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Sequent Calculus

Gentzen’s sequent calculus may be seen as a “meta-logic” for performing proof
search in natural deduction. Roughly speaking, to find a proof of the hypothet-
ical judgement

A1 true, . . . , An true ` A true,

we work both ends towards the middle, proceeding “upwards” from the goal, A,
and “downwards” from the hypotheses, Ai, until a derivation can be found. This
process is formalized by the concept of a normal proof, which is one that follows
this strategy; it always suffices to search for a normal proof when searching for
a proof.

The sequent calculus transforms this “bidirectional” search for a normal
proof into a “unidirectional”, or goal-directed, search. Sequent calculus has one
categorical judgement form, the sequent, written

A1, . . . , An ⇒ A,

whose intended meaning is that

A1↓, . . . , An↓ ` A↑

is derivable according to the rules of normal proofs in natural deduction. The
propositions on the left of the “⇒” are called the premises, or antecedents, of
the sequent, and the proposition on the right is called its goal, or succedent.

The key feature of sequent calculus is that all primitive rules are introduction
rules, which means that we may always work “bottom-up” from the intended
goal to find a derivation whose leaves are initial sequents of the form

A1, . . . , An ⇒ Ai.

To check whether a proposition A true is derivable, we search for a proof in
sequent calculus of the final sequent, ⇒ A, whose antecedent is empty and
whose succedent is the intended goal.
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It turns out that we may arrange the rules of the sequent calculus so as to
minimize indeterminacy and to guarantee that the search process terminates,
either with a derivation of the intended proposition, or with the assurance that
no derivation exists. Indeterminacy inevitably arises because of arbitrary choices
that must be made during the search. For example, if the goal is a disjunction
A = A1 ∨A2, then the decision to pursue a proof of A1 must be reconsidered if
that effort fails; perhaps A2 is provable after all, or perhaps neither is provable
(in which case A is not provable). Other sources of indeterminacy are inessential.
For example, if the goal is A = A1 ∧ A2, then we may choose at any time to
decompose this into two sub-goals, A1 and A2, without fear of losing our way,
since both conjuncts must be proved in any case.

Gentzen’s LJ

The sequent calculus LJ is defined by the following rules of inference:

Γ, A ⇒ A
(init)

Γ ⇒ > (>R)

Γ,⊥⇒ A
(⊥ L)

Γ, A, B ⇒ C

Γ, A ∧B ⇒ C
(∧L) Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧B
(∧R)

Γ, A ⇒ C Γ, B ⇒ C

Γ, A ∨B ⇒ C
(∨L) Γ ⇒ A

Γ ⇒ A ∨B
(∨R∗

1)
Γ ⇒ B

Γ ⇒ A ∨B
(∨R∗

2)

Γ, A⊃B ⇒ A Γ, B ⇒ C

Γ, A⊃B ⇒ C
(⊃L∗)

Γ, A ⇒ B

Γ ⇒ A⊃B
(⊃R)

All rules, except those marked with an asterisk, are invertible, which means that
the premises are derivable if the conclusion is derivable. Equivalently, there is
no loss of generality in applying an invertible rule whenever it makes sense to
do so. Thus, the only sources of indeterminacy are those rules marked with an
asterisk.

All “left” rules, except the rule ⊃L rule, have the property that the principal
proposition of the inference occurs only in the conclusion, and not in any of the
premises. This means that, when applied “backwards” during proof search,
these rules drop the principal formula from the antecedent(s) of the sequent
after the inference is applied, thereby ensuring that the same inference cannot
be applied a second time.

The exception is the ⊃L rule, which propagates the principal formula,
A⊃B, to the first premise (but not the second). This is essential for com-
pleteness! Were we not to do this, the rules would be too weak to capture
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every possible proof. However, this means that we must be careful to avoid
re-applying the same inference fruitlessly during proof search.

