
An Epistemic Formulation of Information Flow Security

Arbob Ahmad

April 29, 2015

Abstract

The non-interference (NI) property defines a program to be secure if changes to high-security inputs
cannot alter the values of low-security outputs. NI indirectly states the epistemic property that no low-
security principal acquires knowledge of high-security data. We consider a directly epistemic account of
information flow (IF) security focusing on the knowledge flows engendered by the program’s execution.
Storage effects are of primary interest, since principals acquire knowledge from the execution only through
these effects. The IF properties of the individual effectful actions are characterized using a substructural
epistemic logic that accounts for the knowledge transferred through their execution. We prove that
a low-security principal never acquires knowledge of a high-security input by executing a well-typed
program.

The epistemic approach has several advantages over NI. First, it directly accounts for the knowledge
flow engendered by a program. Second, in contrast to the bimodal NI property, the epistemic approach
accounts for authorized declassification. We prove that a low-security principal acquires knowledge of
a high-security input only if it is authorized by a proof in authorization logic. Third, the explicit
formulation of IF properties as an epistemic theory provides a crisp treatment of “side channels.” Rather
than prove that a principal does not know a secret, we instead prove that it is not provable that the
principal knows that secret. The latter statement characterizes the “minimal model,” for which a precise
statement may be made, whereas the former applies to “any model,” including those with “side channels”
that violate the model’s basic premises. Fourth, the NI property is re-positioned as providing an adequacy
proof of the epistemic theory of effects, ensuring that the logical theory corresponds to the actual program
behavior. In this way we obtain a generalization of the classical approach to IF security that extends to
authorized declassification.

1 Introduction

Standard accounts of information flow security (IFS) in programming languages express confidentiality in
terms of the non-interference (NI) definition given by Goguen and Meseguer [1982] stating that changes
to high-security inputs cannot influence low-security outputs. This criterion may be seen as an indirect
expression of the desired property that information provided by a high-security source is not disclosed to a
low-security destination. Put in other terms, IFS seeks to enforce the epistemic requirement that knowledge
possessed by high-security principals should not flow to low-security principals. We propose another approach
to IFS based on the following key ideas:

1. IFS is defined in terms of effects that a program has on its execution environment, following Crary
et al. [2005].

2. A substructural epistemic logic proposed by DeYoung and Pfenning [2009] tracks the flow of knowledge
engendered by program actions.

3. Authorized declassification of sensitive data is permitted, using authorization logic [Abadi et al., 1993,
Garg and Pfenning, 2012] to validate each declassification in a program.

4. The computational adequacy of the epistemic theory of program actions is verified using a generalization
of NI [Goguen and Meseguer, 1982].

1

The distinctive feature of our approach is that IFS is phrased directly in terms of the knowledge that
a principal may gain by executing a well-typed program. More precisely, IFS is expressed by necessary
conditions on the derivability of statements of the form [k]S stating that a principal k possesses (knows)
fact S. When k is a low-security principal, and S is a high-security fact, this amounts to proving that k can
come to know S only under specified conditions—in the simplest case, falsehood, which amounts to showing
that k cannot know S as the result of a well-typed execution. More generally, we show that [k]S may be
derived under such circumstances only if there is a proof in authorization logic underwriting the information
flow. This generalizes the previous statement by admitting controlled declassification.

It is important to our account that security is phrased in terms of the non-derivability of a knowledge
statement, rather than derivability of its negation. The distinction lies in the ever-present possibility of “side
channels,” such as measurements of time- and power-consumption, that are not typically modeled in a type
system for IFS [Bar-El et al., 2006, Govindavajhala and Appel, 2003]. Because of these “out of the model”
attacks, it is almost never possible to prove the negation of the statement that a low-security principal
knows a high-security fact. On the other hand it is possible to show that such a statement is underivable
within the epistemic theory characterizing the effects of the program execution. This amounts to a precise
characterization of the attacks against which the type system mounts a successful defense, avoiding the need
for vague provisos about the limitations of the model.

The role of the NI property is re-positioned in our work as the basis for the proof of the computational
adequacy of the epistemic theory. After all, a theory that predicts no knowledge disclosures would ensure
that no knowledge statement is ever derivable. We must show, contrarily, that the epistemic theory is
adequate in the sense that it properly detects interference, even in the presence of declassification. This is
achieved using a generalization of NI that, when coupled with authorization logic, provides a logical account
of IFS in the presence of declassification, something that is problematic in the pure NI framework.

The epistemic framework we propose offers several advantages over purely NI-based accounts of IFS:

1. It focuses attention directly on the core problem of confidentiality, which is to control the knowledge
that a principal may acquire as a result of executing a program.

2. It provides a linkup between authorization [Abadi et al., 1993, Garg and Pfenning, 2012] and security
in a single framework. Authorization logic ensures that security protocols are obeyed ; epistemic logic
gives these protocols meaning in terms of confidentiality and integrity.

3. It naturally encompasses declassification [Sabelfeld and Sands, 2009], a well-known weakness of the
pure NI framework.

4. It uses substructural reasoning to express ephemeral, as well as persistent, knowledge [DeYoung and
Pfenning, 2009]. For example, an internal data structure may “know” a secret at one moment, but
“forget” that secret at the next moment (if, say, some datum is erased).

5. It provides the basis for developing a tool to explore the epistemic consequences of a programming
language and its associated authorization logic. Such consequences can be hard to envision without
mechanical assistance to trace out the possible consequences of a policy.

Proposed work

My thesis work will defend the following statement:

Thesis statement: Flexible tools for information flow security that use direct reasoning about
effects in epistemic and authorization logic solve the core problems of confidentiality and integrity.

The remainder of the proposal is organized as follows. We conclude this section by outlining my existing
and expected contributions. Section 2 gives some concrete examples to elucidate the proposed methodology.
In Section 3 we introduce the programming language that enforces access control and define the dynamic

2

semantics so that it generates an effect trace. Initially this language is presented without authorized declas-
sification so that it enforces strict NI. In Section 4 we describe the pertinent features of the epistemic logic.
In Section 5 we state the technical results of adequacy and NI. Section 6 adds authorized declassification
and revises the theorems to account for it. Related work is surveyed in Section 7, and Section 8 enumerates
the goals for the thesis.

Non-interference and declassification We have defined a preliminary security language SL for an-
alyzing information flow in Section 3. SL is based on a similar language for enforcing NI in Crary et al.
[2005]. Explicitly running on behalf of a principal facilitates the creation of effect traces and distinguishes SL
from the work of Crary et al. [2005]. The information flow consequences of these effect traces are determined
by the epistemic logic.

Although SL provides a case study for our methodology, it lacks many of the features necessary for
a robust security language. For example, SL strictly enforces NI, which precludes any declassification of
privileged data. The security language with declassification SLD adds authorized declassification to SL.
Declassification requires a proof in authorization logic that the declassification is permitted. However, the
language as presented in Section 6 only generates simple authorization proofs that correspond to the posses-
sion of a certificate. As part of my thesis work, I will extend this work with a more expressive authorization
logic. This extension will also require modifying SLD to enable constructing proofs in this more expressive
logic. Expressive authorization proofs will likely require some form of dependent types to express precisely
what values may be declassified using a given proof.

Protocols and policies Security protocols often dictate specific steps that must be followed before a
sensitive action may be performed. The intuition is that these steps ensure that a security policy is enforced.
However, the connection between the specific steps of the protocol and the abstract goals of the policy is
often unclear. For example, a protocol that requires obtaining an authorization credential from a privileged
principal prior to declassifying a value ensures that the value is only declassified to a principal who possesses
that credential. Therefore, the execution of a program that adheres to this protocol should only result in
principals knowing the declassified value if they can create or acquire this credential. This preliminary anal-
ysis of the protocol is still incomplete. There must be additional reasoning to demonstrate that a principal
that acquires this knowledge through the protocol does not then share the knowledge with other principals
that couldn’t have directly learned it through the protocol. Similarly, a more precise statement of the policy
would also directly assert which principals should be able to obtain the authorization credential. In this way,
the policy directly specifies which principals can obtain the given knowledge through the execution of the
protocol.

Combining epistemic logic and authorization logic enables our approach to precisely capture the abstract
policies about the knowledge of principals that underlie authorization protocols. The combined logic can
directly state that a knowledge statement will only be derivable when a certain authorization proof is also
derivable. This gives the authorization protocols meaning in terms of confidentiality and integrity.

2 Worked examples

This section outlines the methodology of the paper by describing how it applies to some example programs.
Although these descriptions omit many details, the important ideas are introduced.

The security language SL we analyze distinguishes computations that may have storage effects from effect
free expressions by dividing them into two distinct syntactic classes in a monadic language for effects [Moggi,
1989, 1990, Peyton Jones and Wadler, 1993]. We write e for expressions and m for commands. An expression
may contain a suspended command, which is denoted cmd(m), but evaluation of the expression never executes
the command. Other than these suspended commands, expressions closely resemble the pure expressions
of functional languages. The return command ret forms a command from an expression by returning the
value of the expression without performing any effects. A suspended command is eliminated by the bind
command x ← e1; m2. Bind evaluates the expression e1 to a suspended command, which is a value. The

3

Σ = a : bool@{k1, k2}, b : bool@{k2}, c : bool@{k2}

set[c](false);

x <- get[a];

sudo[k1->k2](y <- get[b];

if y then

if x then

cmd(set[c](true))

else

cmd(ret <>)

else

cmd(ret <>);

ret <>

)

Figure 1: Example program 1

suspended command is then executed, and the value it returns is bound to the variable x in the scope of
the command m2. For brevity, when the variable is not used we omit the binding, and when e1 is just a
suspended command we write x← m1; m2 for x← cmd(m1); m2. The commands get and set read from and
write to assignable variables, which we will call assignables.

Each command is run on behalf of a principal, which dictates the storage operations it may perform. The
sudo command switches the principal on behalf of whom a command is run enabling it to read assignables
that the less privileged principal cannot access directly. Therefore, principals may also be thought of as
roles. The sudo switches are reminiscent of upcalls performed by operating systems such as the UNIX
sudo. Passing arbitrary values computed by a more privileged principal back to a less privileged principal
would subvert the access restriction. To avoid this the sudo requires that the type of the value returned is
informative only to principals that can perform all of the reads within the sudo. Crary et al. [2005] defined
non-informativeness to permit more privileged reads in a limited scope. Our approach is distinguished by
the choice to syntactically represent the non-informative commands with a sudo command. We also differ
in explicitly running commands on behalf of principals to dictate the effects that may be performed rather
than implicitly representing this information in the type system.

The example program in Figure 1 reads the contents of the assignables a and b and writes their conjunction
to the assignable c under the store typing Σ. The assignables a, b, and c store values of type bool. Each
assignable is associated with a permission set of principals that may read its contents. The permission set
of a is {k1, k2} = Φa indicating that both principals may read it. The permission set of both b and c is
{k2} = Φb = Φc indicating that only k2 may read them. As we focus on confidentiality rather than integrity,
there is not an analogous restriction for writing to an assignable. The example program initially runs on
behalf of k1 and then performs a sudo to run on behalf of k2. In this simplest case, the type returned by
the sudo command is completely non-informative because it is unit. The sudo is necessary because the
permission set Φb does not include the principal k1. The conjunction is computed with a nested if-then-else
expression.

