
Structure and Efficiency of Computer Programs

Robert Harper
Carnegie Mellon University

July 23, 2014

1 Introduction

Much fundamental research in computer science is driven by two complementary
notions of beauty in programming, that arising from the structure of a program
and that arising from the efficiency of an algorithm. As Lewin famously said,
“there’s nothing so practical as good theory” [Marrow, 1984]. Decades of expe-
rience has borne out the remarkable efficacy of theory in improving the practice
of programming.

Programming language theory is the study of the structural aspects of pro-
gramming. The central notion is that of compositionality, the construction of a
program by composition of separable parts. Results are formulated in terms of
programming languages defined by type systems, which mediate composition of
components, and semantics, which determines the execution behavior of those
programs. Notable theorems include the parametricity theorem, which provides
the mathematical foundation for the informal concept of data abstraction.

Algorithm theory is the study of the efficiency aspects of programming. The
central notion is of asymptotic analysis of the time and space usage of a pro-
gram, expressed in terms of a size measure or a probability distribution on the
inputs. Results are formulated in terms of machine models of computation,
such as TM’s or RAM’s, which define the basic steps of an algorithm and their
exceution cost, perhaps relative to parameters such as the number of proces-
sors on a PRAM. Algorithms are expressed in “high-level assembler”, a simple
imperative programming language, for which the translation to the “official”
machine model is readily understood. Often algorithms are expressed in terms
of explicit representations of data structures using “pointers” and “words” to
manage storage.

By and large the algorithms and programming languages communities oper-
ate in isolation from one another. Programming languages researchers focus on
the practicalities of building large software systems, and are seldom concerned
about efficiency. Algorithms researchers focus on the efficiency of core program-
ming techniques, and are seldom concerned about composition. (These are, of
course, caricatures of reality, but it seems to me that they contain an element
of truth.)

1



The separation between these two areas is not merely an accident of history,
or a product of social structures, but rather signals fundamental challenges that
might profitably be addressed by a joint research effort seeking to consolidate
and integrate advances on both aspects of programming. The prospects for a
successful effort hinge on a shared appreciation for the importance of mathe-
matically rigorous theories of programming and a shared sense of beauty that
drives much work in both areas.

2 Some Challenges

2.1 Higher-Order Programming

There is a large and growing gap between the languages used for software de-
velopment and the machine models on which algorithm analysis is grounded.
When dinosaurs roamed the earth, software was written in low-level imperative
languages, such as C, that are so close to machine models that one could eas-
ily ignore the distinction. Algorithms sketched in a C-like notation are readily
transcribed to actual running code, resulting in a tight interplay between theory
and practice.

This happy correspondence is no longer the common case. Software is writ-
ten in very high-level languages whose mapping to machine models is far from
transparent, making it very difficult to anticipate the cost of execution of com-
piled code. The gap is simply too large to be dismissed. Languages in wide
use these days emphasize automatic storage management, so that the alloca-
tion, layout, and disposal of data structures is out of the explicit control of the
programmer. Doing so greatly facilitates programming, and is vital to ensuring
that modules are composable to form programs.

A closely-related trend is the increasing use of higher-order concepts such
as functions (functionals, operators, iterators); infinite data structures, such as
infinite streams of data items or events; object-oriented methods that represent
data as active objects, rather than passive structures; concurrent composition of
programs from components. Languages exhibiting these characteristics include
Java, JavaScript, Python, Ruby, Scala, OCaml, and Haskell. Such abstractions
are not easily described or manipulated in low-level terms, and in any case
should not be if modularity is to be preserved.

These trends in programming emphasize structural considerations, often at
the expense of a proper understanding of efficiency. Although merely anecdotal,
I have often heard developers say that “everyone knows that algorithms as we
learned them at school are irrelevant to practice.” Setting aside the evident
naivete of such a remark, there is a germ of truth to it in that a machine-level
understanding of algorithms and analysis is very difficult to apply in modern
programming situations that involve abstract data structures whose represen-
tations in storage are emphatically hidden from the programmer.

These considerations suggest opportunities for research on “higher-order al-
gorithms” [Okasaki, 1999] that are expressed in terms of the high-level abstrac-

2



tions that are increasingly commonly used. Useful data structures include infi-
nite, as well as finite, data, and are typically persistent, rather than ephemeral,
for reasons I shall make clearer shortly.

