4.5 Structural Induction 81

pred’ . Vr€nat. -r =, 0D Jycnat.s(y) =, =
pred’ = Ax€nat.rec x
of f(0) = (\u. abort (u eqy))
| Fs@) = O (o, refi(s(x'))

If we hide all proof objects we obtain:

pred’ : Vzenat. [~z =, 0] DJyenat. [s(y) =, z]
pred’ = Ax€nat.rec x
of f(0) = (Au]. abort (u eqy))
| f(s(z) = (Alu]. (2, [refi(s(z"))]))

Note that this function does mot satisfy our restriction: the hidden variable u
occurs outside a bracket in the case for f(0). This is because we cannot bracket
any subterm of

abort (u eq) : Jy€nat. [s(y) =, 0]

We conclude that our proof of pred’ does not lend itself to the particular
given annotation. However, we can give a different proof where we supply an
arbitrary witness ¢ for y in case z is 0 and prove that it satisfies s(y) =, 0 by
1 E as before. We chose ¢ = 0.

pred’ . Vr€nat. -x =, 0D Jycnat.s(y) =, =
pred’ = Ax€nat.rec x
of f(0) = (A\u. (0,abort (u eqy)))
| f(s(z")) = (Au. (2’ refi(s(z'))))

Now annotation and extraction succeeds, yielding pred. Of course, any nat-
ural number would do for the result of pred(0)

pred, : Vzenat. [~z =, 0] D yenat. [s(y) =, z]
pred, = MArcnat.rec x
of f(0) = (Alu]. (0, [abort (u eqy))])
| f(s(z")) = (Alu]. (2, [refi(s(2"))]))
pred : mnat— nat
pred = Ax€nat.rec x
of f(0)=0
| f(s(z')) =2’

The reader may test his understanding of the erasure process by transforming
predy from above step by step into pred. It requires some of the simplifications
on function types.

4.5 Structural Induction

We now leave arithmetic, that is, the theory of natural numbers, and discuss
more general data types. We first return to lists, whose elements are drawn

Draft of October 21, 2000

82 First-Order Logic and Type Theory

from arbitray types. The reader may wish to remind himself of the basic com-
putation constructs given in Section 3.7. We recall here only that there are two
introduction rules for lists:

list1, I'her I'Hterlist

['Fnil” € 7list 'k h:terlist fistle

In the induction principle, correspondingly, we have to account for two cases.
We first state it informally.

To prove A(l) true for an arbitrary list I, prove

1. A(nil) true and

2. Az :: ') true for an arbitrary x and ', under the assumption

A(l") true.

The first is the base case, the second the induction step. When we write this as
a formal inference rules, we obtain the analogue of primitive recursion.

I'lerlist Tt A(nil) true T,zer,l'erlist, A(') truet Az :: ') true
'+ A(l) true

listE

This principle is called structural induction over lists. Our first theorem about
lists will be a simple property of the append function. In order to formulate
this property, we need equality over lists. It is defined in analogy with the
propositional equality between natural numbers, based on the structure of lists.

I'H1lerlist Fl—kETlist_

=L
I'Hl=r k prop
: 5 = In LFI=rktrue =r I
I‘l—nﬂ:Lnlltrue rl—m;;l:Lm::ktTue ‘

The second introduction rules requires the heads of the two lists to be identical.
We can not require them to be equal, because they are of unknown type 7 and
we do not have a generic equality proposition that works for arbitrary types.
However, in this section, we are interested in proving generic properties of lists,
rather than, say, properties of integer lists. For this purpose, the introduction
rule above, and the three elimination rules below are sufficient.

