
15-399 Supplementary Notes:

Mid-Course Review

Robert Harper

February 23, 2004

Judgments and Evidence

A judgment is an assertion of knowledge about some subject matter. Examples
include “it is snowing” or “it is true that every prime other than 2 is odd”.
A judgment is correct, or evident, if there is evidence for it. What counts as
evidence depends on the form of judgment. Evidence for “it is snowing” might
be some form of direct observation; evidence for “it is true that every prime
number other than 2 is odd” is a proof.

An analytic judgment is self-evident; it requires no further information to
assess its correctness. A synthetic judgment requires external evidence to estab-
lish its correctness. The judgment “every prime other than 2 is odd expresses a
proposition” is analytic; we need only look at the purported proposition to see
that it does in fact express one. The judgments “it is snowing” and “it is true
that every prime other than 2 is odd” are synthetic; evidence for the former
consists of sense data, evidence for the latter is a proof.

A categorical judgment is unconditional. Logic is concerned with the cate-
gorical judgments P prop stating that P expresses a proposition, P true stating
that P is a true proposition, and M : P stating that M is a proof of proposition
P .

A hypothetical judgment is an assertion made under the assumption of evi-
dence for the truth of some specified set of propositions. A hypothetical judg-
ment has the form J1, . . . , Jn ` J , where the antecdents are J1, . . . , Jn, and the
consequent is J . Evidence for a hypothetical judgment consists of evidence for
J built up from the presumed evidence for each Ji (1 ≤ i ≤ n).

Classical and Constructive Semantics

Classical logic is the logic of reference, or denotation. The meaning of a proposi-
tion is a truth value, either true or false. Consequently, the law of the excluded
middle, P∨¬P , is true for any proposition P . Since negation swaps truth values,
the law of double negation elimination, ¬¬P ⊃P , is true for every proposition
P .

Draft of February 23, 2004



2

Constructive logic is the logic of sense, or knowledge. The meaning of a
proposition P is a problem to be solved; the solution consists of a proof. The
judgment P true asserts that we have evidence for P , namely a proof of it.
Since there are unsolved problems, we do not always have evidence for either
P true or ¬P true. Consequently the law of the excluded middle does not hold
in general, nor does the law of double negation elimination. A proposition P
for which P ∨ ¬P true is said to be decidable. One for which double negation
elimination is valid is said to be stable. Every decidable proposition is stable; if
all propositions are stable, then all propositions are decidable.

The categorical judgment P true is synthetic, because evidence for it consists
of a proof that is not itself part of the judgment. If we include this evidence
in the judgment, writing M : P to assert that M is a proof of P , then the
judgment is analytic. The judgment P true means that M : P for some proof
term M — the term M is the external evidence required for the truth of P .
The hypothetical judgment P1 true, . . . , Pn true ` P true is synthetic because it
asserts the existence of a proof of P from the assumptions that we know a proof
of each Pi. On the other hand the hypothetical judgment u1:P1, . . . , un:Pn `
M : P is analytic, because it contains the evidence, M , for P , which may involve
the presumed evidence ui for each Pi.

The hypothetical judgment in constructive logic obeys the following rules:

• Identity: Γ, u:P ` u : P .

• Substitution: If Γ ` M : P and Γ, u:P ` N : Q, then Γ ` [M/u]N : Q.

• Weakening: If Γ ` M : P , then Γ, u:Q ` M : P .

• Contraction: If Γ, u:P, v:P ` M : Q, then Γ ` u:P ` [u/v]M : Q.

Propositional Logic

The rules of logic codify legitimate forms of evidence for the truth of propo-
sitions. These rules are organized according to the logical connective used to
form the proposition. For each connective there are three classes of rules that
determine its meaning. The formation rules determine the conditions for form-
ing a proposition from that connective. The introduction rules for a connective
define the primary, or canonical, forms of evidence for judging a proposition
formed with that connective to be true. The elimination rules for a connective
invert the corresponding introduction rules for that connective by extracting the
canonical evidence from the truth of a proposition formed with that connective.

The rules of propositional logic govern the connectives >, ⊥, ∧, ⊃, ∨, ¬.

Truth

> prop Γ ` 〈 〉 : > (no elim rule)

Draft of February 23, 2004



3

Conjunction

P prop Q prop

P ∧ Q prop

Γ ` M : P Γ ` N : Q

Γ ` 〈M,N〉 : P ∧ Q

Γ ` M : P ∧ Q

Γ ` fst(M) : P

Γ ` N : P ∧ Q

Γ ` snd(M) : Q

Implication

P prop Q prop

P ⊃Q prop

Γ, u:P ` M : Q

Γ ` λu:P.M : P ⊃Q

Γ ` M : P ⊃Q Γ ` N : P

Γ ` M N : Q

Falsity

⊥ true (no introduction rule)
Γ ` M : ⊥

Γ ` abortP (M) : P

Disjunction

P prop Q prop

P ∨ Q prop
Γ ` M : P

Γ ` inlP,Q(M) : P ∨ Q

Γ ` N : Q

Γ ` inrP,Q(N) : P ∨ Q

Γ ` M : P ∨ Q Γ, u:P ` M1 : R Γ, v:Q ` M2 : R

Γ ` caseM of inl(u : P ) ⇒ M1 | inr(v : Q) ⇒ M2 : R

Simplification rules state that the elimination constructs are inverse to the
introduction constructs. These may be stated as axioms of definitional equality,
written M ≡ N .1