Correspondingly, there is a strong need for research on “cost semantics” [Blel-
loch and Greiner, 1995] for assessing the (parallel and sequential) time and space
complexity of the code that people actually write. Thinking in terms of how
such programs might be compiled is both fallacious (compilers are not very
predictable, and there often are many compilers for the same language) and
utterly impractical. A cost semantics provides a fulcrum balancing implemen-
tation considerations (restrictions on the compiler writer) against application
considerations (assumptions the developer wishes to make).

2.2 Parallel Programming

Technological developments at the chip level, requirements for low-power op-
eration, and the ever-increasing demand for compute power all argue for the
long-term importance of embracing parallelism. The algorithms community has
recognized this for decades, and has developed an impressive body of results pro-
viding both upper and lower bounds on parallelizability of algorithms. Much
of current practice seems to rely on relatively low level methods for harnessing
parallelism, including dedicated hardware (GPU’s, co-processors), concurrent
programming techniques based on message-passing or locking primitives that
require detailed scheduling of resources and controlled placement of data, and
often bake in platform considerations that impede scalability and evolution of
programs.

There is some, relatively limited, research in the programming languages
community addressing these problems at a much higher level of abstraction,
one that is scalable across platforms and over time. But this work is in its
infancy. Most practical work takes place at low levels of abstraction in order
to exploit parallelism to maximum effect, or at high levels of abstraction, such
as concurrency, that impede precise analysis of their complexity properties. It
seems that much could be done to improve both the structural aspects of parallel
programming and the analytic aspects of understanding their complexity.

A promising start is to use functional, rather than imperative, programming
languages [Blelloch and Greiner, 1995] for parallelism. Functional languages are
naturally parallelizable, because the value of an expression is fully determined
by the expression itself, and cannot be influenced by any other computation
occurring in parallel. Data structures in functional languages are naturally per-
sistent, because they are handled as atomic values on a par with numbers or
strings in other languages, and are, by definition, immutable (no in-place update
is permitted). This makes them ideal for parallelism, since a given data struc-
ture may be acted upon by mainly parallel computations, often simultaneously,
without the possibility of interference.

3



2.3 Modularity

The single most important method for controlling the complexity of building
large software systems is modularity, the decomposition of programs into com-
posable components. The vast bulk of research in programming languages may
be seen as an attempt to address this basic principle. The dominance of type
systems as a tool for language design stems directly from Reynolds’s dictum
that a type system is a syntactic discipline for enforcing levels of abstraction.
Roughly speaking, one component of a system should depend only on the type,
or the specification, of another, and not on its implementation.

This general approach works well for behavioral, or correctness, properties,
but breaks down completely for complexity, or efficiency, properties. In technical
terms this is a tension between extensionality and intensionality. Extensionally,
a function is a pure I/O behavior, and has no complexity properties—it is a
mathematical function that happens to be computable. Intensionally, a function
is a program to which we may ascribe complexity—it is a piece of code to which
we may associate an extension.

Effective modularity depends crucially on the extensional viewpoint: one
programmer may work against an interface whose code does not even exist, or
may change radically over time. To minimize integration problems the assump-
tions about the other component should be concerned only with its behavior,
and not the details of its code. But understanding the efficiency of a program
depends crucially on the intensional viewpoint: one must understand the code
of another component in order to assess its complexity and how it may interact
with the code in a component of interest.

Put another way, algorithms tend not to compose well. A good example is
provided by dynamic algorithms [Acar et al., 2006] whose behavior is defined
in terms of “small changes” to the input, with the goal to achieve an efficient
computation of the correspondingly altered output. But unfortunately dynamic
algorithms do not compose! For example, if “small” changes to the input to
the first induce “large” changes to its output (in the sense of “small” defined
for the second), then the composition can be very inefficient, even when the
components are very efficient.