TkFaxol=py:ktrue

—L Ecc
I'Hl=pk true
I'Fnil=p y:: k true 'k x::l = nil true
=L Enc =L Len
' C true ' C true

Draft of October 21, 2000

4.5 Structural Induction 83

Note that the first elimination rule is incomplete in the sense that we also know
that = must be identical to y, but we cannot obtain this information by the rule.
A solution to this problem is beyond the scope of these notes.
It is straightforward to show that equality is reflexive, symmetric and tran-
sitive, and we will use these properties freely below.
Next we give a definition of a function to append two lists which is a slightly
modified version from that in Section 3.7.
app nil £t = k
app (x=l') k = x:(appendl k)

In the notation of primitive recursion:
app € 71list — 7list — 7 list

app = M.recl
of f(nil) = k. k
| flz:l)= Xe.x: (f(U)E)

We now prove
Vierlist. app I nil =, [

Proof: By induction on the structure of I.
Case: [= nil. Then app nil nil =}, nil since

app nil nil
= (rec nil
of f(nil) = k. k
| flz:l')= Xk.x:: f(I') k)nil
= (Ak. k) nil
= nil

Case: | = z ::l'. Then app I’ nil =1 I’ by induction hypothesis.
Therefore
x:(app ' nil) = x =1
by rule =y, I.. We have to show
app (x = l')nil=p z:: 1.

This follows entirely by computation. Starting from the term
in the conclusion:

app (x ::1') nil

= (rec z ::l'

of f(nil) = k. k
| flz:l')= Xk, x:: f(I') k)nil
= (Ak. z:: (rec
of f(nil) = k. k
| flz:l')= Xk.x: f(I') k) k) nil
= z:: (rec I
of f(nil) = A\k. k
| flzl')= Ak .z f(I') k)nil

Draft of October 21, 2000

84 First-Order Logic and Type Theory

We arrive at the same term if we start from the induction hy-
pothesis.

x :: (app ' nil)
=z :: (rec I
of f(nil) = A\k. k
| flz:l')= Ak x:: f(I') k)nil

Recall that computation is allowed in both directions (see Section 4.3),
thereby closing the gap between the induction hypothesis and the
conclusion. |

For the next theorem, we recall the specification of the reverse function
on lists from Section 3.7, using an auxiliary function rev with an accumulator
argument a.

rev € 7list — 7list — 7list
revnila = a
rev(z:l'Ya = revl (z::a)
reverse € Tlist — 7list
reversel = revl nil

The property we will prove is the interaction between reverse and app.
Vierlist. Vker list. reverse (app 1 k) =, app (reverse k) (reverse 1)

Based on general heuristics, an induction on [is indicated, since it allows us
to reduce in the left-hand side. However, such a proof attempt will fail. The
reason is that reverse is not itself recursive, but defined in terms of rev. In such
a situation, generalizing the induction hypothesis to express a corresponding
property of the recursive function is almost always indicated.

It is often quite difficult to find an appropriate generalization of the induction
hypothesis. It is useful to analyse the properties of rev in terms of reverse and
app. We generalize from an example

rev (1:2:3:mil) (4:5:nil) = 3::2::1::4::5::nil

to conjecture that rev | k =y, app (reverse l) k (omitting the quanitifers on [
and k for the sake of brevity). We may or may not need this property, but it
will help us to develop conjectures about the interaction between rev and app.
Once again, the problem with this property is that the right-hand side mentions
reverse and is not expressed in terms of rev. If we substitute the right-hand
side will be

revl k =g app (rev [nil) k

Again this does not appear general enough, because of the occurrence of nil. If
we replace this my a new term m, we also need to modify the left-hand side,
obtaining

rev | (app m k) =r, app (revim) k

Draft of October 21, 2000

4.5 Structural Induction 85

Now this can be proven by a straightforward structural induction over I.

Returning to our original question, we generalize the term on the left-hand
side, reverse (app 1 k), to rev (app I k) m. The appropriate generalization of
the right-hand side yields

rev (app L k) m =g, rev k (rev I m)
In this general form we can easily prove it by induction over . By using these
two properties together we can now show that this implies the original theorem

directly.

Vierlist. Vker list. reverse (app 1 k) =, app (reverse k) (reverse 1)

Draft of October 21, 2000

86

First-Order Logic and Type Theory

Draft of October 21, 2000

