
May 10, 2017

Thesis Proposal
Computational Higher-Dimensional

Type Theory

Carlo Angiuli

May 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Robert Harper, Chair

Jeremy Avigad
Karl Crary

Daniel R. Licata, Wesleyan University
Todd Wilson, California State University, Fresno

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2017 Carlo Angiuli

May 10, 2017

Keywords: homotopy type theory, computational type theory, dependent type
theory, logical relations, meaning explanations, cubical sets

May 10, 2017

Abstract

Intuitionistic type theory is a widely-used framework for constructive
mathematics and computer programming. Martin-Löf’s meaning explana-
tions justify the rules of type theory by defining types as classifications of
programs according to their behaviors. Recently, researchers noticed that
the rules of type theory also admit homotopy-theoretic models, and subse-
quently extended type theory with constructs inspired by these models:
higher inductive types and Voevodsky’s univalence axiom. Although such
higher-dimensional type theories have proved useful for homotopy-theoretic
reasoning, they lack a computational interpretation.

In this proposal, I describe a modification of the meaning explanations
that accounts for higher-dimensional types as classifications of higher-
dimensional programs. I aim to extend these cubical meaning explanations
with additional features inspired by other higher-dimensional and com-
putational type theories, and explore the programming applications of
higher-dimensional programs.

May 10, 2017

iv

May 10, 2017

Contents

1 Introduction . 1
1.1 Acknowledgements . 2

2 Background and Prior Work . 3
2.1 Higher-Dimensional Type Theory 3
2.2 Canonicity and Definitional Equality 5
2.3 Martin-Löf’s Meaning Explanations 7
2.4 Computational Higher-Dimensional Type Theory 9

3 Proposed Work . 17
3.1 Universes . 17
3.2 Univalence . 21
3.3 Extensional Principles . 23
3.4 Programming Applications . 25
3.5 Related Work . 27

Bibliography 29

v

May 10, 2017

vi

May 10, 2017

1 Introduction

Martin-Löf’s intuitionistic type theory is a comprehensive theory of constructions
intended as a framework for constructive mathematics and computer programming
[43, 44, 45]. How is it that such apparently disparate objectives could be achieved by
the same framework? A guiding principle of type theory is the proofs-as-programs
correspondence [30] that relates logical propositions to types, and proofs of propositions
to programs of certain types. This tight connection between computer science and
logic makes type theory especially well-suited to the mechanization of mathematics;
indeed, many theorem provers, including Nuprl [57], Coq [56], Agda [47], and Lean [22],
are built on variations of Martin-Löf’s type theory.

The field of homotopy type theory (HoTT) has its origins in the observation that
certain type theories admit homotopy-theoretic models in groupoids [27], Quillen
model categories [11], weak factorization systems [24], weak ω-groupoids [41, 59], and
simplicial sets [55, 60]. In such models, types are interpreted as spaces, their elements
as points, and (n-fold) proofs of identity as (n-dimensional) paths.

These higher-dimensional models allow one to use type theory as a synthetic frame-
work for homotopy-theoretic reasoning. Accordingly, researchers have augmented
Martin-Löf’s type theory with axioms valid in these models: higher inductive types
(HITs), inductive types generated by not only points but also paths [50]; and Vo-
evodsky’s univalence axiom, stating that identity of types is homotopy equivalence (a
higher-dimensional analogue of isomorphism) [35, 61].

As a practical matter, the resulting theory—which I term “book HoTT,” due
to its popularization by the HoTT Book [58]—has already achieved success proving
results about spaces [58], including the Seifert-van Kampen [28] and Blakers-Massey
[29] theorems, among others. Philosophically, however, the haphazard introduction of
additional axioms to type theory is troubling; these axioms are only justified through
appeals to mathematical models defined with classical logic. Computationally, the
situation is worse yet: the proofs-as-programs correspondence is not known to extend
to book HoTT, eliminating many of type theory’s unique strengths.

My contributions, the cubical meaning explanations, extend the meaning explana-
tions of type theory in order to properly account for higher-dimensional structure. This
extension is founded on two key insights: that the judgmental apparatus of type theory
must itself be generalized to higher dimension [39], and that abstract cubes afford a
convenient syntactic representation of higher-dimensional structure [13]. The cubical
meaning explanations establish a precise connection between higher-dimensional type
theory and higher-dimensional programming, namely, that:

Higher-dimensional types classify higher-dimensional programs extension-
ally according to their behaviors.

Philosophically, this connection explains the higher-dimensional content of the logical
connectives. Semantically, it forms a syntactic model of higher-dimensional type theory
equipped with a well-defined notion of extensional equality. In this thesis proposal,

1

May 10, 2017

I argue that my current work can be extended to a variety of features inspired by
other higher-dimensional type theories, computational type theories, and programming
applications.

1.1 Acknowledgements

In addition to my thesis committee members, I would like to especially thank Steve
Awodey, Marc Bezem, Guillaume Brunerie, Evan Cavallo, Daniel Gratzer, Kuen-Bang
Hou (Favonia), Simon Huber, Ed Morehouse, and Jon Sterling for their helpful advice.

Portions of this document have previously appeared in Angiuli et al. [7], Angiuli
et al. [9], Angiuli and Harper [6], Angiuli et al. [10], and Angiuli and Harper [5].
These papers were sponsored by the National Science Foundation under grant number
CCF-1116703, and by the Air Force Office of Scientific Research through MURI
grant FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of any sponsoring institution, the U.S. government or any other entity.

2

May 10, 2017

2 Background and Prior Work

In this section, I summarize the basic features of homotopy type theory and various
limitations of its standard formulation, most notably its incompatibility with the
meaning explanations of type theory and its lack of a proofs-as-programs interpretation.
I then summarize my work on computational higher-dimensional type theory, and
explain how it addresses these limitations.