A related example is how to specify the complexity of higher-order programs.
Consider the familiar filter function that takes a predicate (function from
the element type to the boolean type) as argument and selects from a given
list all the elements of that satisfy the predicate. It is very difficult to make
statements about the complexity of filter in general, because the behavior
of the predicate can vary wildly on each argument. We can restrict attention
to only “well-behaved” predicates, which may work well for this example, but
in general when using higher-order programming it is difficult to make general
statements about the complexity of higher-order functions.

More generally, algorithms are usually evaluated as if the algorithm were the
entire program, rather than a subroutine in a larger application. The analysis is
in terms of a measure of the input (say, the number of nodes or edges of a finite
graph), and the complexity of the operations on the data structure are given in

4



terms of that measure. From a systems perspective, this amounts to evaluating
the efficiency of the API, which can have little bearing on the efficiency of a
program that uses it. An example that arose in the PSciCo Project [Blelloch and
Harper, 2004] involved the construction of simplicial complexes. In the interest
of parallelism the operations on a complex were typically slower by a factor of
lg n when compared to an imperative implementation, with the payoff being
that the representation is persistent and would therefore be more amenable to
parallelization. But even that overhead turned out not to matter in practice.
For example, the QuickHull implementation of the 3d-complex hull requires
only O(n) operations on the hull itself, which translated to O(n lg n) time in
the functional case. Yet this was no slow-down, because it nevertheless matches
the well-known lower bound.

2.4 Verification

Proving properties of programs has long been a central goal in programming
research. These days type systems are being developed that blur or erase the
distinction between type checking and verification—types are sufficiently rich as
to be able to state and enforce detailed correctness properties of programs, often
with sufficient automation as to make it routinely possible to ensure compliance
with useful specifications [Appel et al., 2014]. It seems clear that the trend is
now irreversible, for both practical and theoretical reasons.

Very little has been done on the mechanical verification of complexity prop-
erties of programs. There are very good reasons for this. One is that language
research has long been deeply intertwined with verification. Indeed, the very
idea of type systems arises from constructive mathematics, which is based on
computation as a starting point. The “throw the code over the wall” model of
program verification has had substantial success, but it seems that the process
is much easier if verification is integrated with development at the outset. At
the behavioral level much has been achieved to making verification practical
day-to-day, but relatively little effort has been expended on how to express and
verify complexity properties.

Another major obstacle to mechanical verification of complexity is the sheer
mathematical sophistication of the methods used in algorithm analysis. It is
routine to deploy deep results in analysis, combinatorics, and probability theory,
for example. Very little has been done to mechanize these important bodies of
mathematics. This means that there are huge opportunities in this area, but it
is clear that there are also huge challenges to be overcome.

Despite these concerns substantial progress is already being made. For ex-
ample, one may isolate crucial properties of a data structure that drive its com-
plexity, and verify these properties mechanically. A good example is provided
by Appel’s recent work [Appel, 2014] on verifying the complexity of balanced
tree algorithms. The main point in a complexity analysis is that the height of
a balanced tree is logarithmic in the size of its frontier. Such a property can
be readily stated and verified, even at the level of C code, by proving that the
difference in height of the children of a node is bounded by a constant. Dunfield

5



[2007] shows that similar results can be achieved by nearly automatic meth-
ods using type refinements for functional programs. Similarly, the Easycrypt
Project [Barthe, 2014] and Morrisett [Morrisett, 2014] are mechanically verify-
ing security protocols using probabilistic methods, which one might fear would
require a large body of mathematics, such as measure theory. But it turns out
that many useful properties can be proved using relatively elementary methods,
lowering the barrier to entry for machine-checked proof of such an important
class of programs.

3 Some Opportunities

3.1 Certifying Algorithms

A very interesting trend in algorithm design is the idea of certifying algorithms,
those that produce a machine-checkable certificate of the validity of their output.
For example, a certifying planarity tester would not take a finite graph and
return a boolean, but rather would either produce an embedding of the graph
into the plane, or produce an embedding of a Kuratowski subgraph into the given
graph as proof that it is non-planar. This point of view is not only tremendously
practical as a means of ensuring code correctness, but it is also fundamentally
coherent with the emphasis on constructive mathematics in language research—
a certifying algorithm is a constructive proof that for every finite graph G either
there is an embedding of G into R2 or there is an embedding of K5 or K3,3 into
G. Constructively, one is required to produce a proof of one of the disjuncts
(not merely that both cannot be false), and in each case to explicitly exhibit
the embeddings (not merely that an embedding cannot fail to exist).

