
15-399 Supplementary Notes:

Higher-Order Logic

Robert Harper

March 18, 2004

1 Second- and Higher-Order Logic

First-order logic is the logic of quantification over the elements of a type. First-
order logic permits us to state properties that hold of every, or some, element
of a type. For example, “there are infinitely many prime numbers” or “every
natural number may be factored into a product of primes.”

Second-order logic1 is the logic of quantification over propositions. Second-
order logic permits us to state properties about propositions such as “every
proposition implies itself” or “there are decidable propositions”.

Higher-order logic is the logic of quantification over propositional functions,
functions whose range consists of propositions. These include predicates, which
are propositional functions whose domain is a type such as the natural numbers
or tuples of natural numbers, and connectives, which are propositional functions
whose domain consists of propositions or tuples of propositions.

Second-order Logic

The second-order universal and existential quantifiers are written ∀2p.Q and
∃2p.Q, where p is a proposition variable standing for an unspecified proposi-
tion. The subscript “2” serves to distinguish the second-order quantifiers from
their first-order counterparts, which are, for the time being, written ∀1x∈τ.Q
and ∃1x∈τ.Q. Shortly we will unify both forms of quantification into a single,
unsubscripted form.

The rules governing second-order universal quantification are as follows:

Γ, p prop ` Q prop
(∀2F

p)
Γ ` ∀2p. Q prop

Γ, p prop ` Q true
(∀2I

p)
Γ ` ∀2p. Q true

Γ ` ∀2p. Q true Γ ` P prop
(∀2E)

Γ ` [P/p]Q true

1Classical second-order logic is sometimes called the logic of quantified Boolean formulas,

or QBF.

Draft of March 18, 2004



1 Second- and Higher-Order Logic 2

These are exactly like the rules for the first-order universal quantifier, except
that quantifier ranges over propositions, rather than the elements of a type.

The rules governing second-order existential quantification are as follows:

Γ, p prop ` Q prop
(∃2F

p)
Γ ` ∃2p. Q prop

Γ ` P prop Γ ` [P/p]Q true
(∃2I)

Γ ` ∃2p. Q true

Γ ` ∃2p. Q true Γ, p prop, Q true ` R true
(∃2E)

Γ ` R true

Here again the rules are essentially the same as those for the first-order ex-
istential quantifier, with the difference being that the quantifier ranges over
propositions, rather than elements of a type.

First-order quantification is said to be predicative, because the domain of
quantification is a type whose meaning is given independently of the quantifier
itself. This means that the meaning of the type is given without using the
first-order quantifiers (using introduction and elimination rules), and that the
meaning of quantification is given in terms of the elements of that type.

The situation with second-order quantification is different, because the quan-
tifier ranges over propositions, which includes those that make use of the second-
order quantifiers. Thus the meaning of a proposition may involve the meaning
of all possible propositions, including the one whose meaning is being given.
Because of this element of “circularity” or “self-reference”, second-order quan-
tification is said to be impredicative.

For example, consider the proposition P = ∀2p. Q. For P to be true means
that [R/p]Q is true for every proposition R. In particular, [P/p]Q is true, since
P is a proposition. If Q is just p, then by this reasoning the truth of P implies
the truth of P , which is hardly surprising. But suppose that Q is p⊃ p. In that
case P is true, and as a result P ⊃P is also true, again not suprising in itself,
since we knew this in advance. What makes many people uneasy, though, is
that the truth of ∀2p. Q implies facts that are much “larger” than Q alone, and
which may even involve P itself.

Because of this, impredicativity has been a source of some controversy in
the philosophy of constructive mathematics. Rather than attempt to inves-
tigate these controversies, we content ourselves here to exploring some of its
consequences, which are dramatic.

Encoding Propositional Connectives

One surprising fact about second-order logic is that all other propositional con-
nectives, plus second-order existential quantification, are definable in terms of
just second-order universal quantification and implication. That is, given the
latter two constructs, we may define truth, falsehood, conjunction, disjunction,
and second-order existential quantification, just as we defined negation in terms
of implication and falsehood. Moreover, given in addition first-order universal
quantification, we may define first-order existential quantification.

Draft of March 18, 2004



1 Second- and Higher-Order Logic 3

To show that a connective or quantifier is definable in terms of implication
and universal quantification, we must do two things:

1. Give a definition of the connective or quantifier in terms of implication
and universal quantification.

2. Show that the introduction and elimination rules for the connective or
quantifier are derivable from this definition.

We will now show that >, ⊥, ∧, and ∨ are all definable in terms of ⊃ and
∀2. Please refer to Pfenning’s Constructive Logic for the rules for these logical
connectives.

To see how to arrive at the definition of a connective, let us review our
methodology for deriving the rules governing a logical connective. Recall that
the overall idea is to specify the conditions for showing that a proposition con-
struct from that connective is true (its introduction rule), and then to derive the
conditions for using the truth of a proposition constructed with that connective
(its elimination rule) by “inverting” the introduction rule. The elimination rule
should extract exactly the information that went into the introduction rule so
that applying an elimination rule immediately after its corresponding introduc-
tion rule will always cancel via a reduction step. Our strategy for defining a
connective will be to capture the “content” of the elimination rule as a propo-
sition of second-order implicational logic, so that the elimination rule is easily
seen to be derivable, and then showing that the introduction rules are also
derivable. The idea is to examine what we wish to conclude from the truth of
a proposition, then ensure that this is consistent with what we put into it.

