the size of the derivation manageable. We write ‘...’ to indicate that
the following line has not yet been justified.

...
(A⊃B) ∧ (B⊃C)⊃(A⊃C)

...

(A => B) & (B => C) => (A => C);

The first bottom-up step is an implication introduction. In the linear form,
we use our notation for hypothetical judgments.

u
(A⊃B) ∧ (B⊃C)

...

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[(A => B) & (B => C);

...

A => C];

(A => B) & (B => C) => (A => C);

Again, we proceed via an implication introduction. In the mathematical
notation, the hypotheses are shown next to each other. In the linear notation,
the second hypothesis A is nested inside the first, also making both of them
available to fill the remaining gap in the proof.

Draft of January 9, 2003

2.8 A Linear Notation for Proofs 21

u
(A⊃B) ∧ (B⊃C)

w
A

...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[(A => B) & (B => C);

[A;

...

C];

A => C];

(A => B) & (B => C) => (A => C);

Now that the conclusion is atomic and cannot be decomposed further, we
reason downwards from the hypotheses. In the linear format, we write the
new line A => B; immediately below the hypothesis, but we could also have
inserted it directly below A;. In general, the requirement is that the lines
representing the premise of an inference rule must all come before the conclusion.
Furthermore, lines cannot be used outside the hypothetical proof in which they
appear, because their proof could depend on the hypothesis.

u
(A⊃B) ∧ (B⊃C)

∧EL

A⊃B
w

A

...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[(A => B) & (B => C);

A => B;

[A;

...

C];

A => C];

(A => B) & (B => C) => (A => C);

Nex we apply another straightforward top-down reasoning step. In this case,
there is no choice on where to insert B;.

u
(A⊃B) ∧ (B⊃C)

∧EL

A⊃B
w

A
⊃E

B
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[(A => B) & (B => C);

A => B;

[A;

B;

...

C];

A => C];

(A => B) & (B => C) => (A => C);

For the last two steps, we align the derivations vertically. The are both
top-down steps (conjunction elimination followed by implication elimination).

Draft of January 9, 2003

22 Propositional Logic

u
(A⊃B) ∧ (B⊃C)

∧ER

B⊃C

u
(A⊃B) ∧ (B⊃C)

∧EL

A⊃B
w

A
⊃E

B
...

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[(A => B) & (B => C);

A => B;

B => C;

[A;

B;

...

C];

A => C];

(A => B) & (B => C) => (A => C);

In the step above we notice that subproofs may be shared in the linearized
format, while in the tree format they appear more than once. In this case it is
only the hypothesis (A⊃B) ∧ (B⊃C) which is shared.

u
(A⊃B) ∧ (B⊃C)

∧ER

B⊃C

u
(A⊃B) ∧ (B⊃C)

∧EL

A⊃B
w

A
⊃E

B
⊃E

C
⊃Iw

A⊃C
⊃Iu

(A⊃B) ∧ (B⊃C)⊃(A⊃C)

[(A => B) & (B => C);

A => B;

B => C;

[A;

B;

C];

A => C];

(A => B) & (B => C) => (A => C);

In the last step, the linear derivation only changed in that we noticed that
C already follows from two other lines and is therefore justified.

Draft of January 9, 2003

2.9 Normal Deductions 23

For other details of concrete syntax and usage of the proof-checking program
available for this course, please refer to the on-line documentation available
through the course home page.

2.9 Normal Deductions

The strategy we have used so far in proof search is easily summarized: we reason
with introduction rules from the bottom up and with elimination rules from the
top down, hoping that the two will meet in the middle. This description is
somewhat vague in that it is not obvious how to apply it to complex rules such
as disjunction elimination which involve formulas other than the principal one
whose connective is eliminated.

To make this precise we introduce two new judgments
A ↑ A has a normal proof
A ↓ A has a neutral proof

We are primarily interest in normal proofs, which are those that our strategy
can find. Neutral proofs represent an auxiliary concept (sometimes called an
extraction proof) necessary for the definition of normal proofs.

We will define these judgments via rules, trying to capture the following
intuitions:

1. A normal proof is either neutral, or proceeds by applying introduction
rules to other normal proofs.

2. A neutral proof proceeds by applying elimination rules to hypotheses or
other neutral proofs.

By construction, every A which has a normal (or neutral) proof is true. The
converse, namely that every true A has a normal proof also holds, but is not at
all obvious. We may prove this property later on, at least for a fragment of the
logic.

First, a general rule to express that every neutral proof is normal.

A ↓
↓↑

A ↑

Conjunction. The rules for conjunction are easily annotated.

A ↑ B ↑
∧I

A ∧B ↑

A ∧B ↓
∧EL

A ↓

A ∧B ↓
∧ER

B ↓

Truth. Truth only has an introduction rule and therefore no neutral proof
constructor.

>I
> ↑

Draft of January 9, 2003

24 Propositional Logic

Implication. Implication first fixes the idea that hypotheses are neutral, so
the introduction rule refers to both normal and neutral deductions.

u
A ↓

...