2.1 Higher-Dimensional Type Theory

Many versions of type theory are inductively defined by a collection of inference rules
specifying an assortment of types (Γ ` A type) and their inhabitants (Γ ` a : A), and
when two types or inhabitants are to be considered definitionally equal (Γ ` A ≡ B type,
Γ ` a ≡ b : A). Certain such type theories are equipped with an identity type a =A b
of proofs that a : A and b : A are equal, defined in part by the rules [43, 58]:

Γ ` A type
Γ ` a : A

Γ ` refla : a =A a

Γ ` a : A
Γ ` b : A

Γ ` p′ : a =A b
Γ, x : A, y : A, p : x =A y ` C type
Γ, z : A ` c : C[z, z, reflz/x, y, p]

Γ ` ind=A
(x.y.p.C, z.c, a, b, p′) : C[a, b, p′/x, y, p]

The introduction rule (left) establishes that every a : A is identical to itself by refla,
and the elimination rule (right) describes what one can conclude from a proof p that
a : A and b : A are identical. From these rules one can prove identity is reflexive,
symmetric, and transitive.

A natural question is, are two proofs p, q of a =A b necessarily identical? Traditional
models of type theory validate this property, known as uniqueness of identity proofs,
but Hofmann and Streicher [27] showed that it does not follow from the typical axioms
of type theory, by means of a countermodel in which types are groupoids (categories in
which all morphisms are invertible), a : A is an object of A, p : a =A b is a morphism
(or path) between a and b in A, and f : A→ B is a functor from A to B. Uniqueness
of identity proofs fails here because parallel morphisms need not be equal.

Subsequent work on homotopy-theoretic models of type theory further generalized
the Hofmann–Streicher groupoid model to infinite-dimensional structures, in which
α : p =(a=Ab) q is a 2-morphism between the parallel 1-morphisms p and q, et cetera.
Such infinite-dimensional structures, most notably weak ω-groupoids and simplicial
sets, are primarily used by mathematicians as algebraic presentations of spaces. As a
result, type theory can be seen as an axiomatic, or synthetic, framework for reasoning
about spaces.

However, because type theory was not originally intended for that purpose, none of
its types have interesting higher-dimensional structures. In particular, n-morphisms

3

May 10, 2017

cannot be proven to be nontrivial, due to the consistency of uniqueness of identity
proofs. One must instead build higher-dimensional type theories,1 type theories
extended with novel principles inspired by higher-dimensional models. The most
widely-used higher-dimensional type theory, book HoTT, adds higher inductive types
and the univalence axiom [58]; I briefly summarize these features below.

Higher inductive types are a form of inductive type whose generators populate
not only the type itself but also its (iterated) identity types. A simple example is the
interval type, defined by the rules:

Γ ` I type Γ ` 0I : I Γ ` 1I : I Γ ` seg : 0I =I 1I

Γ, x : I ` C type
Γ ` a : C[0I/x]
Γ ` b : C[1I/x]
Γ ` s : a =x.C

seg b
Γ ` y : I

Γ ` indI(x.C, a, b, s, y) : C[y/x]

Γ, x : I ` C type
Γ ` a : C[0I/x]
Γ ` b : C[1I/x]
Γ ` s : a =x.C

seg b

Γ ` indI(x.C, a, b, s, 0I) ≡ a : C[0I/x]

Γ, x : I ` C type
Γ ` a : C[0I/x]
Γ ` b : C[1I/x]
Γ ` s : a =x.C

seg b

Γ ` indI(x.C, a, b, s, 1I) ≡ b : C[1I/x]

Γ, x : I ` C type
Γ ` a : C[0I/x]
Γ ` b : C[1I/x]
Γ ` s : a =x.C

seg b

Γ ` segβ : apdλy.indI(x.C,a,b,s,y)(seg) = s

The introduction rules stipulate that I has two objects, 0I and 1I, and a path seg
between them. The elimination rule constructs a map from I to a type family C(x),
given objects a : C(0I) and b : C(1I) and a path s between them. Because a and b
have different types, s is not an ordinary path but rather a dependent path a =x.C

seg b in
the family C(x) over seg [58, Equation 6.2.2]. Maps constructed by the elimination
rule definitionally send 0I and 1I to a and b respectively. The elimination rule does
not apply to seg directly, as it is not an element of I but rather of 0I =I 1I; however,
when lifted to an operation on paths by apd(−), such maps applied to seg are related
by a path to s [58, Lemma 2.3.4].

Voevodsky’s univalence axiom, the other addition of book HoTT, states that a
particular map from paths between types to homotopy equivalences is itself a homotopy
equivalence:

Γ ` A : Ui Γ ` B : Ui
Γ ` univalence(A,B) : isequiv(idtoeqvA,B)

1The term “homotopy type theory” (or HoTT) refers variously to the study of connections
between homotopy theory and type theory; to any higher-dimensional type theory; or to book HoTT
specifically. I will use it only in the first sense, to avoid confusion.

4

May 10, 2017

Equivalence (isequiv(−)) can be defined in ordinary type theory using dependent
function, dependent pair, and identity types [58, Definition 4.2.1]; informally, an
equivalence between A and B is a function from A→ B that is invertible modulo paths.
The function idtoeqvA,B, also definable in ordinary type theory, sends paths A = B to
equivalences between A and B [58, Lemma 2.10.1]. Because all constructions in type
theory respect identity, the force of univalence is to stipulate that all constructions
respect equivalence as well.