Let us first consider the two simplest cases, that of > and ⊥. The proposition
> has only one introduction rule, with no premises, and no elimination rules.
We must define > to be a formula of second-order implicational logic that is
true, given no premises. A handy definition is to take > ≡ ∀2p.p⊃ p; it is
easy to see that > true given this definition. The proposition ⊥ has only one
elimination rule, and no introduction rules. We must define ⊥ so that if it is
true, then any other proposition is true. This suggests defining ⊥ ≡ ∀2p.p. If
⊥ true, then taking p to be any proposition P , we may conclude P true, as
desired.

Let’s consider how to define P ∨Q. The elimination rule allows us to reason
by cases, deriving R true from both the assumption P true and, separately, from
the assumption Q true. Since P ∨Q is true only if either P true or Q true, then
one or the other case must apply, allowing us to conclude R true. This suggests
that we define disjunction as follows:

P ∨ Q ≡ ∀2r. (P ⊃ r)⊃((Q⊃ r)⊃ r).

This definition captures precisely the meaning of the elimination rule. Indeed,
if P ∨ Q true in the sense of this definition, and, moreover, P true ` R true

and Q true ` R true, then P ⊃R true and Q⊃R true, so by two applications of
implication elimination we obtain R true. It remains to derive the introduction

Draft of March 18, 2004



1 Second- and Higher-Order Logic 4

rules. Suppose that P true; we are to show that P ∨ Q true in the sense of the
foregoing definition. To do so, suppose that r prop, P ⊃ r true, Q⊃ r true; we
are to show that r true. But this follows immediately by substitution, using the
assumption that P true. The other introduction rule is derived by an analogous
argument.

Let’s consider how to define P ∧Q. We’d like to encode the elimination rules
as a single proposition of second-order implicational logic. But since there are
two elimination rules, a direct approach would seem to require some form of
conjunction, which is precisely what we seek to avoid. The trick is to formulate
an alternative, but equivalent, elimination rule for conjunction:

Γ ` P ∧ Q true Γ, P true, Q true ` R true

Γ ` R true

In words, to derive R true from P ∧ Q true, it suffices to derive R true from
P true and Q true. Given this, we may define conjunction as follows:

P ∧ Q ≡ ∀2r. (P ⊃(Q⊃ r))⊃ r.

It is easy to check that the elimination rule for conjunction is derivable, given
this definition. What about the introduction rule? Suppose that P true and
Q true; we are to show that P ∧ Q true, with conjunction defined as above.
Suppose r prop, P ⊃(Q⊃ r) true; we are to show r true. But this follows by two
uses of implication elimination using our assumptions.

Finally, let’s define the second-order existential quantifier:

∃2p. Q ≡ ∀2r. (∀2p. Q⊃ r)⊃ r.

We leave it as an exercise for the reader to verify that the rules for the second-
order existential quantifier are derivable in the sense of this definition.

It is instructive to examine the encodings of proof terms for the logical
connectives and quantifiers.2

Here are the encodings for truth:

> := ∀r. r⊃ r
〈〉 := λr. λu:r. u

Here are the encodings for falsehood:

⊥ := ∀r. r
abortR(M) : M(R)

Here are the encodings for conjunction:

P ∧ Q := ∀r. (P ⊃Q⊃ r)⊃ r
〈M,N〉P,Q := λr. λu:P ⊃Q⊃ r. u(M)(N)
fstP,Q(M) := M(P )(λu : P. λv : Q. u)

sndP,Q(M) := M(Q)(λu : P. λv : Q. v)

2To avoid notational clutter, some type labels are omitted.

Draft of March 18, 2004



1 Second- and Higher-Order Logic 5

It is easy to check that the expected definitional equalities hold under these
encodings:

fst(〈M,N〉) ≡ fst(λr. λu:P ⊃Q⊃ r. u(M)(N))
≡ (λr. λu:P ⊃Q⊃ r. u(M)(N))(P )(λu. λv. u)
≡ (λu. λv. u)(M)(N)
≡ M

snd(〈M,N〉) ≡ snd(λr. λu:P ⊃Q⊃ r. u(M)(N))
≡ (λr. λu:P ⊃Q⊃ r. u(M)(N))(Q)(λu. λv. v)
≡ (λu. λv. v)(M)(N)
≡ N

Here are the encodings for disjunction:

P ∨ Q := ∀r. (P ⊃ r)⊃(Q⊃ r)⊃ r
inlP,Q(M) := λr. λu : P ⊃ r. λv : Q⊃ r. u(M)
inrP,Q(M) := λr. λu : P ⊃ r. λv : Q⊃ r. v(M)
caseR M of inl(u : P ) ⇒ N | inr(v : Q) ⇒ O

:= M (R) (λu : P. N) (λv : Q. O)

We may then check the required definitional equalities:

caseR inl(M) of inl(u : P ) → N | inr(v : Q) ⇒ O
≡ inl(M) (R) (λu. N) (λv. O)
≡ (λr. λu:P ⊃ r. λv : Q⊃ r. u(M))(R)(λu. N)(λv. O)
≡ (λu:P ⊃R. λv:Q⊃R. u(M))(λu. N)(λv. O)
≡ (λu. N)(M)
≡ [M/u]N

(The other case is very similar.)
We leave it to the reader to define the proof terms for existential quantifica-

tion, and demonstrate that the required definitional equality holds under these
definitions.

