
3.3 Summary of Proof Terms 35

Reductions.

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

no reduction for 〈 〉
(λu:A. M)N =⇒ [N/u]M

case inlBM of inlu⇒ N | inrw⇒ O =⇒ [M/u]N

case inrAM of inlu⇒ N | inrw⇒ O =⇒ [M/w]O

no reduction for abort

Concrete Syntax. The concrete syntax for proof terms used in the mechan-
ical proof checker has some minor differences to the form we presented above.

u u Variable

〈M,N〉 (M,N) Pair

fstM fst M First projection

sndM snd M Second projection

〈 〉 () Unit element

λu:A. M fn u => M Abstraction

M N M N Application

inlBM inl M Left injection

inrAN inr N Right injection

case M

of inlu⇒ N

| inrw⇒ O

case M

of inl u => N

| inr w => O

end

Case analysis

Pairs and unit element are delimited by parentheses ‘(’ and ‘)’ instead of
angle brackets 〈 and 〉. The case constructs requires an end token to mark the
end of the a sequence of cases.

Type annotations are generally omitted, but a whole term can explicitly be
given a type. The proof checker (which here is also a type checker) infers the
missing information. Occasionally, an explicit type ascription M : A is necessary
as a hint to the type checker.

For rules of operator precedence, the reader is refered to the on-line doc-
umentation of the proof checking software available with the course material.
Generally, parentheses can be used to disambiguate or override the standard
rules.

As an example, we show the proof term implementing function composition.

term comp : (A => B) & (B => C) => (A => C) =

fn u => fn x => (snd u) ((fst u) x);

Draft of September 14, 2000

36 Proofs as Programs

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that A∨B⊃B ∨A, first in the
pure form.

proof orcomm : A | B => B | A =

begin

[A | B;

[A;

B | A];

[B;

B | A];

B | A];

A | B => B | A

end;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B => B | A =

begin

[u : A | B;

[v : A;

inr v : B | A];

[w : B;

inl w : B | A];

case u

of inl v => inr v

| inr w => inl w

end : B | A];

fn u => case u

of inl v => inr v

| inr w => inl w

end : A | B => B | A

end;

3.4 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as meta-logical reasoning.

First, we need some more formal definitions for certain operations on proof
terms, to be used in our meta-logical analysis. One rather intuitive property of

Draft of September 14, 2000

3.4 Properties of Proof Terms 37

is that variable names should not matter. For example, the identity function at
type A can be written as λu:A. u or λw:A. w or λu′:A. u′, etc. They all denote
the same function and the same proof. We therefore identify terms which differ
only in the names of variables (here called u) bound in λu:A. M , inlu ⇒ M
or inru⇒ O. But there are pitfalls with this convention: variables have to be
renamed consistently so that every variable refers to the same binder before and
after the renaming. For example (omitting type labels for brevity):

λu. u = λw. w
λu. λw. u = λu′. λw. u′

λu. λw. u 6= λu. λw. w
λu. λw. u 6= λw. λw. w
λu. λw. w = λw. λw. w

The convention to identify terms which differ only in the naming of their
bound variables goes back to the first papers on the λ-calculus by Church and
Rosser [CR36], is called the “variable name convention” and is pervasive in the
literature on programming languages and λ-calculi. The term λ-calculus typi-
cally refers to a pure calculus of functions formed with λ-abstraction. Our proof
term calculus is called a typed λ-calculus because of the presence of propositions
(which an be viewed as types).

Following the variable name convention, we may silently rename when con-
venient. A particular instance where this is helpful is substitution. Consider

[u/w](λu. w u)

that is, we substitute u for w in λu. w u. Note that u is a variable visible on
the outside, but also bound by λu. By the variable name convention we have

[u/w](λu. w u) = [u/w](λu′. w u′) = λu′. u u′

which is correct. But we cannot substitute without renaming, since

[u/w](λu. w u) 6= λu. u u

In fact, the right hand side below is invalid, while the left-hand side makes
perfect sense. We say that u is captured by the binder λu. If we assume a
hypothesis u:>⊃A then

[u/w](λu:>. w u) : A

but
λu:>. u u

is not well-typed since the first occurrence of u would have to be of type >⊃A
but instead has type >.

So when we carry out substitution [M/u]N we need to make sure that no
variable in M is captured by a binder in N , leading to an incorrect result.
Fortunately we can always achieve that by renaming some bound variables in
N if necessary. We could now write down a formal definition of substitution,

Draft of September 14, 2000

38 Proofs as Programs

based on the cases for the term we are substituting into. However, we hope that
the notion is sufficiently clear that this is not necessary.