Certification provides a point of contact between existing work in languages
and algorithms that could well provide the basis for further coordination and
collaboration between the two areas. One possibility is to develop a construc-
tive formulation of the properties of algorithms that is, from a computational
viewpoint, sharper than the classical view. According to classical logic there is
no distinction between a graph being planar and the impossibility of a graph
being non-planar. But constructively there is all the difference between the
“mere existence” of an embedding in the plane (given by evidence that cannot
be used in a further computation) and the “existence” of such an embedding
(which must be presented by an assignment of coordinates to the nodes, say, in
Rn). Mehlhorn’s work shows that there is an important practical application
to drawing such a distinction, and demonstrates that in algorithms, as in other
settings [The Univalent Foundations Program, 2013], constructivity may be a
useful tool for obtaining practical results.

3.2 Language-Based Models

It would be useful to bridge the gap between the low-level machine models
used in algorithms research and the high-level languages used in software de-

6



velopment. It seems clear that the performance of practical programs could be
greatly improved by greater use of sophisticated algorithmic techniques. But, as
mentioned earlier, the use of higher-order programming impedes the expression
and analysis of algorithms written in these languages.

One important ingredient in addressing this problem is the development of
cost semantics for realistic languages. The importance of a machine model in
algorithms is simply that it provides a means of counting space and time usage
of a program: one instruction, one unit of time; one word, one unit of space.
Rather than defining complexity at the level of the machine, it is possible to
assign cost measures to the constructs of a high-level language directly, so that
the analysis can be made in terms of the high-level code, rather than in terms
of how it is compiled to a low-level machine. The high-level costs are separately
validated by proving that they can be realized on various machine models, with
bounds influenced by platform parameters. This separation improves scalabil-
ity as technology changes, and admits more abstract notions of cost than the
individual steps of a machine. Moreover, by working at the language level one
may consider more abstract notions of cost than are easily expressible at the
machine level.

3.3 Functional Parallel Algorithms

A growing trend in program development is the use of functional programming,
which emphasizes a mathematical formulation of a problem in terms of functions
and data structures as abstract notions, rather than in terms of their concrete
realization in memory.

One important application of functional programming is to parallelism. The
advantage is the “declarative” nature of functional programs, which avoid over-
specifying the details of how data is represented or manipulated, in favor of a
more equational description of what the computation is to achieve. Functional
languages provide a useful example of an abstract cost measure, the cost graph,
which associates to a computation a representation of the dependencies among
subcomputations, exposing the implicit parallelism available for that program.
The cost graph determines both the sequential and parallel time and space
complexity of the program, and is a useful abstraction with which to analyze
the asymptotic complexity of a program without regard to platform-specific
parameters, which can be factored in later.

By stressing the tight connection with mathematics, functional languages
encourage a “theoretical” mindset that is consonant with the aims of both the
algorithms and language communities. Behavioral verification of functional pro-
grams is far easier than for their imperative counterparts; it is interesting to ask
whether the same might be said for verification of their efficiency. Certainly
the correctness arguments, on which any complexity analysis depends, are far
simpler, particularly in the parallel case, so this can only help.

The functional perspective has also proved effective in a distributed setting
in which there is no useful concept of shared state. The well-known Hadoop
and Map-Reduce systems exploit this aspect of parallelism to perform parallel

7



computations over large-scale distributed data sets. Such algorithms are highly
sensitive to issues of data locality, because of the enormous difference in time to
access “remote” from “local” data. This kind of problem was studied recently
by Blelloch and Harper [2013, 2014] from the perspective of a cost semantics,
showing that one can reason about the I/O complexity of an algorithm without
having to drop down to a low-level machine model.

3.4 Performance Analysis and Verification

Performance debugging is an enormous time sink in program development. Since
the efficiency of high-level abstract languages can be hard to assess by analytic
means, it is necessary to resort to profiling tools that treat the efficiency problem
“empirically”, as if the program were an object found in nature, rather than
an artifact of known origin with known properties. Improving this situation
would be greatly beneficial in practice, and is likely to be a source of many
interesting research ideas. One may view mechanical complexity verification as
the ultimate profiling tool—one that does not even require the execution of the
program to obtain useful information! More likely, however, a combination of
static verification and dynamic measurement techniques are likely to be helpful.
Developing these ideas seems to be a prime opportunity for interaction between
the algorithms and languages communities.