The theorem provers Agda, Coq, and Lean have been extended with higher
inductive types and the univalence axiom, allowing researchers to mechanize proofs in
book HoTT. However, the rules of book HoTT have a markedly different character from
the ordinary rules of type theory. The rules defining I populate I, the identity type
of I, and arbitrary dependent path types (via segβ), without altering the elimination
principle of the identity type to account for these additional identity elements. As
a result, book HoTT lacks the canonicity property—typical of type theories—that
any closed term of type N is definitionally equal to a numeral: if · ` n : N then
· ` n ≡ sm(z) : N.

2.2 Canonicity and Definitional Equality

To understand why canonicity is desirable, we must first understand the role of the
definitional equality judgment in type theories inductively defined by inference rules.
Such type theories need not specify a notion of definitional equality at all, although it
is required for the resulting logic to be practical [20].

Logically, the judgment Γ ` a : A expresses that a is a proof term for the proposition
A, under assumptions Γ. Two proofs are typically considered definitionally equal,
Γ ` a ≡ b : A, when Γ ` a : A, Γ ` b : A, and a, b are α, β-equivalent as λ-terms [20].2

Definitional equality of types, Γ ` A ≡ B type, is generated by definitional equality of
terms, in the sense that the following rule is admissible:

Γ, x : A ` B type Γ ` a ≡ a′ : A

Γ ` B[a/x] ≡ B[a′/x] type

The formal purpose of definitional equality is to give terms more types:

Γ ` a : A Γ ` A ≡ B type
Γ ` a : B

This rule stipulates, for instance, that if P is a property of natural numbers, a proof
of P (1 + 1) is precisely a proof of P (2) as well (because · ` 1 + 1 ≡ 2 : N). Notice
that application of this rule is not marked in the proof term a! In contrast, while the
path Γ ` seg : 0I = 1I allows us to compare Γ ` a : C(0I) and Γ ` b : C(1I) despite
their types differing, we nevertheless do not consider a an object of C(1I).

2Some presentations also include η-equivalence at function and product types, although these are
regarded as optional in book HoTT [58, Remark 1.5.1].

5

May 10, 2017

The restriction of definitional equality to α, β-equivalence—rather than, say, exten-
sional equality of λ-terms, or equality in some model—is born of the desire to make
proof verification decidable: that is, one can decide whether Γ ` a : A is derivable,
and if so, construct a derivation. In turn, this licenses the reading that a is a proof
term for A, as a itself contains enough information to construct a derivation of A.

The decision procedure is relatively straightforward. In most cases, the proof rule
used to derive Γ ` a : A is determined by the outermost constructor of a: for instance,
implication introduction is marked by λ. If a definitional equality Γ ` A ≡ B type is
needed to derive the judgment, then one must decide it by checking that Γ ` A type,
Γ ` B type, and that A and B normalize to the same term.

Because book HoTT lacks canonicity, proofs using higher inductive types and univa-
lence require additional bookkeeping to mark uses of identity proofs. Although it may
sound minor, this defect has major consequences for users of book HoTT. In 2013,
Brunerie proved that a particular topological invariant is given by the group Z/nZ
where · ` n : N [14]. If canonicity held, one could simply replace the n in the theorem
with a definitionally equal numeral. Instead, Brunerie was not able to prove that this
invariant is Z/2Z until 2016, after developing a second, more elaborate proof [15].

In theory, one might be able to regain canonicity by adding definitional equalities
to book HoTT. In practice, such a formulation of definitional equality would likely
depart from α, β(, η)-equivalence on proof terms, and it is not clear which equations
are validated by all desired higher-dimensional models of book HoTT.3 We certainly
cannot turn all paths into definitional equalities—by univalence, there is a path
between the types A × B and B × A; if these were definitionally equal, then any
term of type A × B would also have type B × A. For these and other reasons, no
major attempts at formulating a higher-dimensional type theory with canonicity have
proceeded along these lines [2, 10, 16, 38, 39].

However, the failure of canonicity in book HoTT is also symptomatic of a deeper
philosophical concern. The canonicity property, the calculational nature of definitional
equality, and the standard proofs-as-programs interpretation of type theory all have
their roots in Martin-Löf’s original meaning explanations of the judgments of type
theory [44], which I summarize in Section 2.3.

These meaning explanations, and the standard proofs-as-programs interpretation,
do not extend in any obvious way to book HoTT. Adding proof rules to type theory
without meaning-theoretic justification disrupts the philosophical justification of all
rules of type theory. Furthermore, the lack of a proof-as-programs interpretation
makes it difficult for computer scientists to seriously discuss programming applications
of higher-dimensional type theory [9, 12, 23], as these programs do not run!

3Various researchers have conjectured that all such models are elementary (∞, 1)-toposes, but
only recently has a concrete definition been proposed [51].

6

May 10, 2017

2.3 Martin-Löf’s Meaning Explanations

I will briefly recall Martin-Löf’s meaning explanations of type theory [1, 19, 44], before
describing how to extend them to higher dimension. Type theory is built on judgments,
forms of assertion that are conceptually prior to the concepts of type or membership.
The four basic judgments express typehood (and equality of types) and membership
(and equality of members):

A type

M ∈ A
A
.
=B type

M
.
=N ∈ A

I have switched notation to ∈ and
.
= (and later,�), to emphasize that these judgments

will have a different intended meaning than the judgments I have previously discussed,
notated with :, ≡, and `.

These judgments range over an open-ended notion of program, in the sense that cer-
tain programs are postulated to be meaningful, but nothing relies on the nonexistence
of certain programs—there is no extremal clause stating that those given are all and
only the programs in question.4 In fact, one can even consider classical set-theoretic
functions as programs [32].

A programming language is specified by defining the syntax of expressions, includ-
ing concepts of binding, scope, and substitution for variables, using methods codified
in the theories of arities [46] and abstract binding trees [26]. Expressions M are given
computational meaning by specifying which are canonical (M val), or not subject
to further computation; and by defining an operational semantics (M 7−→M ′) that
deterministically simplifies closed expressions in a process that may or may not termi-
nate with an expression in canonical form. Any fully expressive computation system
must admit nontermination, and type theories differ to the extent that nonterminating
expressions participate meaningfully in types and members [18].