The type system constrains which assignables a principal may read and in what order reads and writes
may be performed in order to restrict the possible information flows. Each command is associated with an
effect level based on the reads and writes it performs. The effect level consists of a read set that is a set of
principals permitted to see the result returned by the command and a write set that is a set of principals
to whom the command may disclose information through its writes. The read set is a set that may see
the result rather than the set that may see the result because the type system builds in weakening as an
admissible property. It is always safe from a confidentiality perspective to impose a more severe restriction
on the principals that may see the result. For example, it is safe to assert that no principal is permitted
to see the result. Similarly, it is safe to assert that a command may write to assignables readable by more

4

principals than is actually true since this imposes a greater restriction on the information that may be passed
into the command.

The intersection of the permission sets of the assignables read by a command is an upper bound on its read
set as the value returned by the command may contain information read from any or all of these assignables.
Only principals permitted to read all of the assignables may see the result. The union of the permission sets
of the assignables written by a command is a lower bound on its write set as information passed into the
command may affect the value written to any one of the assignables modified by the command. Therefore, a
principal that belongs to the permission set of any of the assignables may indirectly read this value from the
assignable written. As a result, the bind command that sequences two commands requires that the read set
of the bind is contained in the intersection of the read sets of the respective commands and that the write
set of the bind contains the union of the write sets of the respective commands.

The read set of the first two commands of the example program must be contained in the permission set
Φa, and their write set must contain Φc. The write to c imposes no constraint on the read set of the first
command, and the read from a imposes no constraint on the write set of the second command.

The sudo command has an unrestricted read set because the resulting value is non-informative thereby
preventing the reads performed within the sudo from disclosing information through its result. In the
second part of the example run by k2, the read set of the sudo is unrestricted even though the read set of
the command within the sudo must be contained in Φb. Therefore, the read set of the full example program
need only be contained in the permission set Φa. The sudo preserves the write set of the command within it
as writes performed within a sudo can be affected by values passed into the command just like other writes.
The write set of the sudo in the example must contain the permission set Φc. This is also the write set of
the full program as only c is written to by either principal. Note that the read set for the full program is Φa

reflecting that principal k1 only learns the contents of a, not b.
To prevent reading from one assignable and then writing the result to another with a less restrictive

permission set, the bind command requires that the read set of the first command contains the write set of
the second. For example, the bind executed by k2 first reads from b and then writes to c. Therefore, this
restriction requires Φb ⊇ Φc. In the full program, the read from a also precedes the write to c within the
sudo so Φa must also contain Φc. These two requirements are reasonable as the final value written to c is
the conjunction of the other two assignables so information may flow from both of them to c.

We are interested in analyzing how flows of knowledge are engendered by the computation. Therefore, we
explicitly define the possible transfers of knowledge by specifying the epistemic consequences of the effects
of a program. Each storage effect of a program has a corresponding semantic action in the epistemic logic.
The semantic action expresses how the effect may transfer knowledge between the principals and assignables
involved. The dynamic semantics produces a trace of the security-relevant effects when a command is
executed.

Schneider [2000] identifies the deficiency of traces for identifying NI. In the example program, if the initial
contents of the assignables a and b are true and false, then the trace would contain effects for the first write
to c and read from a by k1 and for the read from b by k2, but the second write to c is not performed when
b is false as the else branch just returns unit. However, information is disclosed from the assignables a and
b to the assignable c even when the second write isn’t performed as the final value stored in c is always
the conjunction of the other two assignables. To always represent these disclosures regardless of the initial
contents of the assignables, the trace is augmented with pseudo effects that are derived from the type of
the commands in the program. Using static typing information derived from the whole program avoids the
issue with traces for NI identified by Schneider [2000]. The type of the if-then-else statement indicates that
a write to c is possible because the type summarizes what may happen in either branch. The pseudo effects
in the trace reflect that this write is possible even when it does not occur dynamically. The pseudo effects
are critical as information can be disclosed by not modifying an assignable as indicated by the example.

We have an epistemic theory that governs the epistemic consequences of traces. The semantic actions
express the epistemic consequences of each effect in the trace as linear implications that consume the next
trace action in the context and modify the knowledge of principals and assignables appropriately. Linearity
enables principals and assignables to “forget” knowledge. An assignable may forget its previous contents

5

when it is overwritten, and a principal may forget what it learned within a sudo command when it leaves the
scope of the variables it bound in the sudo. We present two of these semantic actions here to demonstrate
what is expressed by the semantic actions for the read and write actions.

do(rdk [a])⊗ [k]s(X)⊗ [a]s(Y)([k]s(X ∗ Y)⊗ [a]s(Y)

do(wrk [a])⊗ [k]s(X)⊗ [a]s(Y)([k]s(X)⊗ [a]s(X)

The proposition [p]s(X) represents the knowledge of an entity p, which may be either a principal or an
assignable. The special atomic proposition s(X) maintains all of the knowledge in a single proposition. We
abstractly represent the knowledge of the principals because we are primarily interested in how information
flows between principals, not precisely what information is transferred. The symbols X and Y represent
two such sets of secrets implicitly universally quantified over each formula. The ∗ operator combines these
into a single set of secrets. Each entity’s secrets are grouped in a single s(X) as otherwise a semantic action
that causes an entity to forget may only consume part of that entity’s knowledge. For example, if there was
another proposition, [a]s(Z), in the context then the semantic action for writing to a would only erase part
of the previous information stored in the assignable. The do(α) proposition indicates the next trace action to
be performed. The action rdk [a] shares the assignable’s knowledge, s(Y), with the principal k performing the
action. The previous knowledge of the principal, s(X), is preserved so the resulting knowledge is s(X ∗ Y).
The knowledge of the assignable is also preserved. The action wrk [a] is similar except the knowledge is
transferred from the principal k to the assignable a and the previous knowledge of a is forgotten.

Returning to the example, if the initial contents of a and b are both true then the trace of the example
program would be:

wrk1 [c], rdk1 [a], sudo[k1 → k2], rdk2 [b], wrk2 [c], sudo[k1 ← k2]

This trace makes c learn anything previously known by a and b. The flow from b to c is immediate as k2
writes to c after reading b. The flow from a to c requires an intermediate flow of knowledge from k1 to k2,
which results from the semantic action for sudo[k1 → k2] since any variable bound before the sudo remains
in scope within the sudo. The trace also results in a flow of knowledge from a to k1 but not from b to k1 as
this was the purpose of reading b within the sudo. If a contained false instead then the trace would be the
same except the wrk2 [c] action would be replaced by a pseudo action reflecting that this write was possible
even though it did not occur dynamically.

The disclosure of knowledge between principals and assignables defined by the semantic actions has several
important properties that will be formally stated and proved later, but we briefly introduce a few of them here.
The disclosure interpolation lemma states that if T discloses a to c and T = T1, T2 then there is an entity p such
that T1 discloses a to p and T2 discloses p to c. In the example trace the lemma holds of the disclosure from
a to c with p = k2 by taking T1 = wrk1 [c], rdk1 [a], sudo[k1 → k2] and T2 = rdk2 [b], wrk2 [c], sudo[k1 ← k2].

The knowledge transfers derived from the trace in the epistemic theory are related to the values computed
through the execution of the program that produced the trace by the adequacy theorem for the epistemic
theory. The adequacy theorem implies that if we change the initial contents of a from true to false while
leaving the rest of the state unchanged and if in the final state, the value stored in c changes from true to
false then the trace must disclose a to c. The adequacy theorem demonstrates that the semantic actions
correctly derive all information flows of a trace that may occur through the execution of the program that
generated that trace. In fact, the semantic actions conservatively assume that more disclosures may occur
than are actually possible.

The typing soundness lemma asserts that if the trace of a well-typed program discloses a to k1 then k1
must belong to Φa. In the example, this means k1 and k2 must belong to Φa and k2 must belong to Φb. The
conservativeness of the semantic actions makes the requirements of the typing soundness lemma more strict.

The familiar NI theorem implies that if two executions produce final states that differ in the value of c
then there must be an assignable whose values differ in the initial states and whose permission set is no more
restrictive than that of c. In the example, this could be either a or b as both have permission sets that are
no more restrictive than c and the final value stored in c is computed from their initial values. NI is proved
as a corollary of adequacy and typing soundness.

6

Σ′ = a : bool@{k1, k2}, b : bool@{k2}, c : bool@{k1, k2}

set[c](false);

x <- get[a];

pfOption <- auth[k2];

case pfOption of

NONE => cmd(ret <>)

| SOME pf => cmd(y <- decl[b](pf);

if y then

if x then

cmd(set[c](true))

else

cmd(ret <>)

else

cmd(ret <>)

);

ret <>

Figure 2: Example program 2

The epistemic approach can go beyond NI results. We introduce a declassification command decl that
permits a principal to read an assignable it cannot directly access according to the permission set. The
decl command requires an authorization proof that the assignable may be declassified. For simplicity, these
authorization proofs are abstract tokens of authentication obtained by executing the auth command. The
authorization proofs are proofs of propositions in the same epistemic logic used to represent the knowledge.

Figure 2 defines a second example program run on behalf of k1. It illustrates the use of declassification
and authentication. As in the first example, the program computes the conjunction of the values stored in
the assignables a and b and stores the result in c, but the store typing Σ′ differs from Σ in the permission
set Φc, which is now {k1, k2}. The first example program is ill-typed in Σ′ because Φb + Φc so the write
to c following the read from b is disallowed. To make the program well-typed, we declassify b rather than
performing a sudo to access it. This declassification requires an authorization proof from an auth command
that authenticates k2. If the authentication fails, the value stored in c will remain false; however, if it
succeeds, b is declassified using the resulting proof, and the conjunction of a and b is written to c as before.

Authorized declassification complicates reasoning about information flow. In the example, the final
contents of c in two runs of the program may differ based on the success or failure of the auth command even
if the initial values stored in a and b are true in both runs. Many of the theorem statements are modified
to account for the outcomes of authentication. Moreover, additional trace effects for declassification and
authentication require semantic actions specifying their epistemic consequences. An authentication effect
in the trace creates a persistent proof authorizing appropriate declassifications. This proof is discharged in
the semantic action for declassification. Finally, the NI theorem is generalized to assert that a low-security
principal acquires knowledge of a high-security input only if it is authorized by a proof in authorization
logic.

3 Language

Figures 3, 4, and 5 formally define SL. The terms are divided into two syntactic categories yielding a monadic
structure as in Crary et al. [2005], but the type system and dynamic semantics differ in a few ways including
the explicit representation of non-informative upcalls as changing principals and the addition of effect traces.