Dyckhoff’s Variant of LJ

Dyckhoff’s variant of LJ avoids the problem with replication of the principal
proposition of the ⊃L rule to the first premise by breaking down the infer-
ence into separate cases, according to the structure of the left-hand side of the
implication. Specifically, the ⊃L rule is replaced by the following five special
cases:

Γ, B ⇒ C

Γ,>⊃B ⇒ C
(>⊃L) Γ ⇒ C

Γ,⊥ ⊃B ⇒ C
(⊥ ⊃L)

Γ, A1⊃(A2⊃B) ⇒ C

Γ, (A1 ∧A2)⊃B ⇒ C
(∧⊃L)

Γ, A1⊃B,A2⊃B ⇒ C

Γ, (A1 ∨A2)⊃B ⇒ C
(∨⊃L)

Γ, A2⊃B,A1 ⇒ A2 Γ, B ⇒ C

Γ, (A1⊃A2)⊃B ⇒ C
(⊃⊃L)

Observe that, when read bottom-up, each rule replaces the principal premise
of the inference, an implication, by premises of smaller “degree”, where we
measure the degree of a proposition by counting conjunctions as 2 and all other
connectives as 1, adding them up to determine the degree of a proposition.

If we wish to accomodate atomic propositions other than ⊥ and >, then we
must add the following rule to the preceding five rules governing implication on
the left:

Γ, B, P ⇒ C

Γ, P ⊃B,P ⇒ C
(P ⊃L)

Proof Search

Dyckhoff’s variant of LJ gives rise to a search procedure that determines whether
or not a given proposition is provable in constructive logic. The procedure works
by maintaining a collection of partial derivations, which it attempts to extend
to a complete derivation, or determine that no completion is possible. A partial
derivation is a finitely branching tree of sequents each of whose interior nodes
is labelled by an LJ rule whose conclusion is that node and whose premises are
the children of that node. A partial derivation may be extended by choosing
a leaf node, labelling it with an LJ rule ending with that sequent, and adding
children corresponding to the premises of the chosen rule. (Note that applying
the rule for the initial sequent “closes off” the leaf, resulting in a node with
no children.) A complete derivation is one for which there are no leaf nodes
remaining; an incompletable derivation is one for which there is some leaf node
that cannot be expanded by any rule.
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A search procedure to determine whether or not a proposition A is provable
may be described as follows. Maintain a deck of cards on each of which is
inscribed a partial derivation whose root is the final sequent ⇒ A. Initially, the
deck consists of a single card with the partial derivation being the leaf ⇒ A.
A step of the procedure consists of selecting a single card from the deck, and
replacing it with zero or more new cards. If no cards remain to be chosen
from the deck, the original goal is not provable; if the card is inscribed with
a complete derivation, the process terminates with that derivation. Otherwise,
the inscribed derivation contains at least one leaf sequent B1, . . . , Bk ⇒ B,
which we select for expansion. On as many fresh cards as necessary, inscribe
the result of expanding the chosen partial derivation by as many rules as apply
at that leaf, inscribing one expansion per card. Discard the original, insert the
newly incribed cards into the deck, and repeat the process.

At each step we replace one card with many cards, on each of which is
inscribed an expansion of the partial derivation inscribed on the chosen card.
The result of the expansion may contain fewer, the same, or more leaves than
were present on the expanded derivation, corresponding to which rule is used to
perform the expansion. Thus, in the worst case, there is, in two different senses,
“more work” to be done as a result of a single step in the search process: many
new derivations may replace the chosen one, each of which may contain more
leaves than the expanded derivation. Why, then, does the process terminate?
The key observation is that each new leaf in each new derivation is of a lesser
degree than the leaf at which expansion is performed. Therefore, even though
we replace a bit of “work” to be done with “more work”, each new bit of work is
“easier” than that represented by the chosen sequent. Since degrees are natural
numbers, this process cannot continue forever — we must, at some point, finish
what remains to be done (or realize that it is impossible to do so because no
expansion applies).
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