We first specify the meanings of the basic judgments A type and M ∈ A, where
M and A are both closed programs, in terms of their computational behavior. The
former states that the program A evaluates to a canonical type A0, meaning that we
know what are the canonical members of A0 and when two such are equal. (Logically,
this corresponds to knowing that A is a proposition, because we know what counts
as evidence for A.) The latter states that the program M evaluates to a canonical
member of the canonical type given by A. (Logically: M computes evidence for the
truth of the proposition A.) The canonical types and their canonical members are
defined on a case-by-case basis according to their outermost form.

Closely related are the judgments A
.
=B type and M

.
=N ∈ A; the former states

that A and B evaluate to equal canonical types (whose canonical members are the
same), and the latter states that M and N evaluate to equal canonical members of

4The NuPRL computational type theory adopts a mild constraint on possible programs introduced
by Howe [31], in the interest of increasing the utility of the theory. To date, no proposed extension
of the theory has run afoul of this constraint.

7

May 10, 2017

the canonical type given by A. Equality of members depends on the type at which
they are considered, so it must be defined explicitly for each type. For example, the
identity function and the absolute value function are equal as members of the type of
functions N→ N, but are of course distinct functions Z→ Z. In fact, as a matter of
technical convenience, one can define only the binary forms of judgment, and recover
A type and M ∈ A as reflexive instances—to be a type is to be an equal type to
oneself, and similarly for members of a type.

We then define the open judgments :

a1 : A1, . . . , an : An � A
.
=B type

a1 : A1, . . . , an : An �M
.
=N ∈ A

for open expressions M,N,A,B. These are defined by induction on the number n ≥ 0
of free variables by means of functionality, i.e., type equality and member equality must
respect equality of closed instances in each variable. For instance, a1 : A1 � A

.
=B type

states that for any M
.
=N ∈ A1, we know A[M/a1]

.
=B[N/a1] type. Open terms are

thus regarded extensionally as maps sending equal members of Ai to equal members
of instances of A.

Finally, the role of types is to internalize mathematical statements about judgments.
For instance, a canonical member of the product type A×B is a pair 〈M,N〉 of terms
such that M ∈ A and N ∈ B; two canonical members 〈M,N〉 and 〈M ′, N ′〉 are equal
when M

.
= M ′ ∈ A and N

.
= N ′ ∈ B. That is, (equal) evidence for the conjunction

of propositions is a pair of (equal) evidence for each proposition. (In this sense, the
meaning explanations are an extensional form of the Brouwer-Heyting-Kolmogorov
interpretation.) Similarly, equal canonical members of the function type A→ B are
maps λa.M and λa.M ′ such that a : A�M

.
=M ′ ∈ B. Such definitions proceed in a

predicative fashion, in which successive definitions build on prior ones.
The meaning explanation of the identity type M =A N is that reflM is a canonical

member whenever M
.
= N ∈ A, that is, it internalizes the equality judgment. This

explanation is incompatible with the intended meaning of the identity type in book
HoTT, namely, that it represents paths in A.

The meaning explanations define the truth of propositions in terms of constructions
witnessing them—they are not merely a (re)interpretation of proofs as programs, but
rather a guarantee of the inherently constructive nature of mathematics performed in
type theory. Note, however, that proving a proposition requires not only exhibiting a
construction, but also recognizing that this construction produces the desired object.
Such recognition is no trivial matter: one cannot always mechanically determine
whether a program terminates, much less the form of its answer!

For this reason, especially when mechanizing proofs, it is useful to isolate a
manageable fragment of the meaning explanations to serve as a window on the
full truth. The type theory on which book HoTT is based is one such fragment—
an inductively-defined proof theory directly suitable for implementation in a proof

8

May 10, 2017

assistant—in which all proof rules are either decidable or marked in the proof term (as
discussed in Section 2.2). Henceforth, I will refer to inductively-defined type theories
as formal type theories, and to meaning explanations as computational type theories
[17] due to their direct basis in computation.

2.4 Computational Higher-Dimensional Type Theory

Computational higher-dimensional type theory is described in Angiuli and Harper [6]
and Angiuli et al. [10]. I briefly summarize the core points below.

Following Martin-Löf’s methodology that types internalize judgments, a proper
accounting of higher-dimensional type theory requires judgments for paths, paths
between paths, et cetera. Following Bezem et al. [13], we present this structure by
means of a cubical generalization of both the judgments of computational type theory
and the programming language on which it is based.

The cubical programming language has two sorts—ordinary terms (A,B,M,N, . . .
with variables a, b, . . .) and dimension terms (r, r′), which are either 0 or 1 (ε), or
a dimension name (x, y, z, . . .). Dimension names are nominal constants [48, 49]
representing formal elements of an interval with endpoints 0 and 1. Dimension terms
appear in certain term formers; for example, loopr is a program for any dimension
term r. We define a dimension substitution operation M〈r/x〉 which replaces free
occurrences of x in M with r, alongside ordinary term substitution written M [N/a].

We write FD(M) for the set of dimension names free in M , and say that M is a
Ψ-cube if FD(M) ⊆ Ψ. An x-cube M represents an abstract line in the x direction,
whose left endpoint, or face, is a ∅-cube (or point) M〈0/x〉, and whose right face is
M〈1/x〉. An (x, y)-cube N is an abstract square with four lines as its boundary, and
four points as the boundary of those lines:

y

x
N〈0/x〉〈0/y〉

N〈0/x〉〈1/y〉

N〈1/x〉〈0/y〉

N〈1/x〉〈1/y〉

N〈0/x〉 N〈1/x〉

N〈0/y〉

N〈1/y〉

N

The fact that dimension substitutions commute validates the geometrical fact that
the 〈0/x〉 face of N〈0/y〉 must agree with the 〈0/y〉 face of N〈0/x〉 in the upper left.