7

Types A, B ::= A + B | cmdk [Φr,Φw](A) | 1 | A × B | A → B | · · ·
Expressions e ::= cmdk [Φr,Φw](m) | · · ·
Commands m ::= x← e; m | ret e | get[a] | set[a](e) | sudo[k → k′](m) | new a@Φ := e in m

Context Γ ::= · | Γ, x : A
Store Ctx. Σ ::= · | Σ, a : A@Φ

Σ; Γ ` e : A

Σ; Γ ` e : B1 + B2 Σ; Γ, xi : Bi ` ei : A (i = 1, 2)

Σ; Γ ` case(e, x1.e1, x2.e2) : A
3.1

Σ; Γ ` m ÷k A@[Φr,Φw]

Σ; Γ ` cmdk [Φr,Φw](m) : cmdk [Φr,Φw](A)
3.2

Σ; Γ ` m ÷k A@[Φr,Φw]

Σ; Γ ` e : A

Σ; Γ ` ret e ÷k A@[Φr,Φw]
3.3

Σ; Γ ` e : cmdk [Φr
1,Φ

w
1](A) Σ; Γ, x : A ` m ÷k B@[Φr

2,Φ
w
2] Φw

2 ⊆ Φr
1 Φw ⊇ Φw

1 ∪ Φw
2 Φr ⊆ Φr

1 ∩ Φr
2

Σ; Γ ` x← e; m ÷k B@[Φr,Φw]
3.4

a : A@Φ ∈ Σ Φr ⊆ Φ k ∈ Φ

Σ; Γ ` get[a]÷k A@[Φr,Φw]
3.5

a : A@Φ ∈ Σ Σ; Γ ` e : A Φw ⊇ Φ

Σ; Γ ` set[a](e)÷k 1@[Φr,Φw]
3.6

Σ; Γ ` m ÷k2 A@[Φr
2,Φ

w] k1 @ k2 A↗Φr
2 k1 /∈ Φr

2

Σ; Γ ` sudo[k1 → k2](m)÷k1 A@[Φr
1,Φ

w]
3.7

Σ; Γ ` e : A Σ, a : A@Φ; Γ ` m ÷k B@[Φr,Φw]

Σ; Γ ` new a@Φ := e in m ÷k B@[Φr,Φw]
3.8

Figure 3: SL static semantics

3.1 Type system

The types A, B defined in Figure 3 are mostly familiar. One notable exception is the type of suspended
commands, cmdk [Φr,Φw](A). It indicates the type A returned by the command as well as its effect level and
the principal on behalf of whom it is run. The expressions e are pure as their evaluation cannot cause writes
or reads from assignables. We do not precisely enumerate the expressions because this pure fragment of the
language is less significant than the effectful commands. Expressions may include pairs, recursive functions,
and many other pure constructs. The typing judgment for expressions, Σ; Γ ` e : A, is mostly familiar as
seen in rule 3.1. The most notable difference is the separation of the context into the variable context Γ and
the store context Σ. The store context is only used to type the suspended commands within expressions in
rule 3.2. This rule embeds a command in an expression as a suspended computation. A suspended command
is always a value so it does not perform any reads or writes when it is evaluated within an expression.

The commands m are computations that read from and write to the store. Most are standard for a monadic
language such as Pfenning and Davies [2001]. The judgment Σ; Γ ` m ÷k A@[Φr,Φw] is more elaborate than
traditional monadic type systems because it restricts the effect level [Φr,Φw] to control information flow.
The subscript k indicates the principal on behalf of whom the command is run. The read set Φr is a set of
principals permitted to see the value returned by the command. The write set Φw is a set of principals to
whom the command may disclose information through its writes. The type system builds in weakening of
the effect level as an admissible property. Therefore, a command with effect level [Φr

1,Φ
w
1] may also be typed

with effect level [Φr
2,Φ

w
2] if Φr

2 ⊆ Φr
1 and Φw

2 ⊇ Φw
1. For example, rule 3.3 for typing the command ret e

permits any effect level because the ret command evaluates the pure expression e without performing any

8

effects.
Rule 3.4 for typing the bind command, x ← e; m, is critical for restricting information flow. The

expression e is a suspended command so its type cmdk [Φr
1,Φ

w
1](A) includes its effect level. The typing

judgment for the command m gives the effect level [Φr
2,Φ

w
2] of the second part of the bind. Rule 3.4 restricts

how the subcommands of a bind may be chained together. Consider the bind when e is a suspended command
that reads the assignable a, cmdk [Φr

1,Φ
w
1](get[a]), and m writes the value read from a to another assignable

b, set[b](x). As get is used to read an assignable, rule 3.5 requires that the executing principal is in the
permission set Φa associated with a and that Φa ⊇ Φr

1. Intuitively, the rule imposes no restrictions on the
write set. Conversely, rule 3.6 requires that the permission set Φb ⊆ Φw

2 and imposes no restriction on the
read set. Therefore, the restriction of rule 3.4 that Φw

2 ⊆ Φr
1 implies Φb ⊆ Φa as Φb ⊆ Φw

2 ⊆ Φr
1 ⊆ Φa. This

means that the principals that may learn the contents of a indirectly by reading the contents of b can also
just directly read the contents of a.

If each of the subcommands of a bind command reads from some assignables then the premise of rule
3.4 that requires Φr ⊆ Φr

1 ∩Φr
2 forces the read level to be restrictive enough to protect all of the assignables

read. For example, if the permission set of a is Φa = {k1, k2} and the permission set of b is Φb = {k2, k3}
then the read level of a bind command that reads both of these assignables would be a subset of {k2} as
only k2 may read both assignables. This restriction is necessary in the case that the bind’s result contains
information about both values read from the assignables. For example, the result returned by the command
could be a pair containing both values. Similarly, the premise that requires Φw ⊇ Φw

1 ∪ Φw
2 forces the write

level to reflect all of the assignables that may be written in either part of the sequencing command. A value
passed into the sequencing command may be written in either of the subcommands and therefore, any of the
principals that can read any of the assignables written to by the command may be able to read that value.

Rules 3.5 and 3.6 for the set and get commands are asymmetric because there is no restriction on the
principal on behalf of whom the set command executes whereas rule 3.5 requires that the executing principal
is in the permission set of the assignable read. This asymmetry reflects the focus on the confidentiality instead
of the integrity of the assignables. As usual, integrity in the sense of NI can be addressed with a dual technique
[Biba, 1977]. This form of integrity prevents low-integrity inputs from influencing high-integrity outputs,
but does not make any other guarantees about the values written to high-integrity outputs. The application
to integrity is outlined in section B. Essentially, the dual representation flips the lattice of principals upside
down, but most of the other components of SL remain the same.

Rule 3.7 for the sudo command relies on the informativeness judgment A↗Φ given in Figure 4. If A↗Φ
then the type A is informative only to the principals in Φ. The set U is the set of all principals. Asserting
that a type is informative only to the principals in the set of all principals is trivially true so rule 4.1 says
that any type A is informative only to the principals in U. Rule 4.1 gives the informativeness rule for any
type not otherwise specified. For example, it applies to the sum type A + B because even if A and B are
both uninformative, the sum type is still informative to any principal since it can see the outer tag. The
unit type is never informative. Rule 4.2 asserts it is informative only to the principals in the empty set ∅.
Rule 4.3 depends on the informativeness of the return type as information is extracted from a function by
applying it to an argument and observing the result. A pair is analyzed by projecting its components so
it is informative to a principal if either component is informative to that principal. Rule 4.4 specifies this
by taking union of the two sets of principals to whom the component types are informative. A suspended
command is analyzed by running it and viewing the result, but information can also be extracted by reading
values written during the execution of the command. Therefore, rule 4.5 states that it is as informative as
the union of the informativeness set of its return type and the set of principals that can read assignables
written by it. It is safe to assert that a type is informative to more principals than it actually is. Rule 4.6
asserts that a type that is informative only to principals in Φ1 is also informative only to principals in a
larger set.

The sudo command is the only one to change the principal on behalf of whom a command is run.
The command sudo[k1 → k2](m) switches principals from k1 to the more privileged k2 provided the result
returned by m is uninformative to k1. The privilege restriction is enforced by the ordering k1 @ k2 in rule 3.4.
Because the principal that makes the sudo upcall can transfer information to the more privileged principal,

9

A↗Φ

A↗U
4.1

1↗∅ 4.2
B↗Φ

A → B↗Φ
4.3

A↗ΦA B↗ΦB

A × B↗ΦA ∪ ΦB
4.4

A↗ΦA

cmdk [Φr,Φw](A)↗ΦA ∪ Φw 4.5
A↗Φ1 Φ1 ⊆ Φ2

A↗Φ2
4.6

Figure 4: Non-informativeness

the partial order @ imposes the restriction that the permission sets must be upward closed under @. That
is, if a principal k ∈ Φ and k @ k′ then k′ ∈ Φ. Therefore, the more privileged principal could have directly
read any secret passed to it through a sudo. While executing the privileged command as k2, values may
be read that k1 cannot read. The premises A↗Φr

2 and k1 /∈ Φr
2 assure that these values are not returned

back to k1 through the result of the sudo because the type of the value returned is uninformative to k1. In
the first example program in Figure 1, principal k1 uses a sudo to k2 to read b and write its conjunction
with a to c. The permission set of b is Φb = {k2}, so k1 cannot directly read b. The read set of the
command in the sudo is contained in Φb so rule 3.7 requires that the type returned by the command is only
informative to the principal k2. The type returned is unit so it is not informative to any principal, but we
weaken this and say it is informative only to k2. Encapsulating the read of b in a sudo command permits
the surrounding computation to continue execution without any restriction based on the reads performed
within the sudo. Note that the write set is not modified by the sudo command as any writes it performs
can still leak information passed into it.

The command new a@Φ := e in m declares a new assignable a with permission set Φ initialized to the
value of e and then executes the command m. As observed in Crary et al. [2005], the write set of rule 3.8 is
not restricted by the permission set Φ of the new assignable because the initial value stored in the assignable
cannot be leaked unless a reference to the assignable itself is leaked first. Therefore, even if a secret value is
written to a freshly allocated assignable with no restrictions on who may read it, the fresh assignable cannot
leak the secret unless the assignable itself is first leaked, which is prevented by the type system.

3.2 Dynamic semantics

Figure 5 defines memory stores, trace effects, and traces and presents the rules of the execution judgment for
a command. A store µ is a collection of assignables paired with values representing their contents. We view
stores modulo the order of assignables for ease of use in the evaluation rules. The effects α correspond to
each of the effectful operations a command can perform. These effects include the principal that performed
the operation and the assignable involved, not the values read or written. A basic trace is a list of effects so
it is either empty, ε, or has an effect added to the front of a trace, α, T. We also form a trace by appending
two subtraces together, T1; T2. A sudo trace [T]k→k′ reflects that the subtrace T is nested inside a sudo

command. When we reason about these traces in epistemic logic we reduce the traces to simple lists by
replacing the sudo trace with two sudo effects for starting and ending the sudo before and after the subtrace.
The subtraces of T1; T2 are also appended together to form a single list.

The execution judgment νΣ.(m || µ) ⇓k νΣ′.(m′ || µ′) {T} is divided into four parts. There are two
execution states νΣ.(m || µ) and νΣ′.(m′ || µ′), each consisting of a store context of assignables in scope
within the command, the command itself, and the memory store. The store context Σ is similar to the
store context used in the static semantics but without the type information. The permission set of every
assignable in the store is given by the store context. The command in an execution state only contains free
assignables in its store. The other two parts of the execution judgment are the principal k on behalf of whom
the execution is performed and the trace T produced by the execution.

