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1 Existence of Normal Forms

A term M is in normal form iff it is irreducible: there is no M ′ such that
M ⇒ M ′. A term M is normalizable iff there exists a normal form M ′ such
that M ⇒∗ M ′. It is natural to ask whether every term has a normal form.
More precisely, if Γ ` M : A, then does M have a normal form? The answer is
“yes”, but the proof is far from obvious. We will give a proof of this fact for the
small fragment of type theory consisting only of the types 1 and A → B. The
proof is quite challenging even for this small fragment.

To get started let us first note the importance of types for the termination
argument. If we ignore types, then it is easy to show that there are terms that
do not have normal forms. For example, let ω = λx.x(x) and let Ω = ω(ω). It
is easy to see that Ω ⇒ Ω, and hence Ω does not have a normal form. Moreover,
since ω is already a normal form, this observation shows that normal forms are
not closed under application — even if M and N are in normal form, then M(N)
need not be. However, note that this example relies on the use of untypable
terms!1

Well-Typed Terms Are Hereditarily Normalizable

Our goal is to prove a normalization theorem for well-typed terms. We write
Norm(M) to mean that M is a normal form term of type A in Γ.

Theorem 1.1 (Normalization) If Γ ` M : A, then Norm(M).

The obvious first attempt is to proceed by induction on typing. And indeed,
the first few cases work quite well:

Proof (attempt): We proceed by induction on the typing rules.

• Case 1-I: Γ ` 〈〉 : 1. Clearly 〈〉 is in normal form, so Norm(〈〉).

1It is easy to see that ω is untypable. For if it were to have a type A, then A would have

to be a function type B → C such that B = B → C, which is impossible.
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• Case Var: Γ ` x : A. Again, x is in normal form, so Norm(x).

• Case →-I: Γ ` λx:A.M : A → B, because Γ, x:A ` M : B. By induction
Norm(M), and hence Norm(λx:A.M).

• Case →-E: Γ ` M(N) : B because Γ ` M : A → B and Γ ` N : A.
By induction we have Norm(M) and Norm(N). We wish to show that
Norm(M(N)). But there is no obvious way to proceed! As we remarked
above, knowing that M and N are normalizable is not by itself sufficient
to show that M(N) is normalizable.

2

This shows that we need to know more about terms than simply their nor-
malizability if we are to make the proof go through. To this end let us look
more closely at the problem of showing Norm(M(N)) given that Norm(M)
and Norm(N). We are to show that there exists a normal form P such that
M(N) ⇒∗ P . We know that there exists normal forms M ′ and N ′ such that
M ⇒∗ M ′ and N ⇒∗ N ′. So we have M(N) ⇒∗ M ′(N ′). But is M ′(N ′)
normalizable? If M ′ = λx.M ′′, then M ′(N ′) ⇒ [N ′/x]M ′′, so it is sufficient to
show that [N ′/x]M ′′ is normalizable. But we cannot obtain this knowing only
that M ′ and N ′ are normalizable.

Our strategy is to strengthen the induction hypothesis. This means that we
try to establish a property of well-typed terms that implies normalization. This
stronger property, called hereditary normalizability, will take advantage of types
as part of its definition, so it is written HNormA(M). The proof proceeds in two
steps:

1. Show that if Γ ` M : A, then HNormA(M).

2. Show that if HNormA(M), then Norm(M).

Take a moment to convince yourself that if we can prove both of these properties,
then the proof of the normalization theorem is complete.

The key to the definition of HNormA(M) is to make it strong enough that
we can push through the case of application, but weak enough that we can show
that λ-abstractions are hereditarily normalizable. We may satisfy the former
requirement by defining HNormA(M) by induction on types as follows:

1. HNorm
1
(M) iff Norm(M).

2. HNormA→B(M) iff HNormA(N) implies HNormB(M(N)).

That is, at base type a term is hereditarily normalizable iff it is normalizable.
At function type, however, we require that M map hereditarily normalizable
arguments to hereditarily normalizable results. This ensures that hereditary
normalizability is closed under application, which is crucial for showing that
well-typed terms are hereditarily normalizable.