A Ψ-cube M can be regarded trivially as a degenerate (Ψ, x)-cube whose x-faces are
both M . Finally, we can substitute one dimension name for another, which takes the
diagonal of a square. N〈x/y〉 is an x-line (the upper-left-to-lower-right diagonal in the
diagram above) whose left face is N〈0/x〉〈0/y〉 and whose right face is N〈1/x〉〈1/y〉.
We call all combinations of faces, diagonals, and degeneracies of a cube its aspects.

9

May 10, 2017

Aspects are obtained by means of total dimension substitutions, written ψ : Ψ′ → Ψ,
which take a Ψ-cube M to a Ψ′-cube Mψ.

Our cubical programming language has the following terms:

M := (a:A)→ B | (a:A)×B | Idx.A(M,N) | bool | notr | S1 | sbool | iar(A,B,M,N)

| λa.M | app(M,N) | 〈M,N〉 | fst(M) | snd(M) | 〈x〉M |M@r

| true | false | ifa.A(M ;N1, N2) | notelr(M) | iainr(M,N) | iaoutr(M,N)

| base | loopr | S1-elima.A(M ;N1, x.N2) | coer r
′

x.A (M) | hcom
−⇀ri
A (r r′,M ;

−−⇀
y.N ε

i)

〈x〉M abstracts the dimension x in M , and M@r applies such an abstraction to a
dimension term. S1 is the higher inductive type corresponding to the circle, which has
a base point base and an x-line loopx. Just as if takes a motive type a.A, a boolean
M , and two cases N1, N2 corresponding to true and false, the eliminator for the circle
takes two cases N1 and x.N2 corresponding to its generating base point and line. notr
is an instance of univalence corresponding to the negation isomorphism between bool
and itself, and iar(A,B,M,N) is an instance of univalence for strict isomorphisms.
Finally, coe and hcom implement the Kan operations, which I describe later.

As before, we define an operational semantics by specifying the canonical terms
(M val) and a deterministic weak head reduction (M 7−→ M ′), and we say M ⇓ V
when M 7−→∗ V and V val. (The full operational semantics can be found in Angiuli
and Harper [6, Section 2.2].) These judgments apply to closed terms of any dimension,
that is, terms containing free dimension names but not free term variables. Some
steps are responsible for calculating the faces of terms:

base val loopx val loop0 7−→ base loop1 7−→ base

Here, base and loopx are canonical terms (and canonical elements of S1); the x-faces
of loopx are both base, because both (loopx)〈0/x〉 and (loopx)〈1/x〉 calculate to base.
At higher types, we include familiar β-reductions:

M 7−→M ′

app(M,N) 7−→ app(M ′, N) app(λa.M,N) 7−→M [N/a] λa.M val

hcom
−⇀ri
(a:A)→B(r r′,M ;

−−⇀
y.N ε

i) 7−→ λa.hcom
−⇀ri
B (r r′, app(M,a);

−−−−−−−−⇀
y.app(N ε

i , a))

coer r
′

x.(a:A)→B(M) 7−→ λa.coer r
′

x.B[coer
′ x

x.A (a)/a]
(app(M, coer

′ r
x.A (a)))

as well as steps implementing the Kan operations.

10

May 10, 2017

The four basic judgments of computational cubical type theory express typehood and
membership at dimension Ψ:

A pretype [Ψ]

M ∈ A [Ψ]

A
.
=B pretype [Ψ]

M
.
=N ∈ A [Ψ]

I define these judgments relative to a pair of indexed partial equivalence relations
(PERs) called a cubical type system, in a generalization of the NuPRL semantics [1, 25].
A cubical type system is:
• For every Ψ, a symmetric and transitive relation ≈Ψ over values A0 with

FD(A0) ⊆ Ψ, specifying the (equal) canonical Ψ-dimensional pretypes, and

• For every A0 ≈Ψ B0, equal symmetric and transitive relations ≈Ψ
A0

and ≈Ψ
B0

over
values M0 with FD(M0) ⊆ Ψ, specifying the (equal) canonical Ψ-dimensional
elements of A0 and B0.

The meanings of the cubical judgments are complicated by the requirement that
they be closed under dimension substitution. We say that A

.
=B pretype [Ψ], presup-

posing that FD(A,B) ⊆ Ψ, when for any ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1,
• Aψ1 ⇓ A1, A1ψ2 ⇓ A2, Aψ1ψ2 ⇓ A12,

• Bψ1 ⇓ B1, B1ψ2 ⇓ B2, Bψ1ψ2 ⇓ B12, and

• A2 ≈Ψ2 A12 ≈Ψ2 B2 ≈Ψ2 B12.

and that M
.
=N ∈ A [Ψ], presupposing A

.
= A pretype [Ψ] and FD(M,N) ⊆ Ψ, when

for any ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1,
• Mψ1 ⇓M1, M1ψ2 ⇓M2, Mψ1ψ2 ⇓M12,

• Nψ1 ⇓ N1, N1ψ2 ⇓ N2, Nψ1ψ2 ⇓ N12, and

• M2 ≈Ψ2
A12

M12 ≈Ψ2
A12

N2 ≈Ψ2
A12

N12, where Aψ1ψ2 ⇓ A12.

We write A pretype [Ψ] when A
.
=A pretype [Ψ], and M ∈ A [Ψ] when M

.
=M ∈ A [Ψ].