Definitional equality is the least congruence closed under these axioms:

fst(〈M,N〉) ≡ M snd(〈M,N〉) ≡ N

(λu:P.M)N ≡ [N/u]M

case inl(M) of inl(u:P ) ⇒ M1 | inr(v:Q) ⇒ M2 ≡ [M/u]M1

case inr(M) of inl(u:P ) ⇒ M1 | inr(v:Q) ⇒ M2 ≡ [M/v]M2

To say that definitional equality is a congruence is to say that in addition to
these rules we have rules stating that it is an equivalence relation (reflexive,
symmetric, and transitive) and that we may “replace equals by equals” anywhere
within a term.

1The Pfenning notes uses M ⇔ N for this.

Draft of February 23, 2004



4

Data Types

Logic is embedded in the larger framework of type theory. Type theory is con-
cerned with the categorical judgments τ type stating that τ is a type, and t ∈ τ
stating that t is a term of type τ . Data types include basic types such as the
natural numbers, and complex types such as Cartesian product types, function
types, and disjoint union types. Types are defined in much the same manner as
are propositions. This is no accident: it will emerge that propositions are just
certain forms of type.

In the presence of data types we have a new form of judgment, called the
general judgment. It has the same form as the hypothetical judgment, except
that the antecedent can involve assumptions of the form x ∈ τ , where x is a term
variable and τ ia a type. A hypothetico-general judgment is one that intermixes
the two forms of assumption: u:P and x ∈ τ . The hypothetico-general judgment
obeys the same sort of structural rules as does the hypothetical judgment in
logic: identity, substitution, weakening, and contraction.

The rules of type theory govern the “logical” type constructors 1, ×, →,
0, +, and “data” type nat. The logical type constructors correspond to the
propositional connectives, whereas the data type constructors do not. This dis-
tinction, however, is only suggestive; there is no fundamental difference between
the two.

Unit

1 type Γ ` 〈 〉 ∈ 1 (no elim rule)

Product

τ1 type τ2 type
τ1 × τ2 type

Γ ` t1 ∈ τ1 Γ ` t2 ∈ τ2

Γ ` 〈t1, t2〉 ∈ τ1 × τ2

Γ ` t ∈ τ1 × τ2

Γ ` fst(t) ∈ τ1

Γ ` t ∈ τ1 × τ2

Γ ` snd(t) ∈ τ2

Function

τ1 type τ2 type
τ1 → τ2 type

Γ, x ∈ τ1 ` t ∈ τ2

Γ ` λx ∈ τ1.t ∈ τ1 → τ2

Γ ` t1 ∈ τ2 → τ Γ ` t2 ∈ τ2

Γ ` t1 t2 ∈ τ

Void

0 type (no intro)
Γ ` t ∈ 0

Γ ` abortτ (t) ∈ τ

Draft of February 23, 2004



5

Sum

τ1 type τ2 type
τ1 + τ2 type

Γ ` t ∈ τ1

Γ ` inlτ1,τ2
(t) ∈ τ1 + τ2

Γ ` t ∈ τ2

Γ ` inrτ1,τ2
(t) ∈ τ1 + τ2

Γ ` t ∈ τ1 + τ2 Γ, x ∈ τ1 ` t1 ∈ τ Γ, y ∈ τ2 ` t2 ∈ τ

Γ ` case t of inl(x ∈ τ1) ⇒ t1 | inr(y ∈ τ2) ⇒ t2 ∈ τ

Natural Numbers

nat type

Γ ` 0 ∈ nat

Γ ` t ∈ nat

Γ ` s(t) ∈ nat

Γ ` t ∈ nat Γ ` t1 ∈ τ Γ, x ∈ nat, f(x) ∈ τ ` t2 ∈ τ

Γ ` rec t of f(0) ⇒ t1 | f(s(x ∈ nat)) ⇒ t2 ∈ τ

The simplification rules for the logical type constructors are just the same
as those for proof terms. The simplification rules for primitive recursion are as
follows:

rec 0 of f(0) ⇒ t1 | f(s(x ∈ nat)) ⇒ t2 ∈ τ ≡ t1

rec s(t) of f(0) ⇒ t1 | f(s(x ∈ nat)) ⇒ t2 ∈ τ ≡ [t/x, (∗)/f(x)]t2

where (∗) stands for the entire primitive recursion term on the left-hand side of
these two equations.

We write t ≡ u to mean that t and u are definitionally equivalent, and write
Γ ` t ≡ u ∈ τ to mean that Γ ` t ∈ τ , Γ ` u ∈ τ , and t ≡ u.