The rules of the execution judgment are mostly familiar from similar monadic languages with the small
addition of the traces for recording the effects. Rule 5.1 produces an empty trace since the ret command just

10

Store µ ::= · | µ ⊗ 〈a : v〉
Effects α ::= rdk [a] | wrk [a] | newk [a] | leakk(Φ)
Traces T ::= ε | α, T | T1; T2 | [T]k→k′

νΣ.(m || µ) ⇓k νΣ′.(m′ || µ′) {T}

e ⇓ v
νΣ.(ret e || µ) ⇓k νΣ.(ret v || µ) {ε} 5.1

e ⇓ cmdk [Φr
1,Φ

w
1](m1) νΣ.(m1 || µ) ⇓k νΣ′.(ret v1 || µ′) {T1} νΣ′.([v1/x]m || µ′) ⇓k νΣ′′.(m′′ || µ′′) {T2}

νΣ.(x← e; m || µ) ⇓k νΣ′′.(m′′ || µ′′) {T1; leakk(Φw
1); T2}

5.2

νΣ.(get[a] || µ ⊗ 〈a : v〉) ⇓k νΣ.(ret v || µ ⊗ 〈a : v〉) {rdk [a]} 5.3

e ⇓ v′

νΣ.(set[a](e) || µ ⊗ 〈a : v〉) ⇓k νΣ.(ret () || µ ⊗ 〈a : v′〉) {wrk [a]} 5.4

νΣ.(m || µ) ⇓k′ νΣ′.(ret v || µ′) {T}
νΣ.(sudo[k → k′](m) || µ) ⇓k νΣ′.(ret v || µ′) {[T]k→k′}

5.5

e ⇓ v νΣ, a@Φ.(m || µ ⊗ 〈a : v〉) ⇓k νΣ′.(m′ || µ′) {T}
νΣ.(new a@Φ := e in m || µ) ⇓k νΣ′.(m′ || µ′) {newk [a], T} 5.6

Figure 5: SL dynamic semantics

evaluates a pure expression and has no storage effects. Rule 5.2 concatenates the traces of its subcommands
together as expected, but it also adds a leak pseudo effect in the middle to account for writes that may not
have occurred dynamically but were possible according to the write set of the suspended command. When
the example program in Figure 1 is executed, the second write to c may not occur dynamically but will be
reflected in the trace through the leak effect. This rule defines how a suspended command is executed. The
expression is evaluated to a suspended command, which is a value. Then the suspended command is paired
with the current store and executed to produce an intermediate execution state. Since this execution state
is the result of an execution, its command is a ret with a value. This value is substituted into the second
subcommand of the bind. The result of the substitution is combined with the store context and store from
the intermediate execution state and then executed to produce the final execution state. Rules 5.3 and 5.4
read from and write to the memory store, respectively. Each produces a single element trace to represent
that the corresponding operation has occurred. Rule 5.5 is primarily noteworthy for the change in principal
from k in the conclusion to k′ in the premise. The trace [T]k→k′ nests the trace T of the subcommand of
the sudo in square brackets indicating the principals involved and the extent of the non-informative block.
Rule 5.6 conses an effect indicating the assignable declared to the front of the trace of its subcommand. The
subcommand is executed in an extended memory store that includes the new assignable and its initial value.

4 Epistemic Logic

The logic we employ to model information flow is directly taken from DeYoung and Pfenning [2009]. In
addition to the cut elimination property of the substructural epistemic logic, which enables proving that
undesired knowledge transfers are not derivable, the features of this logic that are of particular importance
for our representation are the linear knowledge modality and the monad. The linear knowledge modality is
also known as possession. It allows an entity to possess a secret temporarily. For example, an assignable
may temporarily possess one secret until another value is written to the assignable causing it to possess a

11

do([k→k′)⊗ [k]s(X)⊗ [k′]s(Y)({[k]s(X)⊗ [k′]s(X ∗ Y)⊗ next} (6.1)

do(]k′→k)⊗ [k′]s(X)({[k′]s(1)⊗ next} (6.2)

do(rdk [a])⊗ [k]s(X)⊗ [a]s(Y)({[k]s(X ∗ Y)⊗ [a]s(Y)⊗ next} (6.3)

do(wrk [a])⊗ [k]s(X)⊗ [a]s(Y)({[k]s(X)⊗ [a]s(X)⊗ next} (6.4)

do(leakk(Φ))({do(wrk [a])}, if Φ ⊇ Φa where a@Φa ∈ Σ (6.5)

next⊗ doTrace(α, T)({do(α)⊗ doTrace(T)} (6.6)

Figure 6: Semantic Actions

different secret. Similarly, a principal may temporarily acquire some secrets during a sudo and then lose
them at the end of the sudo block. The principal must perform additional reads in subsequent sudo blocks
if it needs to reacquire these secrets. The monad indicated by {} marks the main branch of a derivation
making it possible to restrict the semantic actions to a single branch of the derivation in which the actions
of the trace are processed one after another. The remaining features of the logic are familiar from standard
linear logic.

Semantic actions specify the epistemic consequences of each trace effect. The semantic actions for the
effects defined in the dynamic semantics are given in Figure 6. The semantic action for each effect α has a
do(α) on the left of the linear implication. These trace effects differ from those found in the traces in the
dynamic semantics because the nested sudo trace is replaced by two actions making the entire trace a single
list of actions. We also remove all of the effects declaring new assignables and extend the store context Σ
with these assignables. Semantic action (6.1) specifies that the effect [k→k′ , which begins a sudo block by
switching principal k to k′, augments the knowledge of k′, which is initially s(Y), with the knowledge of k
(i.e., s(X)). The new knowledge of k′ is s(X ∗ Y), which combines the secrets of X and Y . Semantic action
(6.2) specifies that effect]k′→k for returning from k′ to k at the end of a sudo block erases the knowledge of k′.
The knowledge s(1) represents no knowledge. Linearity and the invariant that there is exactly one knowledge
proposition s(X) for each principal guarantee that the knowledge acquired by k′ within the sudo block is
completely erased. The knowledge of k is unaffected as the type returned by the sudo is uninformative to k.

Semantic actions (6.3) and (6.4) define the consequences of reading and writing assignables as discussed in
the overview. Semantic action (6.5) replaces leak with one of the writes that could have occurred according
to the storage context of the trace Σ. Choosing any single write that could have occurred seems insufficient,
but to prove a flow of knowledge is not possible, all derivations for the trace are considered including any
write that can replace the leak. A trace makes a flow of knowledge possible if there is any derivation in which
that knowledge is derivable. This flexibility lends the logic its expressiveness. It would be more difficult to
define precisely what happens as a result of a trace. Instead the logic expresses what is possible, and if no
derivation can be found then the information flow is not possible in the epistemic model.

The next proposition enables the next trace effect to be processed forcing the effects to be consumed
one after another as they appear in the trace. Semantic action (6.6) consumes a next and makes the next
action of the trace available. Using a proposition like next to restrict the order in which semantic actions
are applied is a standard technique for this type of representation. If the traces and semantic actions were
represented in an ordered logic there would be a more direct representation of this requirement for the order
in which actions are processed.

The unrestricted and linear contexts of a logical sequent are written Γ; ∆. The unrestricted context Γ
includes all of the semantic actions and will not change until we consider authorized declassification. The
linear context ∆ changes as we reason about the trace, but we require it to satisfy Definition 4.1.

Definition 4.1. For a given storage context Σ and set of principals U, the state ∆ is valid if and only if
all of the following hold:

1. There is exactly one proposition of the form [p]s(X) for each entity p ∈ U ∪ Σ.

12

2. There is either one next or one do but not both

3. There is exactly one doTrace.

In DeYoung and Pfenning [2009] a rewrite step, Γ; ∆ −→ Γ′; ∆′, is defined to essentially correspond to
applying one of the semantic actions to consume some of the resources in Γ; ∆ and produce some of the
resources in Γ′; ∆′.

Definition 4.2. (Rewrite Step). The rewrite step Γ; ∆ −→ Γ′; ∆′ holds if and only if there exists a
derivation of the form

Γ′; ∆′ ` C
...

Γ; ∆2, A
+
2 ` C

Γ; ∆2, [{A+
2 }] ` C

{}L

...
Γ; ∆1, [A

−] ` C
Γ; ∆ ` C ∗

parametric in C, where the rule marked ∗ is a rule transitioning from a neutral sequent to a left focused
sequent, and the subderivation above {}L uses only invertible left rules.

As usual, we let Γ; ∆ −→∗ Γ′; ∆′, represent the reflexive, transitive closure of −→. We write Γ; ∆ −→T Γ′; ∆′

when Γ; ∆, next, doTrace(T) −→∗ Γ′; ∆′, next, doTrace(ε). This terminology provides the basis to give the
following definition.

Definition 4.3. (Disclosure). We say the trace T discloses p to p′ if for all valid states ∆ such that
[p]s(X) ∈ ∆ there is a derivation of Γ; ∆ −→T Γ′; ∆′ such that [p′]s(Y) ∈ ∆′ and Y ⊇ X.

The definition only requires at least one such derivation to exist. Not all derivations will include the disclo-
sure. For a trace T with a leak action, T discloses p to p′ if any valid replacement of the leak action with
a write results in the disclosure.

5 Adequacy and Non-Interference

In this section we describe the main technical results about the information flow properties of SL. Some
properties that are not essential for understanding the main technical development are deferred to section
A. To state these results precisely we must define what is considered a flow of information in SL. If an
information flow was defined to include too much the adequacy theorem would not hold. For example, if
observing a difference in the number of steps of execution was considered a form of information flow then the
theorem would be false. More importantly, if a principal k computes two different values but those values
appear equivalent to k because their type is uninformative then we do not consider it a leak. We compare
values up to equivalence relative to the view of a principal as defined by the ≈ rule in Figure 7. This ≈ rule
equates two values if their type is not informative to the principal. Forming the least congruence containing
the ≈ rule yields the equivalence judgments Σ; Σ′; Γ ` e ≈k e′ : A and Σ; Σ′; Γ ` m ≈k m′ ÷k A@[Φr,Φw] for
expressions and commands, respectively. A difference in the contents of the assignables in the initial store
may affect whether certain new assignables are allocated. Therefore, the equivalence judgment is relative
to two different storage contexts. The notation Σ1 ∩Σ2 indicates the storage context containing assignables
that appear in both, and the notation Σ�k indicates the context containing only those assignables whose
permission sets include k.

We will employ several properties of this equivalence. For example, Lemma A.1 states that substitution
respects the equivalence judgment. It is essential to the proof of Lemma A.2, which states that equivalence is
preserved under evaluation. The formal statements and proofs of these lemmas are deferred to the appendix.

13

Σ; Σ′; Γ ` e ≈k e′ : A

A↗Φ k /∈ Φ Σ; Γ ` v : A Σ′; Γ ` v′ : A

Σ; Σ′; Γ ` v ≈k v′ : A
≈

Figure 7: Equivalence

5.1 Preliminary Technical Results

We prove some results about the definitions from the previous section that will be used to prove the central
results of this section. The first theorem, which corresponds to the analogous result in DeYoung and Pfenning
[2009], states a property of our model for reasoning about what is and is not derivable.

Theorem 5.1. (Rewrite Step Schemata). Each rewrite step from a valid state has exactly one of the
following forms:

1. Γ; ∆, do(rdk [a]), [k]s(X), [a]s(Y) −→ Γ; ∆, [k]s(X ∗ Y), [a]s(Y), next

2. Γ; ∆, do(wrk [a]), [k]s(X), [a]s(Y) −→ Γ; ∆, [k]s(X), [a]s(X), next

3. Γ; ∆, do([k→k′), [k]s(X), [k′]s(Y) −→ Γ; ∆, [k]s(X), [k′]s(X ∗ Y), next

4. Γ; ∆, do(]k′→k), [k′]s(X) −→ Γ; ∆, [k′]s(1), next

5. Γ; ∆, do(leakk(Φ)) −→ Γ; ∆, do(wrk [a]) such that Φ ⊇ Φa where a : A@Φa ∈ Σ

6. Γ; ∆, doTrace(α, T), next −→ Γ; ∆, do(α), doTrace(T)

Moreover, the states in the conclusions of these rewrite steps are valid.

Proof. The proof relies on the observation that only the semantic actions have the monadic heads required
for a left focusing step to begin a rewrite derivation. There is then a case for each semantic action. This
proof is possible because of the structure of the logic and its cut elimination property.