B ↑
⊃Iu

A⊃B ↑

A⊃B ↓ A ↑
⊃E

B ↓

The elimination rule is more difficult to understand. The principal premise
(with the connective “⊃” we are eliminating) should have a neutral proof. The
resulting derivation will once again be neutral, but we can only require the
second premise to have a normal proof.

Disjunction. For disjunction, the introduction rules are straightforward. The
elimination rule requires again the requires the principal premise to have a
neutral proof. An the assumptions introduced in both branches are also neutral.
In the end we can conclude that we have a normal proof of the conclusion, if we
can find a normal proof in each premise.

A ↑
∨IL

A ∨B ↑

B ↑
∨IR

A ∨B ↑
A ∨B ↓

u
A ↓

...

C ↑

w
B ↓

...

C ↑
∨Eu,w

C ↑

Falsehood. Falsehood is analogous to the rules for disjunction. But since
there are no introduction rules, there are no cases to consider in the elimination
rule.

⊥ ↓
⊥E

C ↑

All the proofs we have seen so far in these notes are normal: we can easily
annotate them with arrows using only the rules above. The following is an

Draft of January 9, 2003

2.9 Normal Deductions 25

example of a proof which is not normal.

w
¬A true

u
A true

w
¬A true

∧I
A ∧ ¬A true

∧EL

A true
⊃E

⊥ true
⊃Iw

¬A⊃⊥ true
⊃Iu

A⊃¬A⊃⊥ true

If we follow the process of annotation, we fail at only one place as indicated
below.

w
¬A ↓

u
A ↓

w
¬A ↓

∧I
A ∧ ¬A ?

∧EL
A ↓

↓↑
A ↑

⊃E
⊥ ↓

↓↑
⊥ ↑

⊃Iw

¬A⊃⊥ ↑
⊃Iu

A⊃¬A⊃⊥ ↑

The situation that prevents this deduction from being normal is that we
introduce a connective (in this case, A ∧ ¬A) and then immediately eliminate
it. This seems like a detour—why do it at all? In fact, we can just replace this
little inference with the hypothesis A ↓ and obtain a deduction which is now
normal.

w
¬A ↓

u
A ↓

↓↑
A ↑

⊃E
⊥ ↓

↓↑
⊥ ↑

⊃Iw

¬A⊃⊥ ↑
⊃Iu

A⊃¬A⊃⊥ ↑

It turns out that the only reason a deduction may not be normal is an
introduction followed by an elimination, and that we can always simplify such
a derivation to (eventually) obtain a normal one. This process of simplification

Draft of January 9, 2003

26 Propositional Logic

is directly connected to computation in a programming language. We only
need to fix a particular simplification strategy. Under this interpretation, a
proof corresponds to a program, simplification of the kind above corresponds
to computation, and a normal proof corresponds to a value. It is precisely this
correspondence which is the central topic of the next chapter.

We close this chapter with our first easy meta-theorem, that is, a theorem
about a logical system rather than within it. We show that if a the proposition
A has a normal proof then it must be true. In order to verify this, we also need
the auxiliary property that if A has a neutral proof, it is true.

Theorem 2.1 (Soundness of Normal Proofs) For natural deduction with
logical constants ∧, ⊃, ∨, > and ⊥ we have:

1. If A ↑ then A true, and

2. if A ↓ then A true.

Proof: We replace every judgment B ↑ and B ↓ in the deduction of A ↑ or A ↓

by B true and B true. This leads to correct derivation that A true with one
exception: the rule

B ↓
↓↑

B ↑

turns into
B true

B true

We can simply delete this “inference” since premise and conclusion are identical.
2

2.10 Exercises

Exercise 2.1 Show the derivations for the rules ≡I, ≡EL and ≡ER under the
definition of A≡B as (A⊃B) ∧ (B⊃A).

Draft of January 9, 2003

118 Propositional Logic

Draft of January 9, 2003

Bibliography

[CGP99] E.M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Dav96] Rowan Davies. A temporal logic approach to binding-time analysis.
In E. Clarke, editor, Proceedings of the Eleventh Annual Symposium
on Logic in Computer Science, pages 184–195, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation
in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

[Har95] John Harrison. Binary decision diagrams as a HOL derived rule. The
Computer Journal, 38:162–170, 1995.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980. Hitherto unpublished note of 1969, rearranged,
corrected, and annotated by Howard.

[HR00] Michael R.A. Huth and Mark D. Ryan. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge University Press,
2000.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages
153–175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of January 9, 2003

120 BIBLIOGRAPHY

[Oka99] Chris Okasaki. Red-black trees in a functional setting. Journal of
Functional Programming, 9(4):471–477, July 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI’98), pages 249–257, Montreal, Canada, June 1998. ACM Press.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In A. Aiken, editor, Conference Record of the 26th Sym-
posium on Principles of Programming Languages (POPL’99), pages
214–227. ACM Press, January 1999.

Draft of January 9, 2003