Unifying First- and Higher-Order Quantification

The only distinction between first- and second-order quantification is the domain
of quantification. In the former the domain is a type, in the latter it consists
of all propositions. We may unify the two forms of quantification into one by
simply introducing a type of propositions:

prop type.

The categorical judgement P prop is replaced by the judgement P∈prop.
The introduction rules for the type prop are these:

Γ ` P∈prop Γ ` Q∈prop
⊃F

Γ ` P ⊃Q∈prop

Γ, x∈τ ` P∈prop
∀τF

Γ ` ∀x∈τ. P∈prop

Draft of March 18, 2004



1 Second- and Higher-Order Logic 6

Unlike most other types, there are no elimination rules for the type prop! There
are several reasons for this, the most important of which is that we do not wish
to constrain propositions to be only those given by these rules. Rather, we
wish the system to be open-ended in that it may accommodate extensions with
additional forms of proposition.

By introducing a type of propositions we may consolidate first- and second-
order quantification into a single notion of quantification over a type. Thus
∀1x∈τ. P (x) stands for ∀x∈τ. P (x), and ∀2p. Q stands for ∀p∈prop. Q. The
definition of the existential quantifiers given above carries over to the more
general case, permitting us to reduce our stock of primitive logical notions to
just implication and universal quantification (over a type).

Rather than give a list of introduction rules for each logical connective, we
may instead treat them as constants, as follows:

⊃ ∈ (prop × prop)→prop

∀τ ∈ (τ → prop) → prop

Thus the proposition P ⊃Q is convenient shorthand for ⊃〈P,Q〉, the application
of the constant ⊃ to the pair of propositions 〈P,Q〉. Similarly, ∀x∈τ. P is short-
hand for ∀τ (λx∈τ. P ). Using this notation, the elimination rule for the universal
quantifier may be written as follows:

Γ ` ∀τ (F ) true Γ ` t∈τ

Γ ` F (t) true
(∀E)

The “argument”, F , to ∀τ is a propositional function of type τ → prop, which
is instantiated by applying it to t∈τ to form F (τ).

Higher-Order Logic

A propositional function is any function whose range is the type prop of propo-
sitions. Propositional functions include predicates, which are functions of type
τ → prop for some type τ , unary connectives, of type prop → prop, binary

connectives, of type prop → prop → prop, and so forth.
Predicate quantification may be used to state the principle of mathematical

induction as a single proposition:

∀p∈nat→prop. p(0) ∧ ∀n∈nat. (p(n)⊃ p(s(n)))⊃∀n∈nat. p(n).

Similarly, the principle of list induction may be stated as follows:

∀p∈τ list→prop. p(nil) ∧ ∀a∈τ. ∀l∈τ list(p(l)⊃ p(a :: l))⊃∀l∈τ list. p(l)..

Note that both of these propositions are true! That is, we may prove them as
theorems using the rules of constructive logic.

The principle of extensionality for predicates over the natural numbers states
that predicates “respect” equality of natural numbers:

∀p∈nat→prop. ∀m∈nat. ∀n∈nat. p(m) ∧ m =
N

n⊃ p(n).

Draft of March 18, 2004



1 Second- and Higher-Order Logic 7

The principle of extensionality is sometimes called the principle of indiscern-

ability of identicals: equal numbers have the same properties.
The principle of extensionality may be proved by a straightforward induc-

tive argument. More precisely, we may prove by induction on m and n that
∀p∈nat→prop. p(m) ∧ m =

N
n⊃ p(n) true. This reduces to four proof obli-

gations:

1. ∀p∈nat→prop. p(0) ∧ 0 =
N

0⊃ p(0) true. This is trivial.

2. ∀p∈nat→prop. p(0)∧0 =
N

s(n′)⊃ p(s(n′)) true. This is vacuously true.

3. ∀p∈nat→prop. p(s(m′)) ∧ s(m′) =
N

0⊃ p(0) true. Also vacuously true.

4. Assuming the induction hypothesis

∀p∈nat→prop. p(m′) ∧ m′ =
N

n′ ⊃ p(n′),

show that

∀p∈nat→prop. p(s(m′)) ∧ s(m′) =
N

s(n′)⊃ p(s(n′)).

So assume p∈nat→prop, p(s(m′)) true, and s(m′) =
N

s(n′) true. It
follows that m′ =

N
n′, and so by instantiating the induction hypothesis

with the predicate λx∈nat.p(s(x)), we obtain p(s(n′)) true as required.

Draft of March 18, 2004