This theorem is essential for showing that only permissible disclosures are derivable as it specifies the
possible rewrite steps. Due to the monad restrictions in the logic, there are only a few possible rewrite steps,
each corresponding to one of the semantic actions. It simplifies reasoning about disclosure by characterizing
each step in a disclosure. Theorem 5.1 facilitates the proofs of several lemmas about our disclosure judgment
found in the appendix as well as the following lemma, which is used to prove properties of the traces of
well-typed programs.

Lemma 5.1. (Disclosure Interpolation). If a trace T is the concatenation of two traces (i.e., T = T1; T2)
and T discloses p to p′ then there is an entity q such that T1 discloses p to q and T2 discloses q to p′.

Proof. The essential observation is that the rewrite steps in Theorem 5.1 only permit actions to be processed
one at a time and in the specified order. Therefore, a derivation of Γ; ∆ −→T Γ′; ∆′ in which [p]s(X) ∈ ∆
and [p′]s(Y) ∈ ∆′ yields two derivations: Γ; ∆ −→T1 Γ∗; ∆∗ and Γ∗; ∆∗ −→T2 Γ′; ∆′. As none of the rewrite
steps create new knowledge, there must be at least one entity q such that [q]s(Z) ∈ ∆∗ and Z ⊇ X. The
derivations of Γ; ∆ −→T1 Γ∗; ∆∗ for varying Γ; ∆ then yield that T1 discloses p to q for any entity q that is
always in possession of the secret. Such an entity may be found by considering the case where only p has the
secret X initially. We similarly find that at least one of the entities also has the property that T2 discloses
q to p′ from the derivations of Γ∗; ∆∗ −→T2 Γ′; ∆′.

14

5.2 Adequacy

The adequacy theorem proves that any information disclosed according to the dynamic semantics of SL is
also disclosed in the logic according to the formal definition given in the previous section, thereby establishing
a correspondence between the semantic actions and the actual information flows in the program.

We define information flow in a program both between an assignable and a principal and between two
assignables in terms of the definition of equivalence. A flow between an assignable and a principal occurs
when executing the program with different initial values for the assignable affects the resulting value of a
command executed by the principal. A flow between two assignables occurs when executing the program
with different initial values for one assignable affects the final value of the other. This intuition for when
there is a flow of information in SL yields the following adequacy theorem.

Theorem 5.2. (Adequacy). If the following conditions hold:

• Σ; Σ′; · ` m ≈k m′ ÷k A@[Φr,Φw],

• µ : Σ and µ′ : Σ′,

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T}, and

• νΣ′.(m′ || µ′) ⇓k νΣ′f.(ret v′ || µ′f) {T′}

then both of the following also hold:

1. Either v ≈k v′ or there exists b ∈ Σ ∩ Σ′�k such that µ(b) 6≈k µ
′(b) and T and T′ disclose b to k.

2. For all c ∈ Σf ∩ Σ′f�k such that µf(c) 6≈k µ
′
f(c) there exists b ∈ Σ ∩ Σ′�k such that µ(b) 6≈k µ

′(b) and T

and T′ disclose b to c.

Proof. Structural induction on the derivation of ⇓. We will give a representative case of the proof for the
bind command. The other cases for when the command is a bind are similar, and the remaining cases are
straightforward.

In the bind case, m = x← e1; m2 and m′ = x← e′1; m′2 such that:

• e1 ⇓ cmd(m1) and e′1 ⇓ cmd(m′1)

• νΣ.(m1 || µ) ⇓k νΣ1.(ret v1 || µ1) {T1}

• νΣ′.(m′1 || µ′) ⇓k νΣ′1.(ret v′1 || µ′1) {T′1}

• νΣ1.([v1/x]m2 || µ1) ⇓k νΣf.(ret v || µf) {T2}

• νΣ′1.([v
′
1/x]m′2 || µ′1) ⇓k νΣ′f.(ret v′ || µ′f) {T′2}

By Lemma A.2 we have cmd(m1) ≈k cmd(m′1) : cmdk [Φr
1,Φ

w
1](B) as e1 ≈k e′1. By inversion, either m1 ≈k m′1 or

cmdk [Φr
1,Φ

w
1](B)↗Φ and k /∈ Φ. In the latter case, we have B↗Φ by inversion and therefore v1 ≈k v′1 : B.

Otherwise, by the first case of the induction hypothesis on the evaluation derivation of m1 we have either
v1 ≈k v′1 or there exists b ∈ Σ such that µ(b) 6≈k µ

′(b) and T1 and T′1 disclose b to k. In the latter case,
Lemma A.3 for extending disclosures from a prefix of a trace to a whole trace yields T = T1, leakk(Φw

1), T2
and T′ = T′1, leakk(Φw

1), T′2 also disclose b to k completing this case.
In the cases when v1 ≈k v′1, we apply the first case of the induction hypothesis to [v1/x]m2 and [v′1/x]m′2

to conclude that v ≈k v′ or there exists b ∈ Σ such that µ1(b) 6≈k µ
′
1(b) and T2 and T′2 disclose b to k. In

the former case, we are done. Otherwise, we apply the second case of the induction hypothesis to m1 and
m′1 to conclude that there exists an assignable c ∈ Σ such that µ(c) 6≈k µ

′(c) and T1 and T′1 disclose c to b.
Then Lemma A.4 for composing disclosures yields T = T1, leakk(Φw

1), T2 and T′ = T′1, leakk(Φw
1), T′2 disclose

c to k completing this case.

15

The theorem states that if there is a flow of information in SL then there is a corresponding disclosure
in the trace. This result is essential because of its contrapositive. When there is no disclosure in the trace
according to the logic, there is no flow of information in SL. Therefore, to prove a NI result it is sufficient to
prove no disclosure is derivable in the logic.

5.3 Non-Interference

To demonstrate the utility of this methodology we now present the proof of a NI result for SL. The adequacy
theorem reduces proving a NI result about SL to proving that only permissible disclosures are derivable in
the logic when reasoning about the traces of well-typed programs.

We can now prove the following lemma about the confidentiality properties of well-typed programs.

Lemma 5.2. (Typing Soundness). If the following conditions hold:

• Σ; · ` m ÷k A@[Φr,Φw],

• µ : Σ, and

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T}

then all three of the following also hold:

1. For all a : A@Φa ∈ Σ if T discloses a to k then Φr ⊆ Φa and k ∈ Φa

2. For all a : A@Φa ∈ Σ if T discloses p to a and p 6= a then Φa ⊆ Φw

3. For all a : A@Φa ∈ Σ and b : B@Φb ∈ Σ if T discloses a to b then Φa ⊇ Φb

Proof. The proof is by structural induction on the evaluation derivation. The base cases for set, get, and
ret are straightforward consequences of the typing rules. We give some representative cases for bind. They
critically depend on Lemma 5.1 to reason about the disclosures of the two subcommands independently.

In these cases we have m = x← e1; m2 and:

• e1 ⇓ cmd(m1)

• νΣ.(m1 || µ) ⇓k νΣ1.(ret v1 || µ1) {T1}

• νΣ1.([v1/x]m2 || µ1) ⇓k νΣf.(ret v || µf) {T2}

• T = T1, leakk(Φw
1), T2

For the first case, we assume T discloses a to k. Therefore, we may apply Lemma 5.1 to conclude that
there exists an entity p such that T1, leakk(Φw

1) discloses a to p and T2 discloses p to k. We proceed by case
analysis depending on whether p is and assignable or a principle.

In the former case where p is some assignable b, we apply the first case of the induction hypothesis
to [v1/x]m2 to conclude that Φr ⊆ Φr

2 ⊆ Φb and k ∈ Φb. If the derivation of disclosure actually used
the leakk(Φw

1) then we would have T1 discloses a to k and would be finished by the induction hypothesis.
Therefore, we may also apply the third case of the induction hypothesis to conclude that Φa ⊇ Φb. Combining
this containment with the result of the earlier appeal to the induction hypothesis yields Φr ⊆ Φa and k ∈ Φa

completing this case.
In the latter case where p is a principal, k′, Lemma A.5 states that we must have k′ = k since any

other principal could not carry its knowledge through the complete execution of m1 as the end of a sudo

block would clear its knowledge. Therefore, this case holds by an appeal to the first case of the induction
hypothesis on m1.

The other cases employ similar reasoning about how the disclosure is divided between the two commands.

16

Composing the adequacy and typing soundness results yields the expected NI result.

Theorem 5.3. (Non-interference). If the following conditions hold:

• Σ; Σ′; · ` m ≈k m′ ÷k A@[Φr,Φw],

• µ : Σ and µ′ : Σ′,

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T}, and

• νΣ′.(m′ || µ′) ⇓k νΣ′f.(ret v′ || µ′f) {T′}

then both of the following also hold:

1. If v 6≈k v′ then there exists b : B@Φb ∈ Σ ∩ Σ′ such that µ(b) 6≈k µ
′(b), Φr ⊆ Φb, and k ∈ Φb

2. For all b : B@Φb ∈ Σf ∩ Σ′f such that µf(b) 6≈k µ′f(b), there exists a : A@Φa ∈ Σ ∩ Σ′ such that
µ(a) 6≈k µ

′(a) and Φa ⊇ Φb

Proof. NI is a corollary of Theorem 5.2 and Lemma 5.2 by just applying the latter to the disclosures in the
conclusions of the former.

The NI result may be better understood by considering the contrapositives of the two parts. If all
assignables with k in their permission set are equivalent from the view of k then the resulting values will also
be equivalent from the view of k, and if the initial values of every assignable with a permission set at least
as permissive as a given assignable are equivalent from the view of k then the final values of the assignable
will also be equivalent. Therefore, if only an assignable that does not have k in its permission set is modified
then it will not interfere with the final value observed by k, and similarly, if only an assignable with a more
restrictive permission set is modified then it will not interfere with the final value of the given assignable.

6 Security language with declassification SLD

The expressiveness of the logic facilitates the addition of authorized declassification to SL. For simplicity, we
focus on authorization proofs that take the form of a certificate verifying that the appropriate principal has
authenticated. These proofs are atomic in the logic. In this section we describe how the system changes to
accommodate authorized declassification and how the theorems change to correspond to the more permissive
policy.

6.1 Static and dynamic semantics

The new commands of SLD for authentication and declassification are given in Figure 8. The auth command
verifies that the indicated principal has authenticated. Therefore, the type is an option as the verification
may fail. The type iam(k) is the type of a proof that k has authenticated. The read level of the command is
arbitrary as we assume the database of authentication credentials is readable by all principals. Intuitively,
the write level is also unrestricted. Rule 8.2 is similar to rule 3.5 except that instead of requiring that k′ is
in the permission set Φ, the decl command requires an authorization proof in the form of an authentication
certificate of one of the principals in Φ. This certificate is obtained from a successful execution of the auth

command. Also unlike a standard get, the read level of the command does not reflect the permission set
of the declassified assignable as this access is permitted through the authentication proof rather than the
permission set.

The evaluation judgment now contains an additional parameter, S, which corresponds to the authentica-
tion database. Explicitly parameterizing by S rather than defining a non-deterministic evaluation judgment
facilitates comparing two runs. This parameter is used to specify the two evaluation rules for authentication
such that the resulting value depends on the value associated with the authenticating principal in S. Rule 8.5

17

Σ; Γ ` auth[k]÷k′ iam(k) option@[Φr,Φw]
8.1

a : A@Φ ∈ Σ Σ; Γ ` e : iam(k) k ∈ Φ

Σ; Γ ` decl[a](e)÷k′ A@[Φr,Φw]
8.2

S(k′) = NONE

νΣ.(auth[k′] || µ) ⇓Sk νΣ.(ret NONE || µ) {ε}
8.3

S(k′) = SOME ϕ

νΣ.(auth[k′] || µ) ⇓Sk νΣ.(ret SOME ϕ || µ) {authk [ϕ][k′]}
8.4

e ⇓ ϕ µ(a) = v

νΣ.(decl[a](e) || µ) ⇓Sk νΣ.(ret v || µ) {declk [ϕ][a]}
8.5

do(authk [ϕ][k′])({!Auth(k′)} (8.6)

do(declk [ϕ][a])⊗ [k]s(X)⊗ [a]s(Y)⊗ Auth(k′)({[k]s(X ∗ Y)⊗ [a]s(Y)⊗ next} (8.7)

Figure 8: SLD rules for authorized declassification and additional semantic actions

is also very similar to rule 5.3. The only differences are that the authorization proof must be first evaluated
and the result is included in the new trace effect.

