15-399 Supplementary Notes: Regular Expression Matching as Deduction

Robert Harper

April 14, 2004

In class we associated with each regular expression \mathbf{r} an unrestricted context $\Gamma_{\mathbf{r}}(s, f)$ with a designated "start" and "end" predicate symbol unique to that context. The context is chosen so that the following *adequacy theorem* holds:¹

Theorem 0.1 Let $\Gamma_{\mathbf{r}}(s, f)$ be the context, start, and end predicates associate with regular expression \mathbf{r} . Then $x \in \mathcal{L}(\mathbf{r})$ iff $\Gamma_{\mathbf{r}}(s, f); \bullet \Vdash \forall y.s(x \cdot y) \multimap f(y)$.

The proof of adequacy proceeds in the forward direction by induction on the structure of \mathbf{r} , in each case exhibiting the required derivation. In the backward direction we relied on a normalization theorem for DILL that allows us to proceed by analyzing the structure of a normal proof of the quantified formula. The sketch of the proof given in class was unnecessarily turgid; the purpose of this note is to give a clearer proof.

First, let us review the definition of $\Gamma_{\mathbf{r}}(s, f)$ given in Figure 1. The only significant difference to what we did in class is in the treatment of the regular expression **0**, which matches nothing. Here we have two axioms, rather than one. This is done to ensure the following invariants for each $\Gamma_{\mathbf{r}}(s, f)$:

- 1. The start, s, and end, f, symbol of $\Gamma_{\mathbf{r}}(s, f)$ is unique to that context.
- 2. There is precisely one assumption governing the start symbol, s, and it has the form $\forall \dots (s(\dots) \multimap \dots)$.
- 3. There is precisely one assumption governing the end symbol, f, and it has the form $\forall \dots (\dots \multimap f(\dots))$.

Second, the backward direction of adequacy follows from the following lemma:

Lemma 0.1 If $\Gamma_{\mathbf{r}}(s, f), y; s(z) \downarrow \Vdash f(y) \uparrow$, then $z = x \cdot y$ for some $x \in \mathcal{L}(\mathbf{r})$.

Proof: We proceed by induction on the structure of \mathbf{r} , analyzing the form of normal proofs of the antecedent in each case.

• Suppose that $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$. We have by induction

 $^{^1\}mathrm{Throughout}$ variables range over the type of strings of letters of a fixed alphabet.

$$\begin{array}{rcl} \Gamma_{\mathbf{1}}(s,f) &=& \forall y.s(y) \multimap f(y) \\ \Gamma_{\mathbf{a}}(s,f) &=& \forall y.s(a \cdot y) \multimap f(y) \\ \Gamma_{\mathbf{0}}(s,f) &=& \forall y.s(y) \multimap \top \\ & \forall y.\mathbf{0} \multimap f(y) \\ \Gamma_{\mathbf{r}_{1},\mathbf{r}_{2}}(s,f) &=& \forall y.s(y) \multimap s_{1}(y) \\ & \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \forall y.f_{1}(y) \multimap s_{2}(y) \\ & \Gamma_{\mathbf{r}_{2}}(s_{2},f_{2}) \\ & \forall y.f_{2}(y) \multimap f(y) \\ \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \Gamma_{\mathbf{r}_{2}}(s_{2},f_{2}) \\ & \forall y.f_{1}(y) \oplus f_{2}(y) \multimap f(y) \\ \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \Gamma_{\mathbf{r}_{2}}(s_{2},f_{2}) \\ & \forall y.f_{1}(y) \oplus f_{2}(y) \multimap f(y) \\ \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \Gamma_{\mathbf{r}_{2}}(s_{2},f_{2}) \\ & \forall y.f_{1}(y) \otimes f_{2}(y) \multimap f(y) \\ \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \Gamma_{\mathbf{r}_{2}}(s_{2},f_{2}) \\ & \forall y.f_{1}(y) \otimes f_{2}(y) \multimap f(y) \\ \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \Gamma_{\mathbf{r}_{1}}(s_{1},f_{1}) \\ & \forall y.f_{1}(y) \multimap s(y) \\ \Gamma_{\mathbf{\tau}}(s,f) &= & \forall x.\forall y.s(x \cdot y) \multimap f(y) \end{array}$$

Figure 1: Translation of Regular Expressions to Contexts

- 1. If $\Gamma_{\mathbf{r}_1}(s_1, f_1), y_1; s_1(z_1) \downarrow \Vdash f_1(y_1) \uparrow$, then $z_1 = x_1 \cdot y_1$ for some $x_1 \in \mathcal{L}(\mathbf{r}_1)$.
- 2. If $\Gamma_{\mathbf{r}_2}(s_2, f_2), y_2; s_2(z_2) \downarrow \Vdash f_2(y_2)^{\uparrow}$, then $z_2 = x_2 \cdot y_2$ for some $x_2 \in \mathcal{L}(\mathbf{r}_2)$.