Instead we revisit the substitution principle for hypothetical judgments. It
states that if we have a hypothetical proof of C true from A true and we have a
proof of A true, we can substitute the proof of A true for uses of the hypothesis
A true and obtain a (non-hypothetical) proof of A true. In order to state this
more precisely in the presence of several hypotheses, we recall that

A1 true . . .An true
...

C true

can be written as
A1 true, . . . , An true︸ ︷︷ ︸

∆

` C true

Generally we abbreviate several hypotheses by ∆. We then have the follow-
ing properties, evident from the very definition of hypothetical judgments and
hypothetical proofs

Weakening: If ∆ ` C true then ∆,∆′ ` C true.

Substitution: If ∆, A true,∆′ ` C true and ∆ ` A true then ∆,∆′ ` C true.

As indicated above, weakening is realized by adjoining unused hypotheses, sub-
stitutions is realized by substitution of proofs for hypotheses.

For the proof term judgment, M : A, we use the same notation and write

u1:A1 . . . un:An
...

N : C

as
u1:A1, . . . , un:An︸ ︷︷ ︸

Γ

` N : C

We use Γ to refer to collections of hypotheses ui:Ai. In the deduction of N : C,
each ui stands for an unknown proof term for Ai, simply assumed to exist. If
we actually find a proof Mi:Ai we can eliminate this assumption, again by sub-
stitution. However, this time, the substitution has to perform two operations:
we have to substitute Mi for ui (the unknown proof term variable), and the
deduction of Mi : Ai for uses of the hypothesis ui:Ai. More precisely, we have
the following two properties:

Weakening: If Γ ` N : C then Γ,Γ′ ` N : C.

Substitution: If Γ, u:A,Γ′ ` N : C and Γ `M : A then Γ,Γ′ ` [M/u]N : C.

Draft of September 14, 2000

3.4 Properties of Proof Terms 39

Now we are in a position to state and prove our second meta-theorem, that
is, a theorem about the logic under consideration. The theorem is called subject
reduction because is concerns the subject M of the judgment M : A. It states
that reduction preserves the type of an object. We make the hypotheses explicit
as we have done in the explanations above.

Theorem 3.1 (Subject Reduction)
If Γ `M : A and M =⇒ M ′ then Γ `M ′ : A.

Proof: We consider each case in the definition of M =⇒ M ′ in turn and show
that the property holds. This is simply an instance of proof by cases.

Case: fst 〈M1,M2〉 =⇒M1. By assumption we also know that

Γ ` fst 〈M1,M2〉 : A.

We need to show that Γ `M1 : A.

Now we inspect all inference rules for the judgment M : A and we see that
there is only one way how the judgment above could have been inferred:
by ∧EL from

Γ ` 〈M1,M2〉 : A ∧A2

for some A2. This step is called inversion, since we infer the premises
from the conclusion of the rule. But we have to be extremely careful to
inspect all possibilities for derivations so that we do not forget any cases.

Next, we apply inversion again: the judgment above could only have been
inferred by ∧I from the two premises

Γ `M1 : A

and
Γ `M2 : A2

But the first of these is what we had to prove in this case and we are done.

Case: snd 〈M1,M2〉 =⇒M2. This is symmetric to the previous case. We write
it an abbreviated form.

Γ ` snd 〈M1,M2〉 : A Assumption
Γ ` 〈M1,M2〉 : A1 ∧A for some A1 By inversion
Γ `M1 : A1 and
Γ `M2 : A By inversion

Here the last judgment is what we were trying to prove.

Case: There is no reduction for > since there is no elimination rule and hence
no destructor.

Draft of September 14, 2000

40 Proofs as Programs

Case: (λu:A1. M2)M1 =⇒ [M1/u]M2. By assumption we also know that

Γ ` (λu:A1. M2)M1 : A.

We need to show that Γ ` [M1/u]M2 : A.

Since there is only one inference rule for function application, namely
implication elimination (⊃E), we can apply inversion and find that

Γ ` (λu:A1. M2) : A′1⊃A

and
Γ `M1 : A′1

for some A′1. Now we repeat inversion on the first of these and conclude
that

Γ, u:A1 `M2 : A

and, moreover, that A1 = A′1. Hence

Γ `M1 : A1

Now we can apply the substitution property to these to judgments to
conclude

Γ ` [M1/u]M2 : A

which is what we needed to show.

Case: (case inlCM1 of inlu⇒ N | inrw ⇒ O) =⇒ [M1/u]N . By assumption
we also know that

Γ ` (case inlCM1 of inlu⇒ N | inrw ⇒ O) : A

Again we apply inversion and obtain three judgments

Γ ` inlCM1 : B′ ∨ C ′
Γ, u:B′ ` N : A
Γ, w:C ′ ` O : A

for some B′ and C ′.