These conditions guarantee that when M is a Ψ-cube of A, not only does M
evaluate to a canonical Ψ-cube of A, but the ψ : Ψ′ → Ψ aspect of M evaluates to
a canonical Ψ′-cube of Aψ, and its ψ1ψ2 aspect and the ψ2 aspect of its ψ1 aspect’s
value evaluate to equal canonical Ψ2-cubes of A. We say this ensures M has coherent
aspects. Note that this coherence is not guaranteed by the operational semantics; it is
the role of the type system to carve out the sensible programs.

We say A pretype [Ψ] is cubical if for any ψ : Ψ′ → Ψ and M ≈Ψ′
A0

N (where
Aψ ⇓ A0), M

.
= N ∈ Aψ [Ψ′]. In a cubical pretype, the values of any element’s

aspects again have coherent aspects, and hence arbitrary interleavings of dimension
substitutions and evaluation are coherent.

Finally, when restricted to terms M with no free dimensions, the cubical meaning
explanations collapse to the ordinary ones: A

.
=B pretype [Ψ] when A ⇓ A0, B ⇓ B0,

and A0 ≈Ψ′
B0 for all Ψ′.

The cubical apparatus does not yet account for the groupoid structure of paths—
composition and inversion of paths, associativity and cancellation laws, et cetera—

11

May 10, 2017

present in book HoTT. This structure is imposed by two Kan operations. The first,
called coercion (coe), takes an x-line A between types and an element M of A〈r/x〉
to an element of A〈r′/x〉. The second, called homogeneous Kan composition (hcom),
approximately requires that open boxes in any type have lids.

The simplest composition scenario states that a U -shaped configuration of lines
always forms the boundary to a square. If M is an x-line in A, and y.N ε are y-lines in A,
and their endpoints agree as depicted below (left), then hcomx

A(0 1,M ; y.N0, y.N1)
is the composite, an x-line in A from N0〈1/y〉 to N1〈1/y〉. Moreover, there is an (x, y)-
square with those four lines as its boundary, namely hcomx

A(0 y,M ; y.N0, y.N1),
which is called the filler of this composition scenario.

y

x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcomx
A(0 1,M ; y.N0, y.N1)

zy

x ·

·

·

·

·

·

·

·

The general form of hcom is hcom
−⇀ri
A (r r′,M ;

−−⇀
y.N ε

i). M is the cap of the
composition; r specifies which “side” the cap is on (above, the y = 0 side), and r′ the
side the composite is on (above, the y = 1 side). When r′ is a dimension name not
occurring elsewhere in the composition problem, the hcom “traces out” the interior
of the composition problem, ranging from the cap to the composite, thus obtaining
the filler. Finally, −⇀ri = r1, . . . , rn is a list of n ≥ 1 dimension terms called the extents

of the composition problem, and
−−⇀
y.N ε

i is a list of 2n tube faces, each with a bound
dimension name. Each extent specifies the dimension across which each pair of tube
faces lies; for example, the first two tube faces are on the r1 = 0 and r1 = 1 sides of
the composition problem (above, x = 0 and x = 1). The bound dimension names
in the tube faces are the dimension in which r, r′ lie; binding it ensures the cap and
composite do not vary in that direction.

Above (right) is an example of a two-extent composition problem. If the top (x, z)-
square isM , the left and right (y, z)-squares (across the x direction) areN0

x , N
1
x , and the

back and front (x, y)-squares (across the z direction) are N0
z , N

1
z , then the shaded bot-

tom face is the composite, an (x, z)-square hcomx,z
A (0 1,M ; y.N0

x , y.N
1
x , y.N

0
z , y.N

1
z),

and the interior (x, y, z)-cube filler is hcomx,z
A (0 y,M ; y.N0

x , y.N
1
x , y.N

0
z , y.N

1
z).

We say thatA type [Ψ] whenA pretype [Ψ] is Kan, that is, supports Kan composition
and coercion:

M ∈ A [Ψ]
(∀i, j, ε, ε′) N ε

i
.
=N ε′

j ∈ A [Ψ, y | ri = ε, rj = ε′]
(∀i, ε) N ε

i 〈r/y〉
.
=M ∈ A [Ψ | ri = ε]

hcom
−⇀ri
A (r r′,M ;

−−⇀
y.N ε

i) ∈ A [Ψ]

M ∈ A〈r/x〉 [Ψ]

coer r
′

x.A (M) ∈ A〈r′/x〉 [Ψ]

12

May 10, 2017

(See Angiuli and Harper [6, Definition 17] for the full statement of the Kan conditions,
including additional laws regarding the faces of hcom and coe.) The above rules
use dimension context restrictions to compactly state the preconditions of the Kan
operation across all possible configurations. We say that a set of dimension term
equations Ξ = {ri = r′i}i in Ψ is satisfied by ψ : Ψ′ → Ψ if every riψ = r′iψ. Then we
say M

.
= N ∈ A [Ψ | Ξ], presupposing A pretype [Ψ | Ξ], when for any ψ : Ψ′ → Ψ

satisfying Ξ, Mψ
.
=Nψ ∈ Aψ [Ψ′].

As before, the open judgments

a1 : A1, . . . , an : An � B
.
=B′ pretype [Ψ]

a1 : A1, . . . , an : An �M
.
=M ′ ∈ B [Ψ]

express the truth of a judgment universally over members of A1, . . . , An. The Ψ specifies
at which dimension the context, pretype, and elements are initially considered, but the
quantification over the context must hold at all aspects A1ψ, . . . , Anψ. For example,
a1 : A1 � M

.
= M ′ ∈ B [Ψ], presupposing a1 : A1 � B pretype [Ψ], when for any ψ :

Ψ′ → Ψ and N1
.
=N ′1 ∈ A1ψ [Ψ′], we have Mψ[N1/a1]

.
=M ′ψ[N ′1/a1] ∈ Bψ[N1/a1] [Ψ′].