Semantic action (8.6) for authorization adds a persistent proposition to the context indicating that the
authenticated principal has authorized declassification. Semantic action (8.7) for declassification is similar
to semantic action (6.3) for a read as both have the same dynamic behavior in terms of the value produced.
The only difference is that the declassification action requires a authorization proof. The value ϕ witnesses
that the authorization proof exists in the trace of any well-typed program because ϕ is such a proof.

6.2 Authorized declassification

With the addition of authorized declassification it is no longer possible to prove a non-interference theorem
as privileged inputs now affect public outputs through a declassification. Nevertheless, it is possible to prove
that each disclosure of this type requires a proof of authorization. Many of the lemmas for SL still hold for
SLD though possibly in a slightly modified form.

Theorem 5.1 that states the possible rewrite steps still holds with additional cases for the new actions.
Theorem 5.2 that states the adequacy of the semantic actions for modeling the actual observed values pro-
duced by the dynamic semantics is modified to accommodate the disclosure of values through declassification.
For the purposes of this theorem, the decl command behaves like a get command as the theorem does not
mention permission sets. Therefore, the proof for this base case relies on the similarity between the semantic
actions for decl and get. The only difference is the additional tracking of the authorization proofs, which
does not affect the disclosures. However other cases must be more significantly modified to adjust to the
more complicated form of disclosures in the presence of declassification.

The statement of the theorem distinguishes the assignable a that is declassified from the assignable b

that differs in the initial store because any assignable that is disclosed to the declassified assignable may
be leaked through the declassification. To prevent the value of an assignable c from being leaked by the
declassification of a, the permission set Φa must not be contained in the permission set Φc. If Φa * Φc then

18

c cannot be disclosed to a without an additional declassification. Alternatively, simultaneously enforcing
integrity would allow us to avoid undesired leaks by making all declassified assignables have high integrity
and all assignables that should not be declassified have low integrity.

Theorem 6.1. (Adequacy). If the following conditions hold:

• Σ; Σ′; · ` m ≈k m′ ÷k A@[Φr,Φw],

• µ : Σ and µ′ : Σ′,

• νΣ.(m || µ) ⇓Sk νΣf.(ret v || µf) {T}, and

• νΣ′.(m′ || µ′) ⇓Sk νΣ′f.(ret v′ || µ′f) {T′}

then both of the following also hold:

1. Either v ≈k v′ or there exists b such that either

• b ∈ Σ ∩ Σ′�k or

• ∃a ∈ Σ ∩ Σ′�k′ , declk [ϕ][a] ∈ T and T′, S(k′) = SOME ϕ, and T and T′ disclose b to a

such that µ(b) 6≈k µ
′(b) and T and T′ disclose b to k.

2. For all c ∈ Σf ∩ Σ′f�k such that µf(c) 6≈k µ
′
f(c) there exists b such that either

• b ∈ Σ ∩ Σ′�k or

• ∃a ∈ Σ ∩ Σ′�k′ , declk [ϕ][a] ∈ T and T′, S(k′) = SOME ϕ, and T and T′ disclose b to a

such that µ(b) 6≈k µ
′(b) and T and T′ disclose b to c.

Proof. The proof is still by structural induction on the derivation of ⇓. We will give the same representative
case of the proof for when the command is a bind to demonstrate how it must be changed to accommodate
authorized declassification.

In the bind case, m = x← e1; m2 and m′ = x← e′1; m′2 such that:

• e1 ⇓ cmd(m1) and e′1 ⇓ cmd(m′1)

• νΣ.(m1 || µ) ⇓k νΣ1.(ret v1 || µ1) {T1}

• νΣ.(m′1 || µ′) ⇓k νΣ′1.(ret v′1 || µ′1) {T′1}

• νΣ1.([v1/x]m2 || µ1) ⇓k νΣf.(ret v || µf) {T2}

• νΣ′1.([v
′
1/x]m′2 || µ′1) ⇓k νΣ′f.(ret v′ || µ′f) {T′2}

By Lemma A.2 we have cmd(m1) ≈k cmd(m′1) : cmdk [Φr
1,Φ

w
1](B) as e1 ≈k e′1. By inversion either m1 ≈k m′1 or

cmdk [Φr
1,Φ

w
1](B)↗Φ and k /∈ Φ. In the latter case, we have B↗Φ by inversion and therefore v1 ≈k v′1 : B.

Otherwise, by the first case of the induction hypothesis on the evaluation derivation of m1 we have either
v1 ≈k v′1 or there exists b such that b ∈ Σ ∩Σ′�k or ∃a ∈ Σ ∩Σ′�k′ , declk [ϕ][a] ∈ T1 and T′1, S(k′) = SOME ϕ,
and T1 and T′1 discloses b to a and µ(b) 6≈k µ

′(b) and T1 and T′1 disclose b to k.
In the latter case, Lemma A.3 yields T = T1, leakk(Φw

1), T2 and T′ = T′1, leakk(Φw
1), T′2 also disclose b to

k, and the traces satisfy the other conditions on b to complete this case.
In the cases when v1 ≈k v′1, we apply the first case of the induction hypothesis to [v1/x]m2 and [v′1/x]m′2

to conclude that v ≈k v′ or there exists b such that b ∈ Σ ∩ Σ′�k or ∃a ∈ Σ ∩ Σ′�k′ , declk [ϕ][a] ∈ T2 and T′2
S(k′) = SOME ϕ, and T2 and T′2 disclose b to a and µ1(b) 6≈k µ

′
1(b) and T2 and T′2 disclose b to k.

In the former case, we have completed this case. Otherwise, we apply the second case of the induction
hypothesis to m1 and m′1 to conclude that there exists a c such that c ∈ Σ ∩ Σ′ �k or ∃a ∈ Σ ∩ Σ′ �k′ ,
declk [ϕ][a] ∈ T1 and T′1 S(k′) = SOME ϕ, and T1 and T′1 disclose c to a such that µ(c) 6≈k µ

′(c) and T1 and

19

T′1 disclose c to b. Then Lemma A.4 yields T = T1, leakk(Φw
1), T2 and T′ = T′1, leakk(Φw

1), T′2 disclose c to k

completing this case. Note that in this case the assignable that differs in the initial store is c while it may
be the assignable b that is declassified to k, which necessitates the more general statement of the theorem.

The typing soundness lemma changes more substantially as the theorem as originally stated no longer
holds due to the addition of declassifications. The revised statement only guarantees non-interference for
assignables that could not have been disclosed through declassification.

Lemma 6.1. (Typing Soundness). If the following conditions hold:

• Σ; · ` m ÷k A@[Φr,Φw],

• µ : Σ, and

• νΣ.(m || µ) ⇓Sk νΣf.(ret v || µf) {T}

then if each assignable c associated with a declassification action in T has permission set Φc such that Φc * Φ
then:

1. For all a : A@Φa ∈ Σ if Φa ⊆ Φ and T discloses a to k then Φr ⊆ Φa and k ∈ Φa

2. For all a : A@Φa ∈ Σ if T discloses p to a and p 6= a then Φa ⊆ Φw

3. For all a : A@Φa ∈ Σ and b : B@Φb ∈ Σ if Φa ⊆ Φ and T discloses a to b then Φa ⊇ Φb

Proof. The proof follows the same structure as before. Most of the cases are essentially the same. The case
for a declassification command uses the fact that the assignable being declassified cannot be the a in cases
1 and 3 because its permission set is not contained in Φ by assumption.

The non-interference theorem becomes the following theorem that includes the possibility of an authorized
declassification that could subvert the permission sets. It is still a direct corollary of the type soundness and
adequacy results.

Theorem 6.2. (Authorized Declassification). If the following conditions hold:

• Σ; Σ′; · ` m ≈k m′ ÷k A@[Φr,Φw],

• µ : Σ and µ′ : Σ′,

• νΣ.(m || µ) ⇓Sk νΣf.(ret v || µf) {T}, and

• νΣ′.(m′ || µ′) ⇓Sk νΣ′f.(ret v′ || µ′f) {T′}

then both of the following also hold:

1. If v 6≈k v′ then there exists b : B@Φb ∈ Σ ∩ Σ′ such that µ(b) 6≈k µ
′(b) and either Φr ⊆ Φb and k ∈ Φb

or there is a proof authorizing the declassification of an assignable c with permission set Φc ⊆ Φb

2. For all b : B@Φb ∈ Σf ∩ Σ′f such that µf(b) 6≈k µ′f(b), there exists a : A@Φa ∈ Σ ∩ Σ′ such that
µ(a) 6≈k µ

′(a) and either Φa ⊇ Φb or there is a proof authorizing the declassification of an assignable
c with permission set Φc ⊆ Φa

Proof. The presence of declassification actions in the trace in Theorem 6.1 guarantees the existence of
corresponding authorization proofs when composed with Lemma 6.1.

20

7 Related Work

Early work on language-based IFS is summarized in Sabelfeld and Myers [2003]. The most closely related
work is Crary et al. [2005]. Our type system is based on theirs with the notable exception of our syntactic
representation of non-informative upcalls as principal switches. This modification facilitates forming traces
to connect the programs with our epistemic logic model of information flow.

As in Crary et al. [2005], the line of work culminating in Almeida Matos and Boudol [2009] takes a store-
oriented approach to IF security rather than the more prevalent value-oriented approach. Earlier publications
on this approach include Almeida Matos and Boudol [2005] and Boudol [2005]. These papers define non-
disclosure as an alternative to non-interference. Non-disclosure permits declassification within contexts that
explicitly allow these declassifying flows. The flows allowed at a given point of the program are recorded in
the local flow policy. The type system proposed for controlling IF has security effects that closely parallel our
permission sets. The security effects include an additional termination effect that we do not employ because
we currently consider termination insensitive non-interference. However, adapting our line of work to a
concurrent language would likely require a stronger termination sensitive approach as non-termination leaks
more information when there are multiple threads that can observe the termination behavior of one another.
Non-disclosure does not attempt to address the issue of when a declassifying flow policy should be permitted.
Instead it focuses only on how to accept programs that declassify information while still preserving an IF
security property. Our work attempts to answer both these questions by integrating authorization logic with
epistemic reasoning.

In Balliu et al. [2011], epistemic logic is also applied to reason about information flow. This work
employs a temporal epistemic logic for reasoning about security properties. Using a substructural epistemic
logic grants us some of the advantages of a temporal logic as the linear context changes after each trace action
corresponding to different temporal states. In Balliu et al. [2012], they extend this work by employing an
SMT solver along with concrete and symbolic execution to verify the enforcement of the policies. This work
also uses traces of actions from the execution of the program to mediate between the program and the logic.
Despite these similarities, this work substantially differs from ours in its overall approach. By analyzing
programs individually rather than employing a type system to avoid illicit flows to all programs, their work
is able to validate the NI of many programs that appear to leak information under most type system based
approaches including ours. However, our approach provides a proof that the type system ensures NI or only
authorized declassifications so that any program that is well-typed will be safe to execute without further
analysis.

