
15-399 Supplementary Notes:

Substitution

Robert Harper

February 17, 2005

Substitution

We will make frequent use of substitution of a term, M , for the free occurrences
of a variable, u, in another term, N . This is written [M/u]N . The intuitive idea
is clear, but there are pitfalls that must be avoided; some examples are given in
the Pfenning notes. Here we give a precise definition of substitution to have as
a reference.

Free and Bound Variables

First we define the set FV(M) of free variables occurring in M .

FV(u) = {u }
FV(〈 〉) = ∅

FV(〈M1,M2〉) = FV(M1) ∪ FV(M2)
FV(fst(M)) = FV(M)

FV(snd(M)) = FV(M)
FV(λu:P.M) = FV(M) \ {u }
FV(M1 M2) = FV(M1) ∪ FV(M2)

FV(abortP (M)) = FV(M)
FV(inl(M)) = FV(M)
FV(inr(M)) = FV(M)

FV(caseM of inl(u1) ⇒ M1 | inr(u2) ⇒ M2) =
FV(M) ∪ (FV(M1) \ {u1 }) ∪ (FV(M2) \ {u2 })

If a variable u occurs in M , but u /∈ FV(M), then we say that u is bound in
M . We say that M lies apart from N , written M # N , iff FV(M)∩FV(N) = ∅.
We most often use this notation in the form u # M , which therefore means
u /∈ FV(M). In particular, u # v iff u 6= v.

Renaming of Bound Variables

Intuitively, the terms λu:P.u and λv:P.v are the “same”, since they differ only
in the name of the bound variable. Two terms that differ only in the names

Draft of February 17, 2005



2

of their bound variables are said to be α-equivalent, or α-convertible.1 It is
remarkably tricky to give a precise definition of this relation.

We first define the notion of variable swapping. We write [u↔v]M to mean
that all occurrences of u in M are to be replaced by v, and all occurrences of
v in M are to be replaced by u. We emphasize “all”, because the replacement
applies even to binders such as λ. For example, [u↔v]λv:P.u = λu:P.v.

The relation M =α N is inductively defined by the following rules:2

u =α u 〈〉 =α 〈〉
M =α M ′ N =α N ′

〈M,N〉 =α 〈M ′, N ′〉

M =α M ′

fst(M) =α fst(M ′)
M =α M ′

snd(M) =α snd(M ′)

M =α M ′

λu:P.M =α λu:P.M ′
u # v v # M [u↔v]M =α M ′

λu:P.M =α λv:P.M ′

The last two lines are the most interesting. When comparing two λ’s that bind
the same variable, we simply compare their bodies. If, however, they have
different bound variables, then we replace u by v (and v by u) in the first to
reconcile the difference, and continue comparing. Since v # M the replacement
of v by u in M does not change any free variable, but ensures that no confusion
can occur when replacing u by v in M due to bound occurrences of v in M .

1The origin of the phrase is essentially a historical accident, but this terminology is too
deeply entrenched to be changed now.

2We omit the rules for case analysis and abort for the sake of brevity.

Draft of February 17, 2005



3

Substitution

Substitution is inductively defined by the following clauses:

[M/u]u = M
[M/u]v = v (u # v)

[M/u]〈 〉 = 〈 〉

[M/u]〈N1, N2〉 = 〈[M/u]N1, [M/u]N2〉
[M/u]fst(N) = fst([M/u]N)

[M/u]snd(N) = snd([M/u]N)

[M/u]λv:P.N = λv:P.[M/u]N (v # M)
[M/u](N1 N2) = [M/u]N1 [M/u]N2

[M/u]abort(N) = abort([M/u]N)

[M/u]inl(N) = inl([M/u]N)
[M/u]inr(N) = inr([M/u]N)

[M/u]caseN of inl(u1) ⇒ N1 | inr(u2) ⇒ N2 =
case [M/u]N of inl(u1) ⇒ [M/u]N1 | inr(u2) ⇒ [M/u]N2

(u1 # FV(M), u2 # FV(M))

The conditions on substitution into a λ or case expression mean that the
substitution [M/u]N need not be defined! For example, the attempted substi-
tution [〈u, u〉/v]λu:P.〈u, v〉 is undefined, because the bound variable, u, occurs
free in 〈u, u〉. However, if we first rename the bound variable of the λ, then
substitution is defined:

[〈u, u〉/v]λu′:P.〈u′, v〉 = λu′:P.〈u′, 〈u, u〉〉.

Similarly, the attempted substitution [M/u]λu:P.u is undefined, because the
bound variable name is the same as the target of the substitution. But once
again this is not a problem, because by renaming the bound variable to, say, v,
where v 6= u, substitution is once again defined.

The undefinedness of substitution can always be avoided by renaming bound
variables so as to ensure that the restrictions on substitution are met.

Theorem 0.1 1. For any M , N , and u, there exists N ′ and N ′′ such that
N =α N ′ and [M/u]N ′ = N ′′.

2. If N =α N ′ and N =α N ′′ and [M/u]N ′ and [M/u]N ′′ both exist, then
[M/u]N ′ =α [M/u]N ′′.

Thus we say that substitution is well-defined up to α-equivalence.

Draft of February 17, 2005



4

Bound Variable Convention

Since bound variable names may be chosen arbitrarily, it is technically conve-
nient to ignore the choice by systematically “modding out” by α-equivalence.
This means that we always work with α-equivalence classes of terms, and im-
plicitly choose representatives of each equivalence class so that all relevant sub-
stitutions are well-defined. This frees us from having to think about the funda-
mentally irrelevant choice of bound variable names when manipulating terms.

Draft of February 17, 2005