The concept of a cost semantics presents opportunities for mechanized proof
that build on recent developments in compiler correctness. Appel and Leroy [Ap-
pel et al., 2014] have amassed an impressive body of work on proving that the
code output by a compiler (for a simple C-like language) is behaviorally equiv-
alent to the source code. Given a cost semantics, the natural next step is to
show not only that the emitted code is functionally correct, but moreover that
it meets the expected complexity bounds as stated in the cost semantics. Doing
so would rule out extremely subtle bugs, such as space leaks, that arise from
compiler errors that, in the case of space leaks, retain live data that truly ought
to be considered dead. (See, for example, Spoonhower [2009] for a real-world
scenario of this kind.)

4 A Proposal

This document is written to stimulate discussion and further the possibilities for
fruitful interaction between the algorithms and languages communities. Such
suggestions demand discussion and debate with the goal of generating new ideas
and new research programs that would stimulate both communities. To this end
I propose a workshop on algorithms and languages that would be devoted to
this task.

8



References

U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming.
ACM Trans. Program. Lang. Syst., 28(6):990–1034, 2006.

A. W. Appel. Efficient verified red-black trees. Unpublished manuscript, 2014.
URL http://www.cs.princeton.edu/~appel/papers/redblack.pdf.

A. W. Appel, R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart, S. Blazy,
and X. Leroy. Programs Logics for Certified Compilers. Cambridge University
Press, 2014. ISBN 9781107048010.

G. Barthe. Easycrypt. Project Web Site, 2014. URL https://www.easycrypt.

info/trac.

G. E. Blelloch and J. Greiner. Parallelism in sequential functional languages.
In FPCA, pages 226–237, 1995.

G. E. Blelloch and R. Harper. The PSciCo Project. Project Web Site, 2004.
URL http://www.cs.cmu.edu/~pscico.

G. E. Blelloch and R. Harper. Cache and I/O efficent functional algorithms. In
POPL, pages 39–50, 2013.

G. E. Blelloch and R. Harper. Cache efficient functional algorithms. Commu-
nications of the ACM, 2014. URL http://www.cs.cmu.edu/~rwh/papers/

iolambda-cacm/cacm.pdf. (To appear as an ACM Research Highlight).

J. Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mel-
lon University, August 2007. URL http://www.cs.cmu.edu/~rwh/theses/

dunfield.pdf.

A. Marrow. The practical theorist : the life and work of Kurt Lewin. BDR
Learning Products, Annapolis, MD, 1984. ISBN 0934698228.

G. Morrisett. Verifying security protocols in coq. (Private communication),
June 2014.

C. Okasaki. Purely functional data structures. Cambridge University Press,
1999. ISBN 978-0-521-66350-2.

D. J. Spoonhower. Scheduling Deterministic Parallel Programs. PhD thesis,
Carnegie Mellon University, May 2009. URL http://www.cs.cmu.edu/~rwh/

theses/spoonhower.pdf.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations for Mathematics. Institute for Advanced Study, 2013. URL
http://homotopytypetheory.org/book.

9

http://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.easycrypt.info/trac
https://www.easycrypt.info/trac
http://www.cs.cmu.edu/~pscico
http://www.cs.cmu.edu/~rwh/papers/iolambda-cacm/cacm.pdf
http://www.cs.cmu.edu/~rwh/papers/iolambda-cacm/cacm.pdf
http://www.cs.cmu.edu/~rwh/theses/dunfield.pdf
http://www.cs.cmu.edu/~rwh/theses/dunfield.pdf
http://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
http://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
http://homotopytypetheory.org/book

	Introduction
	Some Challenges
	Higher-Order Programming
	Parallel Programming
	Modularity
	Verification

	Some Opportunities
	Certifying Algorithms
	Language-Based Models
	Functional Parallel Algorithms
	Performance Analysis and Verification

	A Proposal