The Curry-Howard Isomorphism

There is an evident similarity between propositions and types, and between
proof terms for a proposition and the elements of the corresponding type. This
correspondence may be made explicit by defining a type, pfs(P ), of the proof
terms for the proposition P :

pfs(>) ≡ 1

pfs(⊥) ≡ 0

pfs(P ∧ Q) ≡ pfs(P ) × pfs(Q)
pfs(P ∨ Q) ≡ pfs(P ) + pfs(Q)
pfs(P ⊃Q) ≡ pfs(P ) → pfs(Q)

Draft of February 23, 2004



6

With these definitions, it is easy to see that the judgment, M : P , stating
that M is a proof of P , may be regarded as an abbreviation for the judgment
M ∈ pfs(P ). The following rules are derivable, given the definitional equalities
governing the types pfs(P ):

Γ ` P prop

Γ ` pfs(P ) type

Γ ` P ≡ Q prop

Γ ` pfs(P ) ≡ pfs(Q)

The correspondence between propositions and types, and between proofs of
propositions and elements of their associated types, is called the Curry-Howard
Isomorphism, or the propositions-as-types principle. Over time we will do away
with the separation between propositions and types, and simply identify each
proposition with the type of its proofs. In this way logic is reduced to type
theory — or, put more strikingly, mathematics is reduced to programming!

Predicate Logic

A predicate over a type τ expresses a proposition about the elements τ . (A
binary relation is simply a predicate over a product type.) The formation rule
for a predicate p over τ has the form

Γ ` t ∈ τ
Γ ` p(t) prop

For example, the equality predicate over the type nat×nat has the formation
rule

Γ ` t ∈ nat Γ ` u ∈ nat

Γ ` t =N u prop .

Since predicates give rise to propositions that contain terms, we must generalize
the judgment P prop to include hypotheses governing the variables that may
occur within it. For example,

x ∈ nat, y ∈ nat ` x =N y prop

is a correct hypothetical judgment stating that x =N y expresses a proposition
for any x ∈ nat and any y ∈ nat.

The occurrence of terms within propositions induces a notion of definitional
equality of propositions. If p is a predicate over τ , then we have

Γ ` t ≡ u ∈ nat

Γ ` p(t) ≡ p(u) prop

Definitionally equivalent propositions are indistinguishable from one another.
In particular, we have

Γ ` M : P Γ ` P ≡ Q prop

Γ ` M : Q .

Draft of February 23, 2004



7

Suppressing proof terms, this means

Γ ` P true Γ ` P ≡ Q

Γ ` Q true .

For example, since 2 + 2 ≡ 3 + 1 ∈ nat, we have 2 + 2 =N 3 + 1 ≡ 4 =N 4 prop
— they express the very same proposition.

The primitive recursion construct is the elimination rule for nat for con-
structing members of types from a natural number. The principle of mathe-
matical induction is the elimination rule for nat for constructing proofs of a
proposition for any natural number. It is stated as follows:

Γ ` t ∈ nat Γ, x ∈ nat ` P prop
Γ ` M1 : [0/x]P Γ, x ∈ nat, u(x) : P ` M2 : [s(x)/x]P

Γ ` ind t of u(0) ⇒ M1 | u(s(x ∈ nat)) ⇒ M2 : [t/x]P

There is an evident similarity with the rule for primitive recursion, the main
difference being that the proposition includes the natural number for which the
proof term provides a proof.

The simplification rules are as follows:

ind0 of u(0) ⇒ M1 | u(s(x ∈ nat)) ⇒ M2 : P ≡ M1

ind s(t) of u(0) ⇒ M1 | u(s(x ∈ nat)) ⇒ M2 : P ≡ [t/x, (∗)/u(x)]M2

Here again there is an evident similarity with primitive recursion. Primitive
recursion is the computational content of an inductive proof!

Quantification

The quantifiers are used to express generality and existence. The proposition
∀x ∈ τ.P means that [t/x]P holds for every t ∈ τ . The proposition ∃x ∈ τ.P
means that [t/x]P holds for some t ∈ τ .

Universal

Γ, x ∈ τ ` P prop (x fresh)

Γ ` ∀x ∈ τ.P prop

Γ, x ∈ τ ` M : P (x fresh)

Γ ` λx ∈ τ.M : ∀x ∈ τ.P

Γ ` M : ∀x ∈ τ.P Γ ` t ∈ τ
Γ ` M t ∈ [t/x]P

The simplification rule is as follows:

(λx ∈ τ.M) t ≡ [t/x]M

Draft of February 23, 2004



8

Existential

Γ, x ∈ τ ` P prop (x fresh)

Γ ` ∃x ∈ τ.P prop

Γ ` t ∈ τ Γ ` M : [t/x]P

Γ ` (M, t) ∈ ∃x ∈ τ.P

Γ ` M : ∃x ∈ τ.P Γ, x ∈ τ, u ∈ P ` N : Q

Γ ` let (x, u) = M in N : Q

The simplification rule is as follows:

let (x, u) = (t,M) in N ≡ [t/x,M/u]N.

Things To Come

Here is a summary of the main developments to come:

1. Introduction of families of types, or dependent types, that correspond to
predicates, leading to a consolidation of propositions and types.

2. Introduction of a type of propositions, leading to higher-order logic and
the elimination of connectives definable using higher-order quantifiers.

Draft of February 23, 2004