Halpern and O’Neill [2008] employs the interpreted systems formalism [Fagin et al., 1995] for reasoning
about secrecy in multiagent systems whereas we employ a static language-based approach. Secure multi-
execution (SME) [Devriese and Piessens, 2010] dynamically enforces IFS. Rather than just monitoring the
behavior to prevent insecurities, SME repairs them. In the Dependency Core Calculus (DCC) [Abadi et al.,
1999], the monadic type seals values with a security level. Following Crary et al. [2005], the monad we
employ encapsulates storage effects and specifies bounds on the security levels read and written. Crary et al.
[2005] encodes DCC dependency analysis into this style of type system.

Sabelfeld and Sands [2009] surveys work on declassification and provides dimensions of declassification for
analyzing these approaches. SLD does not directly address what information is released in a quantification
sense, but it can be encoded in the system by choosing a sufficiently fine stratification of the security levels
or by enforcing integrity constraints on declassified assignables. If only part of a value should be declassified,
such as the last four digits of a credit card, then this part can be stored in a separate assignable with
a less restrictive permission set. Zdancewic and Myers [2001] define robust declassification to prevent an
attacker from obtaining more information than intended through declassifications. Our approach for encoding
what-dimension declassification can address this issue at the cost of dealing with more cumbersome fine-
grained security levels or integrity. Control of who releases information is enforced through our protocol that
requires authentication certificates to form authorization proof. We restrict when information is released
in the relative sense that it must follow authentication. Our policies do not dictate where information is
declassified in either the level locality or code locality sense, but both could be addressed by increasing the
expressiveness of the policies.

21

Montagu et al. [2013] defines label algebras to compare the expressiveness of various IF languages with
labels. Our approach roughly corresponds to their reader model where each label is a set of principals and
each authority is the set of principals that have authenticated. The authorization proofs and declassification
policies presented here are simple. More complicated policies are necessary for many applications of autho-
rized declassification. One technique for expressing policies for declassification is presented in Banerjee et al.
[2008]. Modeling information flow in systems with declassification is addressed in Zdancewic and Myers
[2001].

Tse and Zdancewic [2007] proposes a method for enforcing information flow policies with run-time prin-
cipals. It provides a flexible method for enforcing policies that depend on data that is only available dynami-
cally. It is unclear how our approach can be adapted to this setting as it relies on statically determining what
traces are possible and reasoning about them in the epistemic logic. It would only validate a conservative
subset of the safe programs whose policies depend on information only available at run time. Bohannon
et al. [2009] defines NI in reactive systems such as web browsers and develops a technique for proving NI
properties in this setting.

Other approaches support information flow reasoning in existing functional languages. For example,
Li and Zdancewic [2006], Li and Zdancewic [2010], and Russo et al. [2008] demonstrate how to reason
about information flow in Haskell, and Pottier and Simonet [2002] addresses information flow in ML. Our
work focuses on a simple monadically structured imperative language, and we designed the type system to
explicitly restrict information flow. However, the general techniques are applicable to more robust languages.

Nanevski et al. [2011] models information flow properties including NI with dependent types. The type
system is expressive enough to state that low outputs must be equal if the low inputs are equal. Other
approaches to enforcing security properties using dependent types are given in Morgenstern and Licata
[2010], which modifies the dependently-typed language Agda [Norell, 2007] for this purpose, and in Jia and
Zdancewic [2009], which employs the access control language AURA [Jia et al., 2008]. These approaches
employing dependent types are inherently more powerful in their ability to express and enforce policies.
If this expressiveness is required, applying our epistemic reformulation of information flow properties to a
dependently-typed language may be an interesting direction for future work.

8 Goals

The following goals from the thesis proposal are augmented with updates on the progress made toward
achieving them and the work that remains to be done before the thesis defense.

A security language with an expressive authorization logic

• Primary: The security language.
The language SLD given in Section 6 will be the starting point for the construction of this extension.
This language will be extended to include an expressive authorization logic. Theorems 6.1 and 6.2
must be updated to accommodate the changes.

◦ Update: The proposed extension is based on the authorization framework of PCML5 [Avijit et al.,
2010]. As in this work, we propose to use the kind and constructor level to encode authorization
proofs. The main extension we propose is to incorporate the extra-logically validated signed
affirmations of Bowers et al. [2007]. The inclusion of extra-logically validated assumptions yields
proofs whose validation is contextually relevant to the validation of certain signatures.

◦ Proposed Work: We have to formally define this language extension with the added kind and
constructor level authorization proofs. While the techniques we propose are well-studied in prior
work, we must incorporate them into our setting. It then remains to verify that the theorems
that held for our simplified authorization logic remain valid.

22

• Secondary: Adapt this approach to specifically analyze parallel and concurrent languages. While the
interaction of multiple principals can be explicitly programmed in the current language, analyzing par-
allel or concurrent protocols would be natural in a framework with true parallelism or concurrency. As
noted in Almeida Matos and Boudol [2009], reasoning in a concurrent setting makes termination leaks
more important. Therefore, the language would need to enforce termination sensitive non-interference.
The desired security property may resemble the non-disclosure property of Almeida Matos and Boudol
[2009].

◦ Update: We have extended SL to a simple concurrent language with message passing of classified
values. In this extension, the classifiers of messages play a similar role as the assignables in SL.
The security level of a classifier imposes an upper bound on the confidentiality of the content of
messages sent with that classifier. Based on the observations of Rafnsson and Sabelfeld [2014], we
impose a security property that is sufficiently strong to be preserved under parallel composition.
In fact, we are even more conservative than the property of progress-sensitive non-interference
proposed in Rafnsson and Sabelfeld [2014]. We prohibit any process that has received a high
confidentiality message from sending any messages of lower confidentiality. While this may seem
too restrictive to permit any interesting programs, the ability to spawn an independent child
thread to listen on a high channel and respond appropriately recovers the same utility that non-
informative blocks provided in SL.

◦ Future Work: An interesting further development in this area would be the addition of declas-
sification to the concurrent language. In the concurrent setting, constraining the possible flows
of knowledge induced by a declassification becomes even more interesting as there are more side
channels that may cause unintended leaks than are present in the sequential case. However, I do
not propose to explore this for my thesis.

Reasoning about programs in epistemic and authorization logic

• Primary: The logic of DeYoung and Pfenning [2009] provides the features we need to integrate
epistemic and authorization reasoning, but applying it to the modified language will require some ad-
ditional investigation. The authorization proofs of Section 6 are atomic so connecting an authorization
token with a declassification event that uses it is straightforward. However, when the authorization
proofs of a declassification event may require several conditions to hold that are not necessarily directly
connected to particular events, the semantic action for validating that proof must be more complicated.

◦ Update: We are only making a small change to the logic of DeYoung and Pfenning [2009]. This
already has affirmation, and the addition of signed affirmations is a minor modification. However,
we will be interpreting the authorization proofs in this logic in a alternate way as contextually
relevant proofs with holes validated extra-logically.

◦ Proposed Work: Updating the proofs that the logic soundly encodes the authorization proofs
is the only significant extension in this area. This should remain relatively straightforward as the
authorization logic is essentially a subset of the modified epistemic logic.

Applications of the framework

• Primary: Apply our methodology to several security protocols to connect the steps of the protocol to
the intended epistemic consequences that are often left implicit. Many security protocols list steps that
must be performed in a certain sequence to adhere to the protocol, but the objective of the protocol
may be divorced from the steps. When this objective is an epistemic statement about which principals
should be able to know something as a result of the protocol, our framework can directly integrate this
epistemic reasoning with the protocol.

◦ Update: Under the proposed extension, we can directly tie the presence or absence of certain
signed affirmations to the ability to declassify confidential information and consequently to the

23

derivability of the knowledge of this declassified information. For example, an authorization pro-
tocol may require obtaining a signed affirmation from the hospital that the doctor is an employee
and obtaining a signed affirmation of consent from the patient to be treated by the doctor. In our
framework, we can show that the doctor gains no knowledge of the patient’s private medical record
unless both signed affirmations are present. We have formulated some small toy authorization
policies in this framework.

◦ Proposed Work: It remains to formulate more substantial authorization policies. While these
do not present any additional technical challenges, they demonstrate the utility of our framework.
More complex authorization policies also increase the probability of unintended consequences of
the policy. Identifying these unintended consequences goes beyond the scope of this thesis.

• Secondary: Encode tainting with dynamic classification and analyze policies involving tainting with
epistemic logic. In general, a value is tainted to prevent its flow from or to some principal. Therefore,
the motivation for the tainting system is to restrict a flow of knowledge.

◦ Update: In addition to tainting, there may be encodings of other alternative approaches to
information flow security in our language. For example the dynamic approach using labeling of
LIO [Stefan et al., 2011] may be encodeable in a similar fashion to encoding dynamically typed
languages into statically typed languages with an extensible type.

◦ Proposed Work: The full encodings may go beyond the scope of the thesis, but simplified
versions together with a strategy for extending them to the full version should be developed.

References

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and Systems (TOPLAS), 15(4):706–734, 1993.

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In 26TH ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL), pages 147–160. ACM
Press, 1999.

A. Almeida Matos and G. Boudol. On declassification and the non-disclosure policy. In Computer Security
Foundations, 2005. CSFW-18 2005. 18th IEEE Workshop, pages 226–240. IEEE, 2005.

A. Almeida Matos and G. Boudol. On declassification and the non-disclosure policy. Journal of Computer
Security, 17(5):549–597, 2009.

J. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Computation, 2
(3):297–347, 1992.

K. Avijit, A. Datta, and R. Harper. Distributed programming with distributed authorization. In Proceedings
of the 5th ACM SIGPLAN workshop on Types in language design and implementation, pages 27–38. ACM,
2010.

M. Balliu, M. Dam, and G. L. Guernic. Epistemic temporal logic for information flow security. In Program-
ming Languages and Analysis for Security (PLAS 2011), 2011.

M. Balliu, M. Dam, and G. L. Guernic. Encover: Symbolic exploration for information flow security. In
Computer Security Foundations Symposium (CSF), 2012 IEEE 25th, pages 30–44. IEEE, 2012.

A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies and modular static en-
forcement. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages 339 –353, May 2008.

H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s apprentice guide to fault
attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

24

K. J. Biba. Integrity considerations for secure computer systems. Proceedings of the 4th annual symposium
on Computer architecture, 5(7):135–140, 1977.

A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reactive noninterference. In Proceed-
ings of the 16th ACM conference on Computer and communications security, CCS ’09, pages 79–90, New
York, NY, USA, 2009. ACM.

G. Boudol. On typing information flow. In Theoretical Aspects of Computing–ICTAC 2005, pages 366–380.
Springer, 2005.

K. D. Bowers, L. Bauer, D. Garg, F. Pfenning, and M. K. Reiter. Consumable credentials in logic-based
access-control systems. In Proceedings of the 14th Annual Network and Distributed System Security Sym-
posium (NDSS07), San Diego, California, 2007.

K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of information flow security with mutable state.
Journal of Functional Programming, 15(2):249–291, 2005.

D. Devriese and F. Piessens. Noninterference through secure multi-execution. In Security and Privacy (SP),
2010 IEEE Symposium on, pages 109–124. IEEE, 2010.

H. DeYoung and F. Pfenning. Reasoning about the consequences of authorization policies in a linear epistemic
logic. In Workshop on Foundations of Computer Security (FCS), 2009.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about knowledge, volume 4. MIT press Cambridge,
MA, 1995.