So let’s try to prove that well-typed terms are hereditarily normalizable.
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Lemma 1.1 If Γ ` M : A, then HNormA(M).

Proof (attempt): We proceed as before by induction on typing.

1. Case 1-I: HNorm
1
(〈〉) since Norm(〈〉).

2. Variable: Suppose that Γ ` x : A. What to do?

3. Case →-E: We have by induction HNormA→B(M) and HNormA(N). But
then HNormB(M(N)) by definition of hereditary normalizability.

4. Case →-I: We have by induction HNormB(M), and we are to show that

HNormA→B(λx:A.M). To do so we suppose that HNormA(N), and show
that HNormB((λx:A.M)(N)). But it is not clear how to proceed.

2

The problem is that (λx:A.M)(N) ⇒ [N/x]M , so we must prove something
about the behavior of terms under substitution of hereditarily normalizable
terms. To do so we strengthen the induction hypothesis one more time.

Lemma 1.2 Let Γ = x1:A1, . . . , xk:Ak. If Γ ` M : A and HNormA1
(M1), . . . ,

HNormAk
(Mk), then HNormA([Mi/xi]

k
i=1

(M)).

The lemma states that all substitution instances of well-typed terms by hered-
itarily normalizable terms are themselves hereditarily normalizable. We will
show later that variables are hereditarily normalizable, so that by taking Mi =
xi we obtain that M is hereditary normalizable.

Once again, let’s try the proof. This time we will succeed, up to some lemmas
that we will prove later.

Proof: By induction on typing derivations.

1. Case 1-I: as above.

2. Case variable xj : we are to show that HNormAj
(Mj) under that very

assumption.

3. Case →-E: as above, using the fact that substitution distributes over ap-
plication.

4. Case →-I: Assume HNormA(N). By induction we know that

HNormB([Mi/xi]
k
i=1

[N/x](M)). We are to show that
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HNormB(([Mi/xi](λx:A.M))(N)). This follows from closure under head

expansion, which we will prove shortly.

This completes the proof. 2

What is “closure under head expansion”?

Lemma 1.3 If HNormA(M ′) and M ⇒ M ′, then HNormA(M).

Proof: By induction on typing.

1. Case A = 1: We have Norm(M ′), which is to say that there is a normal
form P such that M ′ ⇒ P . We are to show Norm(M). But this is obvious,
since M ⇒ M ′ ⇒∗ P .

2. Case A = B → C: Suppose that HNormB(N); we are to show that
HNormC(M(N)). Since HNormB→C(M ′), we have HNormC(M ′(N)). Since
M(N) ⇒ M ′(N), it follows by induction that HNormC(M(N)).

2

This completes the proof that hereditarily normalizable substitution in-
stances of well-typed terms are hereditarily normalizable.

Hereditarily Normalizable Terms are Normalizable

We must now show that hereditarily normalizable terms are normalizable. At
base type 1 this is immediate from the definition. But what happens at function
type? Suppose HNormA→B(M); we wish to show Norm(M). How can we exploit
the assumption to get the result? The only way is to come up with a hereditarily
normalizable term that we can pass as argument to M , then apply induction.
The “trick” is to choose a variable as argument. For suppose that HNormA(x).
Then HNormB(M(x)), so by induction Norm(M(x)), and hence Norm(M). The
last step requires a lemma:

Lemma 1.4 If Norm(M(x)), then Norm(M).

Proof: Suppose that M does not have a normal form, but that M(x) does, say
M(x) ⇒∗ P with P in normal form. The reduction starting from M(x) can
take one of two forms:

1. M(x) ⇒∗ M ′(x) = P , where M ⇒∗ M ′ and M ′ is in normal form.
(Clearly M ′ cannot be a λ-abstraction.)

2. M(x) ⇒∗ M ′(x) = (λx.M ′′)(x) ⇒ M ′′ ⇒ P , where M ⇒∗ M ′. But since
M ′ = λx.M ′′ and M ′′ is normalizable, then so is M ′.