We say Γ � B
.
= B′ type [Ψ], presupposing Γ � B

.
= B′ pretype [Ψ], when for any

equal members of the context types, the corresponding instances of B,B′ are equal
closed types.

Since types are programs, and open judgments are given meaning by substitution,
dependency is simply a consequence of allowing types to contain variables. It is natural
that types can depend on dimension names, because if a : A� B type [·] and M is an
x-line of A, then B[M/a] is a type varying in x, with endpoints B[M〈ε/x〉/a].

Finally, we define each type former, show the types satisfy the expected proof rules,
and construct a cubical type system closed under those type formers. (See Angiuli
and Harper [6] for the complete definitions and proofs.)

A cubical type system has the dependent function type of A type [Ψ] and a : A�
B type [Ψ] if for all ψ : Ψ′ → Ψ, (a:Aψ)→ Bψ is a canonical Ψ′-dimensional pretype,
with canonical Ψ′-dimensional members λa.M whenever a : Aψ � M ∈ Bψ [Ψ′].
Cubical versions of the ordinary rules for dependent function types hold in any cubical
type system with all dependent function types:

a : A�M ∈ B [Ψ]

λa.M ∈ (a:A)→ B [Ψ]

M ∈ (a:A)→ B [Ψ] N ∈ A [Ψ]

app(M,N) ∈ B[N/a] [Ψ]

a : A�M ∈ B [Ψ] N ∈ A [Ψ]

app(λa.M,N)
.
=M [N/a] ∈ B[N/a] [Ψ]

M ∈ (a:A)→ B [Ψ]

M
.
= λa.app(M,a) ∈ (a:A)→ B [Ψ]

A cubical type system has the circle type if S1 is a canonical Ψ-dimensional
pretype for all Ψ, with canonical Ψ-dimensional members base, loopx, and hcom

−⇀xi
S1(r

r′,M ;
−−⇀
y.N ε

i) whenever r 6= r′,

13

May 10, 2017

• M ∈ S1 [Ψ],

• N ε
i
.
=N ε′

j ∈ S1 [Ψ, y | xi = ε, xj = ε′] for all i, j, ε, ε′, and

• N ε
i 〈r/y〉

.
=M ∈ S1 [Ψ | xi = ε] for all i, ε.

Because S1 is a base type, its Kan operations are freely added. (In contrast, the Kan
operations of (a:A) → B can be implemented by the Kan operations of A and B,
and are never canonical.) Recall that the Kan conditions force certain hcomS1(. . .) to
exist; some of these compute to a cap or tube face:

−⇀ri = x1, . . . , xi−1, ε, ri+1, . . . , rn

hcom
−⇀ri
S1(r r′,M ;

−−⇀
y.N ε

i) 7−→ N ε
i 〈r′/y〉

r = r′

hcomx1,...,xn
S1 (r r′,M ;

−−⇀
y.N ε

i) 7−→M

while the others are freely added as canonical members of S1.
A cubical type system has strict booleans if sbool is a canonical Ψ-dimensional

pretype for all Ψ, and its canonical Ψ-dimensional members are true and false. Because
this type has no path constructors, its Kan operators admit a trivial implementation
in which compositions of true are true and compositions of false are false:

hcom
−⇀ri
sbool(r r′,M ;

−−⇀
y.N ε

i) 7−→M

We also define a type bool of booleans with free Kan operations, whose canonical
elements are true, false, and hcombool(. . .), following the definition of S1.

Given A type [Ψ], B type [Ψ | x = 1], and a strict isomorphism F,G between
A〈1/x〉 and B〈1/x〉, that is:
• F ∈ A→ B [Ψ | x = 1],

• G ∈ B → A [Ψ | x = 1],

• a : A� app(G, app(F, a))
.
= a ∈ A [Ψ | x = 1], and

• b :B � app(F, app(G, b))
.
= b ∈ B [Ψ | x = 1],

we say a cubical type system has their strict univalence type iax(A,B, F,G) when for
any ψ : Ψ′ → Ψ for which xψ = x′, iax′(Aψ,Bψ, Fψ,Gψ) is a canonical Ψ′-dimensional
pretype, with canonical Ψ′-dimensional members iainx(M,Fψ) whenever M ∈ Aψ [Ψ′].

The type iax(A,B, F,G) constructs an x-line between A〈0/x〉 and B〈1/x〉 whose
elements arise from elements of A. This is an instance of the univalence axiom, which
states that every equivalence between types yields a line between them.

// x A〈0/x〉

iax(A,B,F,G)

))

A // A〈1/x〉

F 〈1/x〉

B〈1/x〉

G〈1/x〉

JJ

If M ∈ iax(A,B, F,G) [Ψ], M〈0/x〉 must be an element of A〈0/x〉 and M〈1/x〉 must
be an element of B〈1/x〉. In the operational semantics, taking the 〈1/x〉 face of

14

May 10, 2017

iainx(M,F) applies F :

iainx(M,F) val iain0(M,F) 7−→M iain1(M,F) 7−→ app(F,M)

The Kan operations of iax(A,B, F,G) are somewhat complicated, and rely on the Kan
operations of A and B as well as both directions of the isomorphism.

In addition to dependent function, circle, boolean, strict boolean, and strict
univalence types, Angiuli and Harper [6] define dependent pair types, path types
(which abstract a dimension name), and notx (a special case of strict univalence). We
construct a cubical type system closed under these type formers using a fixed point
construction [1, 25] that starts with an empty cubical type system, and adjoins the
base types and new higher types at each step.