D. Garg and F. Pfenning. Stateful authorization logic–proof theory and a case study. Journal of Computer
Security, 20(4):353–391, 2012.

J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE Symposium on Security and
Privacy, pages 11–20, 1982.

S. Govindavajhala and A. W. Appel. Using memory errors to attack a virtual machine. In IEEE Symposium
on Security and Privacy, pages 154–165, 2003.

J. Halpern and K. O’Neill. Secrecy in multiagent systems. ACM Transactions on Information and System
Security (TISSEC), 12(1):5, 2008.

L. Jia and S. Zdancewic. Encoding information flow in aura. In Proceedings of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analysis for Security, PLAS ’09, pages 17–29, New York, NY,
USA, 2009. ACM.

L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and S. Zdancewic. Aura: a programming
language for authorization and audit. In Proceedings of the 13th ACM SIGPLAN international conference
on functional programming, ICFP ’08, pages 27–38, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-
919-7.

P. Li and S. Zdancewic. Encoding information flow in haskell. In Proceedings of the 19th IEEE workshop on
Computer Security Foundations, CSFW ’06, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2615-2.

P. Li and S. Zdancewic. Arrows for secure information flow. Theor. Comput. Sci., 411(19):1974–1994, 2010.

E. Moggi. Computational lambda-calculus and monads. In Logic in Computer Science, 1989. LICS’89,
Proceedings., Fourth Annual Symposium on, pages 14–23. IEEE, 1989.

E. Moggi. An abstract view of programming languages. University of Edinburgh, Department of Computer
Science, Laboratory for Foundations of Computer Science, 1990.

25

B. Montagu, B. C. Pierce, and R. Pollack. A theory of information-flow labels. In Proceedings of the 2013
IEEE Computer Security Foundations Symposium, June 2013.

J. Morgenstern and D. R. Licata. Security-typed programming within dependently-typed programming. In
International Conference on Functional Programming, 2010.

A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow and access control policies with
dependent types. In Security and Privacy (SP), 2011 IEEE Symposium on, pages 165 –179, May 2011.

U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis, Department
of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 71–84. ACM, 1993.

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathematical structures in computer
science, 11(04):511–540, 2001.

F. Pottier and V. Simonet. Information flow inference for ml. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’02, pages 319–330, New York, NY,
USA, 2002. ACM. ISBN 1-58113-450-9.

W. Rafnsson and A. Sabelfeld. Compositional information-flow security for interactive systems. In Computer
Security Foundations Symposium (CSF), 2014 IEEE 27th, pages 277–292. IEEE, 2014.

A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security in haskell.
SIGPLAN Not., 44(2):13–24, Sept. 2008. ISSN 0362-1340.

A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas
in Communications, 21, 2003.

A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal of Computer Security, 17
(5):517–548, 2009.

F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security, 3
(1):30–50, 2000.

D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control in Haskell,
volume 46. ACM, 2011.

S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. ACM Trans. Program.
Lang. Syst., 30(1), 2007.

S. Zdancewic and A. C. Myers. Robust declassification. In IEEE Computer Security Foundations Workshop,
pages 15–23. IEEE Computer Society Press, 2001.

A Technical Lemmas

The following technical lemmas are not essential for understanding the development of this paper but may be
interesting to the curious reader. The first lemma essentially states that substitution respects the equivalence
judgment we defined.

Lemma A.1. (Functionality).

26

1. If Σ; Σ′; Γ ` e ≈k e′ : A and Σ; Σ′; Γ, x : A ` m ≈k m′ ÷k′ B@[Φr,Φw] then
Σ; Σ′; Γ ` [e/x]m ≈k [e′/x]m′ ÷k′ B@[Φr,Φw]

2. If Σ; Σ′; Γ ` e ≈k e′ : A and Σ; Σ′; Γ, x : A ` e1 ≈k e′1 : B then
Σ; Σ′; Γ ` [e/x]e1 ≈k [e′/x]e′1 : B

Proof. The proof is essentially the same as the proof of the corresponding result in Crary et al. [2005].

Functionality is used to prove the following lemma, which states that equivalence is preserved under
evaluation.

Lemma A.2. (Equivalence under Evaluation).

1. If the following conditions hold:

• Σ; Σ′; · ` m ≈k m′ ÷k A@[Φr,Φw],

• Σ; Σ′ ` µ ≈k µ
′ : Σ ∩ Σ′�k ,

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T}, and

• νΣ′.(m′ || µ′) ⇓k νΣ′f.(ret v′ || µ′f) {T′}

then Σf; Σ′f; · ` v ≈k v′ : A and Σf; Σ′f ` µf ≈k µ
′
f : Σf ∩ Σ′f�k

2. If the following conditions hold:

• Σ; Σ′; · ` e ≈k e′ : A,

• e ⇓ v, and

• e′ ⇓ v′

then Σ; Σ′; · ` v ≈k v′ : A

Proof. We give the following interesting case:

1. m = x← e1; m2 and m′ = x← e′1; m′2

2. Σ; Σ′; · ` e1 ≈k e′1 : cmdk [Φr
1,Φ

w
1](B) and Σ; Σ′; x : B ` m2 ≈k m′2 ÷k A@[Φr

2,Φ
w
2]

3. e1 ⇓ cmd(m1) and e′1 ⇓ cmd(m′1)

The induction hypothesis yields cmd(m1) ≈k cmd(m′1). This case is interesting when the equivalence is by
virtue of the ≈ rule rather than the compatibility rule. By inversion, we have cmdk [Φr

1,Φ
w
1](B)↗Φ and

k /∈ Φ. Again by inversion, we have B↗ΦB and ΦB ∪ Φw
1 ⊆ Φ. Therefore, k /∈ Φw

1 and k /∈ ΦB . So we have
νΣ.(m1 || µ) ⇓k νΣ1.(ret v1 || µ1) {T1} and νΣ′.(m′1 || µ′) ⇓k νΣ′1.(ret v′1 || µ′1) {T′1} such that
Σ1; Σ′1; · ` v1 ≈k v′1 : B as k /∈ ΦB and B↗ΦB . Moreover, as k /∈ Φw

1, Σ1; Σ′1 ` µ1 ≈k µ
′
1 : Σ1 ∩ Σ′1�k so the

induction hypothesis can be applied to [v1/x]m2 and [v′1/x]m′2 to complete this case.

The next three lemmas assert properties of the disclosure judgment defined in Definition 4.3. They are
all proved using Theorem 5.1.

Lemma A.3. (Disclosure Extension). If the following conditions hold:

• Σ; · ` m ÷k A@[Φr,Φw],

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T},

• T = T1, T2, and

• T1 discloses a to k

27

then T discloses a to k.

Lemma A.4. (Disclosure Composition). If the following conditions hold:

• Σ; · ` m ÷k A@[Φr,Φw],

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T},

• T = T1, T2,

• T1 discloses p1 to p2, and

• T2 discloses p2 to p3

then T discloses p1 to p3.

Lemma A.5. (Principal Disclosure). If the following conditions hold:

• Σ; · ` m ÷k A@[Φr,Φw],

• νΣ.(m || µ) ⇓k νΣf.(ret v || µf) {T}, and

• T discloses a to k′

then k = k′.

B Integrity

We have focused on confidentiality, but this methodology may also be applied for preserving integrity by
modifying the interpretation of a few components. For example, when enforcing confidentiality the set Φr

represented the set of principals permitted to know the value of the computation. When enforcing integrity,
this set represents the set of principals that trust the value of the computation. Similarly, when enforcing
confidentiality the set Φw represented the set of principals to whom the computation may disclose information,
but when enforcing integrity this set represents the set of principals whose assignables may be influenced
by the computation. Therefore, we still require Φr ⊇ Φw as the principals that trust the integrity of an
assignable that may be influenced by a computation must also trust the integrity of the computation.

Despite these slight differences in semantics, the type system remains unchanged. The only difference is
that we use the dual lattice for our relation between principals. If before k @ k′, we now have k′ @ k instead
because rather than protecting the secrets of principal k′ from being disclosed to principal k, we are now
protecting the integrity of the assignables of principal k′ from principal k. Abstractly, we are still preventing
a flow of information from one principal to the other. As a result of this change in the lattice, the upward
closed condition on permission sets also changes correspondingly. Now rather than always giving a more
privileged principal permission to access an assignable, we always force a lower integrity principal to trust
an assignable.

The same non-interference theorem still applies but may now be interpreted through the lens of integrity.
The condition that states the final values of the two computations will only differ if there is an assignable
with initial values that differ in the two stores and with the executing principal in its permission set now
indicates that these final values only differ if an assignable trusted by the executing principal differs in the
two initial states. Therefore, if a computation is run in two different stores that only differ in the assignables
not trusted by the principal then the result of the computation will be the same. The other condition now
states that if the integrity of an assignable is compromised by a computation then there must be a more
trusted assignable that had differing values in the initial state. The contrapositive of these two conditions
implies that modifying the low integrity inputs will not affect the final values of the high integrity outputs.
There are other integrity results that may be more appropriate for particular applications. We discuss one
of these in the future work.

28

Initial Sequents

Γ; p+ ` [p+]
atom+

Γ; [p−] ` p− atom−

Positive Connectives

Γ; ∆1 ` [A+] Γ; ∆2 ` [B+]

Γ; ∆1,∆2 ` [A+ ⊗B+]
⊗R

Γ; ∆, A+, B+ ` J
Γ; ∆, A+ ⊗B+ ` J

⊗L

Γ; · ` [1]
1R

Γ; ∆ ` J
Γ; ∆,1 ` J 1L

Γ; · ` A−

Γ; · ` [!A−]
!R

Γ; ∆, !A− ` J
Γ, A−; ∆ ` J

!L

Γ, A−; ∆, [A−] ` J
Γ, A−; ∆ ` J

copy
Γ; ∆, [A−] ` J

Γ; ∆,K has A− ` J
hasL

Γ|K ; ∆|K ` A−

Γ; ∆|K ` [[K]A−]
[]R

Γ; ∆,K has A− ` J
Γ; ∆, [K]A− ` J

[]L

Γ; ∆ ` A−

Γ; ∆ ` [A−]
blur

Γ; ∆, [A−] ` J
Γ; ∆, A− ` J

lfoc

Negative Connectives

Γ; ∆, A+ ` B−

Γ; ∆ ` A+(B−
(R

Γ; ∆1 ` [A+] Γ; ∆2, [B
−] ` J

Γ; ∆1,∆2, [A
+(B−] ` J

(L

Γ; ∆ ` [a/x]A−

Γ; ∆ ` ∀x : τ.A−
∀aR

Γ; ∆, [[t/x]A−] ` J
Γ; ∆, [∀x : τ.A−] ` J

∀L

Γ; ∆ ` [A+]

Γ; ∆ ` A+lax
laxR

Γ; ∆ ` A+lax

Γ; ∆ ` {A+}
{}R

Γ; ∆, A+ ` C+lax

Γ; ∆, [{A+}] ` C+lax
{}L

Figure 9: Inference rules for the weakly focused sequent calculus

C Linear Epistemic Logic

The important rules of the linear epistemic logic from DeYoung and Pfenning [2009] are presented in Figure
9. The monad, {}, is essential for isolating the application of the semantic effects to a single spine of the
derivation. For simplicity, we have omitted polarity annotations in this work, but they are a familiar part
of the focusing methodology of Andreoli [1992]. The rules are divided into right and left focusing sequents
to chain non-invertible rules together as is common in focusing calculi.

29