2
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OK, but why are variables hereditarily normalizable? We used this fact in
the preceding argument, so it is essential that we prove it. For variables of base
type, this is immediate because variables are obviously normalizable. Suppose
x is a variable of type A → B. We wish to show that HNormA→B(x). To
do so we assume HNormA(M), and show that HNormB(x(M)). But what to
do? We seem to be in an even worse position: to show that x is hereditarily
normalizable, we seem to have to show that x(M) is too, and to show that
we have to show that x(M)(N) is, and so on. Where does it stop? Once
we get to base type, at which point we have to show that x(M1) · · · (Mn) is
normalizable, given that each Mi is hereditarily normalizable. Ah, but since
hereditarily normalizable terms are normalizable, we simply have to argue that
x(M1) · · · (Mn) is normalizable, given that the Mi’s are. It is easy to see that
this is the case.

But wait a minute. To show that hereditarily normalizable terms are nor-
malizable, we needed to know that variables are hereditarily normalizable. To
show that variables are hereditarily normalizable, we needed to show that all ap-
plications x(M1) · · · (Mn) are normalizable, given that the Mi’s are hereditarily
normalizable. And to do this we used the fact that they are normalizable.

Each lemma refers to the other . . . so we prove both properties simultane-

ously, by induction on types.

Lemma 1.5 1. If HNormA(M), then Norm(M).

2. If x has type A1 → · · · → An → A, and Norm(M1) and . . . and Norm(Mn),
then HNormA(x(M1) · · · (Mn)).

Proof: The proof is by simultaneous induction on typing. First suppose that
A = 1.

1. Immmediate, because hereditarily normalizable terms of type 1 are nor-
malizable by definition.

2. Here n = 0, and we need only show Norm(x), which is obvious.

Now assume both parts of the theorem for types B and C, and show them for
the type A = B → C.

1. By induction part (2) we have HNormB(x), so HNormC(M(x)). By induc-
tion part (1) we have Norm(M(x)), so Norm(M).

2. Suppose that HNormB(N). We are to show HNormC(x(M1) · · · (Mn)(N)).
By induction part (1) we have Norm(N), so the result follows by induction
part (2).

2

We are now one small step to the finish line! Suppose that Γ ` M : A. All
substitution instances of M by hereditarily normalizable terms are hereditarily
normalizable. Since variables are hereditarily normalizable, we may substitute
each variable in M by itself to obtain that M is hereditarily normalizable. But
then M is normalizable.
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A Detail Concerning Variables

There is a small, correctable technical problem with the above argument. When
defining HNormA(M) we are implicitly assuming that M has type A. But with
respect to what context? That is, what free variables are allowed to occur in
M , and what are their types? In the literature it is customary to gloss over this
issue, but for the sake of completeness let us consider how we might account for
the declaration of variables.

There are two main methods.

1. Construct an infinite saturated context Γ∞ that declares infinitely many
variables of each type. Define HNormA(M) so that Γ∞ ` M : A — that
is, there exists a finite subset Γ ⊆ Γ∞ such that Γ ` M : A. We have
implicitly used this method in the foregoing development.

2. Parameterize the hereditary normalization predicate by a context that
represents the “current” set of available variables, and restrict attention
to well-typed terms over this context. We re-defined hereditary normaliz-
ability to take a context as parameter, and arrange that HNorm

Γ

A(M) is
defined only when Γ ` M : A.

To make the proof go through we must strengthen the definition of hered-
itary normalization to take account of all possible expansions of the set
of available variables. Specifically, we define HNorm

Γ

A→B(M) to hold iff

for every Γ′ ⊇ Γ, if HNorm
Γ
′

A (N), then HNorm
Γ
′

B (M(N)). Given this, it is

easy to check that if HNorm
Γ

A(M) and Γ′ ⊇ Γ, then HNorm
Γ
′

A (M).

The main lemmas needed for the proof are re-stated as follows:

(a) If x1:A1, . . . , xn:An ` M : A and HNorm
Γ

Ai
(Mi) (1 ≤ i ≤ n), then

HNorm
Γ

A([Mi/xi]
n
i=1

M).

(b) If HNorm
Γ

A(M), then Norm(M), and if Γ ` x(M1) · · · (Mn) : A with
Norm(Mi) (1 ≤ i ≤ n), then HNorm

Γ

A(x(M1) · · · (Mn)).
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