Assume $\Gamma_{\mathbf{r}}(s, f), y; s(z) \Vdash f(y)\uparrow$; we are to show that $z = x \cdot y$ with $x \in \mathcal{L}(\mathbf{r})$. Consulting the definition of $\Gamma_{\mathbf{r}}$, the derivation must start with

$$\Gamma_{\mathbf{r}}(s, f), y; s(z) \downarrow \Vdash s_1(z) \downarrow$$

and end with

$$\Gamma_{\mathbf{r}}(s,f), y; f_2(y) \downarrow \Vdash f(y) \downarrow.$$

In between we must have

$$\Gamma_{\mathbf{r}}(s, f), y; f_1(w) \downarrow \Vdash s_2(w) \downarrow,$$

for some w, since that is the only assumption linking \mathbf{r}_1 to \mathbf{r}_2 . It follows that we must have

$$\Gamma_{\mathbf{r}}(s, f), y; s_2(w) \downarrow \Vdash f_2(y) \downarrow,$$

from which we obtain by induction that $w = x_2 \cdot y$ with $x_2 \in \mathcal{L}(\mathbf{r}_2)$. We must also have

$$\Gamma_{\mathbf{r}}(s,f), y; s_1(z) \downarrow \Vdash f_1(w) \downarrow,$$

from which it follows by induction that $z = x_1 \cdot w$ for some $x_1 \mathcal{L}(\mathbf{r}_1)$. This means that $z = x_1 \cdot x_2 \cdot y = x \cdot y$, where $x = x_1 \cdot x_2 \in \mathcal{L}(\mathbf{r})$, as desired.

- Suppose that $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. We have by induction
 - 1. If $\Gamma_{\mathbf{r}_1}(s_1, f_1), y_1; s_1(z_1) \downarrow \Vdash f_1(y_1)\uparrow$, then $z_1 = x_1 \cdot y_1$ for some $x_1 \in \mathcal{L}(\mathbf{r}_1)$.
 - 2. If $\Gamma_{\mathbf{r}_2}(s_2, f_2), y_2; s_2(z_2) \downarrow \Vdash f_2(y_2)\uparrow$, then $z_2 = x_2 \cdot y_2$ for some $x_2 \in \mathcal{L}(\mathbf{r}_2)$.

Assume $\Gamma_{\mathbf{r}}(s, f), y; s(z) \Vdash f(y)\uparrow$; we are to show that $z = x \cdot y$ where either $x \in \mathcal{L}(\mathbf{r}_1)$ or $x \in \mathcal{L}(\mathbf{r}_2)$. Consulting the definition of $\Gamma_{\mathbf{r}}$, the derivation must start with

$$\Gamma_{\mathbf{r}}(s,f), y; s(z) \downarrow \Vdash s_1(z) \& s_2(z) \downarrow$$

and end with

$$\Gamma_{\mathbf{r}}(s,f), y; f_1(y) \oplus f_2(y) \downarrow \Vdash f(y) \downarrow.$$

The latter implies that we have

 $\Gamma_{\mathbf{r}}(s,f), y; f_1(y) \downarrow \Vdash f(y) \downarrow,$

and

$$\Gamma_{\mathbf{r}}(s,f), y; f_2(y) \downarrow \Vdash f(y) \downarrow.$$

Draft of April 14, 2004

To fill the gap we either must have

$$\Gamma_{\mathbf{r}}(s,f), y; s_1(z) \& s_2(z) \downarrow \Vdash s_1(z) \downarrow$$

 $\quad \text{and} \quad$

$$\Gamma_{\mathbf{r}}(s,f), y; s_1(z) \downarrow \Vdash f_1(y),$$

or we must have

$$\Gamma_{\mathbf{r}}(s,f), y; s_1(z) \& s_2(z) \downarrow \Vdash s_2(z) \downarrow$$

and

$$\Gamma_{\mathbf{r}}(s,f), y; s_2(z) \downarrow \Vdash f_2(y).$$

In the former case we have by induction that $z = x \cdot y$ for some $x \in \mathcal{L}(\mathbf{r}_1)$, and in the latter we have $z = x\dot{y}$ for some $x \in \mathcal{L}(\mathbf{r}_2)$, as desired.

The other cases are handled similarly.