Again by inversion on the first of these, we find

Γ `M1 : B′

and also C ′ = C. Hence we can apply the substitution property to get

Γ ` [M1/u]N : A

which is what we needed to show.

Case: (case inrBM1 of inlu ⇒ N | inrw ⇒ O) =⇒ [M1/u]N . This is
symmetric to the previous case and left as an exercise.

Draft of September 14, 2000

3.4 Properties of Proof Terms 41

Case: There is no introduction rule for ⊥ and hence no reduction rule.

2

The important techniques introduced in the proof above are proof by cases
and inversion. In a proof by cases we simply consider all possibilities for why a
judgment could be evident and show the property we want to establish in each
case. Inversion is very similar: from the shape of the judgment we see it could
have been inferred only in one possible way, so we know the premises of this rule
must also be evident. We see that these are just two slightly different forms of
the same kind of reasoning.

If we look back at our early example computation, we saw that the reduc-
tion step does not always take place at the top level, but that the redex may
be embedded in the term. In order to allow this, we need to introduce some
additional ways to establish that M =⇒ M ′ when the actual reduction takes
place inside M . This is accomplished by so-called congruence rules.

Conjunction. As usual, conjunction is the simplest.

M =⇒ M ′

〈M,N〉 =⇒ 〈M ′, N〉
N =⇒ N ′

〈M,N〉 =⇒ 〈M,N ′〉

M =⇒ M ′

fstM =⇒ fstM ′
M =⇒M ′

sndM =⇒ sndM ′

Note that there is one rule for each subterm for each construct in the language
of proof terms, just in case the reduction might take place in that subterm.

Truth. There are no rules for truth, since 〈 〉 has no subterms and therefore
permits no reduction inside.

Implication. This is similar to conjunction.

M =⇒M ′

MN =⇒M ′N

N =⇒ N ′

M N =⇒ MN ′

M =⇒M ′

(λu:A. M) =⇒ (λu:A. M ′)

Draft of September 14, 2000

42 Proofs as Programs

Disjunction. This requires no new ideas, just more cases.

M =⇒ M ′

inlBM =⇒ inlBM ′

N =⇒ N ′

inrAN =⇒ inrAN ′

M =⇒ M ′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM ′ of inlu⇒ N | inrw⇒ O)

N =⇒ N ′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM of inlu⇒ N ′ | inrw⇒ O)

O =⇒ O′

(caseM of inlu⇒ N | inrw ⇒ O) =⇒ (caseM of inlu⇒ N | inrw ⇒ O′)

Falsehood. Finally, there is a congruence rule for falsehood, since the proof
term constructor has a subterm.

M =⇒ M ′

abortCM =⇒ abortCM ′

We now extend the theorem to the general case of reduction on subterms.
A proof by cases is now no longer sufficient, since the congruence rules have
premises, for which we would have to analyze cases again, and again, etc.

Instead we use a technique called structural induction on proofs. In struc-
tural induction we analyse each inference rule, assuming the desired property
for the premises, proving that they hold for the conclusion. If that is the case
for all inference rules, the conclusion of each deduction must have the property.

Theorem 3.2 (Subterm Subject Reduction)
If Γ ` M : A and M =⇒ M ′ then Γ ` M ′ : A where M =⇒ M ′ refers to the

congruent interpretation of reduction.

Proof: The cases where the reduction takes place at the top level of the term
M , the cases in the proof of Theorem 3.1 still apply. The new cases are all very
similar, and we only show one.

Case: The derivation of M =⇒M ′ has the form

M1 =⇒M ′1

〈M1,M2〉 =⇒ 〈M ′1,M2〉

We also know that Γ ` 〈M1,M2〉 : A. We need to show that

Γ ` 〈M ′1,M2〉 : A

Draft of September 14, 2000

3.4 Properties of Proof Terms 43

By inversion,
Γ `M1 : A1

and
Γ `M2 : A2

and A = A1 ∧A2.

Since we are proving the theorem by structural induction and we have a
deduction of Γ ` M1 : A1 we can now apply the induction hypothesis to
M1 =⇒M ′1. This yields

Γ `M ′1 : A1

and we can construct the deduction

Γ `M ′1 : A1 Γ `M2 : A2
∧I

Γ ` 〈M ′1,M2〉 : A1 ∧A2

which is what we needed to show since A = A1 ∧A2.

Cases: All other cases are similar and left as an exercise.

2

The importance of the technique of structural induction cannot be overem-
phasized in this domain. We will see it time and again, so the reader should
make sure the understand each step in the proof above.

Draft of September 14, 2000

44 Proofs as Programs

Draft of September 14, 2000

Bibliography

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May
1936.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages 153–
175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

Draft of September 14, 2000

