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In class we associated with each regular expression r an unrestricted context
Γr(s, f) with a designated “start” and “end” predicate symbol unique to that
context. The context is chosen so that the following adequacy theorem holds:1

Theorem 0.1 Let Γr(s, f) be the context, start, and end predicates associate

with regular expression r. Then x ∈ L(r) iff Γr(s, f); • ° ∀y.s(x · y)( f(y).

The proof of adequacy proceeds in the forward direction by induction on the
structure of r, in each case exhibiting the required derivation. In the backward
direction we relied on a normalization theorem for DILL that allows us to pro-
ceed by analyzing the structure of a normal proof of the quantified formula. The
sketch of the proof given in class was unnecessarily turgid; the purpose of this
note is to give a clearer proof.

First, let us review the definition of Γr(s, f) given in Figure 1. The only
significant difference to what we did in class is in the treatment of the regular
expression 0, which matches nothing. Here we have two axioms, rather than
one. This is done to ensure the following invariants for each Γr(s, f):

1. The start, s, and end, f , symbol of Γr(s, f) is unique to that context.

2. There is precisely one assumption governing the start symbol, s, and it
has the form ∀ . . . .(s(. . .)( . . .).

3. There is precisely one assumption governing the end symbol, f , and it has
the form ∀ . . . .(. . . ( f(. . .)).

Second, the backward direction of adequacy follows from the following lemma:

Lemma 0.1 If Γr(s, f), y; s(z)↓ ° f(y)↑, then z = x · y for some x ∈ L(r).

Proof: We proceed by induction on the structure of r, analyzing the form of
normal proofs of the antecedent in each case.

• Suppose that r = r1 r2. We have by induction

1Throughout variables range over the type of strings of letters of a fixed alphabet.
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Γ1(s, f) = ∀y.s(y)( f(y)
Γa(s, f) = ∀y.s(a · y)( f(y)
Γ0(s, f) = ∀y.s(y)( >

∀y.0 ( f(y)
Γr1 r2

(s, f) = ∀y.s(y)( s1(y)
Γr1

(s1, f1)
∀y.f1(y)( s2(y)
Γr2

(s2, f2)
∀y.f2(y)( f(y)

Γr1+r2
(s, f) = ∀y.s(y)( s1(y)&s2(y)

Γr1
(s1, f1)

Γr2
(s2, f2)

∀y.f1(y)⊕ f2(y)( f(y)
Γr1∩r2

(s, f) = ∀y.s(y)( s1(y)⊗ s2(y)
Γr1

(s1, f1)
Γr2

(s2, f2)
∀y.f1(y)⊗ f2(y)( f(y)

Γr∗(s, f) = ∀y.s(y)( f(y)&s1(y)
Γr1

(s1, f1)
∀y.f1(y)( s(y)

Γ>(s, f) = ∀x.∀y.s(x · y)( f(y)

Figure 1: Translation of Regular Expressions to Contexts
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1. If Γr1
(s1, f1), y1; s1(z1)↓ ° f1(y1)↑, then z1 = x1 · y1 for some x1 ∈

L(r1).

2. If Γr2
(s2, f2), y2; s2(z2)↓ ° f2(y2)↑, then z2 = x2 · y2 for some x2 ∈

L(r2).

Assume Γr(s, f), y; s(z) ° f(y)↑; we are to show that z = x · y with
x ∈ L(r). Consulting the definition of Γr, the derivation must start with

Γr(s, f), y; s(z)↓ ° s1(z)↓

and end with
Γr(s, f), y; f2(y)↓ ° f(y)↓.

In between we must have

Γr(s, f), y; f1(w)↓ ° s2(w)↓,

for some w, since that is the only assumption linking r1 to r2. It follows
that we must have

Γr(s, f), y; s2(w)↓ ° f2(y)↓,

from which we obtain by induction that w = x2 · y with x2 ∈ L(r2). We
must also have

Γr(s, f), y; s1(z)↓ ° f1(w)↓,

from which it follows by induction that z = x1 ·w for some x1L(r1). This
means that z = x1 · x2 · y = x · y, where x = x1 · x2 ∈ L(r), as desired.

• Suppose that r = r1 + r2. We have by induction

1. If Γr1
(s1, f1), y1; s1(z1)↓ ° f1(y1)↑, then z1 = x1 · y1 for some x1 ∈

L(r1).

2. If Γr2
(s2, f2), y2; s2(z2)↓ ° f2(y2)↑, then z2 = x2 · y2 for some x2 ∈

L(r2).

Assume Γr(s, f), y; s(z) ° f(y)↑; we are to show that z = x·y where either
x ∈ L(r1) or x ∈ L(r2). Consulting the definition of Γr, the derivation
must start with

Γr(s, f), y; s(z)↓ ° s1(z)&s2(z)↓

and end with
Γr(s, f), y; f1(y)⊕ f2(y)↓ ° f(y)↓.

The latter implies that we have

Γr(s, f), y; f1(y)↓ ° f(y)↓,

and
Γr(s, f), y; f2(y)↓ ° f(y)↓.
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To fill the gap we either must have

Γr(s, f), y; s1(z)&s2(z)↓ ° s1(z)↓

and
Γr(s, f), y; s1(z)↓ ° f1(y),

or we must have

Γr(s, f), y; s1(z)&s2(z)↓ ° s2(z)↓

and
Γr(s, f), y; s2(z)↓ ° f2(y).

In the former case we have by induction that z = x · y for some x ∈ L(r1),
and in the latter we have z = xẏ for some x ∈ L(r2), as desired.

The other cases are handled similarly. 2
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