We define a complete partial order on cubical type systems (a partial order with
a least element and joins of all directed subsets) with the approximation ordering
τ v τ ′, which holds (roughly) when all types in τ are types in τ ′ with precisely the
same canonical members and equality. Whenever τ v τ ′, any judgment J [Ψ] that
holds in τ (which we write τ |= (J [Ψ])) also holds in τ ′ (τ ′ |= (J [Ψ])).

We define a monotone operator F (E,Φ) = (E ′,Φ′) on cubical type systems which
adds one “layer” of types to (E,Φ):

E ′ = {(Ψ,S1,S1)} ∪ . . .
∪ {(Ψ, (a:A)→ B, (a:A′)→ B′) |

(E,Φ) |= (A
.
= A′ type [Ψ]) ∧ (E,Φ) |= (a : A� B

.
=B′ type [Ψ])}

Φ′ = {(Ψ,S1, V, V ′) | C(Ψ, V, V ′)} ∪ . . .
∪ {(Ψ, (a:A)→ B, λa.M, λa.M ′) | (E,Φ) |= (a : A�M

.
=M ′ ∈ B [Ψ])}

(Here, C is an inductively-defined family of PERs generated by base, loopx, and
canonical hcomS1(. . .) elements.) It is easy to check that F is monotone, and that any
fixed point of F is closed under the type formers. Monotone operators on complete
partial orders (CPOs) have least fixed points [21, 8.22], completing the construction.

Note, however, that any cubical type system closed under the type formers is
sufficient for our purposes; none of our theorems hold only in the least such. It
is therefore possible to extend our results with additional type formers (such as
universes, full univalence, or more higher inductive types) without affecting the
present constructions.

Computational higher-dimensional type theory (with the exception of strict univalence)
is implemented in the experimental RedPRL proof assistant [54]. Angiuli et al. [8]
proved the first canonicity result for a fully higher-dimensional type theory, using
a non-dependent version of the cubical meaning explanations. Subsequently, Huber
[33] proved canonicity for the formal higher-dimensional type theory of Cohen et al.

15

May 10, 2017

[16]. (Several years prior, Licata and Harper [39] obtained a canonicity result for a
higher-dimensional type theory with only points and lines.)

Our Kan conditions are very similar to those considered by Licata and Brunerie
[38], which were inspired by the uniform Kan condition of Bezem et al. [13]. Other
variations on the Kan conditions are possible: Cohen et al. [16] consolidate hcom and
coe into a single operator, and only allow computing the 〈1/y〉 face of a filler given its
〈0/y〉 face and any configuration of faces with extent in the y direction.

Other variations on the dimension terms are also possible, yielding different
operations on cubes: while we allow only faces, diagonals, and degeneracies, Cohen et al.
[16] also allow reversals (〈(1− x)/x〉) and connections (〈(x ∧ y)/x〉 and 〈(x ∨ y)/x〉),
and rely on connections to define Kan fillers from their notion of Kan composition.

16

May 10, 2017

3 Proposed Work

I intend to pursue a variety of extensions and applications of computational higher-
dimensional type theory, falling into four main categories:
• Extensions inspired by other higher-dimensional type theories—universes (Sec-

tion 3.1), univalence (Section 3.2), and equality pretypes (Section 3.3);

• Extensions inspired by other computational type theories—exact quotients,
computational equivalence, and extensional and untyped reasoning principles
(Section 3.3);

• Programming applications—generic programming and proof-relevant quotients
(Section 3.4); and

• Connections to related work—book HoTT, Cohen et al. [16], and cubical sets
(Section 3.5).

3.1 Universes

Universes in dependent type theory internalize the notion of typehood, allowing one
to speak directly about, for instance, pairs of types, or indexed families of types.
Universes also allow users to construct types by induction; without universes (or large
elimination principles), formal type theories cannot prove injectivity of constructors
[52]. In book HoTT, the statement of the univalence axiom requires universes, as
univalence places a condition on paths between types (A =U B). The present setting
allows for multiple notions of universes, which I describe in turn.

A primitive form of universe can be constructed as follows. Extend the term language
with a new value U . Let τ0 = (E0,Φ0) be the least fixed point of the monotone
operator F described in Section 2.4. We consider a new monotone operator on cubical
type systems F1(E,Φ) = (E ′,Φ′) defined like F , extended with the clauses:

E ′ = · · · ∪ {(Ψ,U ,U)}
Φ′ = · · · ∪ {(Ψ,U , A,B) | E0(Ψ, A,B)}

Let τ1 be the least fixed point of F1. One can verify that F (τ) v F1(τ) for all τ , and
thus τ0 v τ1. The type system τ1 satisfies all the proof rules described earlier, plus:

U pretype [Ψ]

A ∈ U [Ψ]

A pretype [Ψ]

S1 ∈ U [Ψ]

A ∈ U [Ψ] a : A� B ∈ U [Ψ]

(a:A)→ B ∈ U [Ψ] · · ·
One obtains a hierarchy of universes by considering a sequence of monotone

operators Fi, each defining Uj for all j < i as the PER of canonical pretypes in the

17

May 10, 2017

least fixed point of Fj .
5 The resulting Uj are universes à la Russell (elements of U are

precisely pretypes) rather than à la Tarski as in most formal type theories (requiring
a function El(−) sending elements of U to types). The latter is more natural in
categorical semantics [42], but the former is straightforward in computational type
theory, as it lacks any a priori distinction between types and terms.

The above argument is a cubical generalization of the universe construction given
by Harper [25], and appears to rely on non-constructive facts about CPOs. Allen [1]
gives an intuitionistically-acceptable construction which avoids CPOs, employing an
operator on bare relations rather than on type systems. It is not clear that Allen’s
construction generalizes to cubical type systems, as the definitions of the judgments in
terms of type systems are rather more involved in cubical type theory than in ordinary
type theory; I wish to investigate this point.

The construction outlined above yields a pretype U that is not Kan. One cannot
eliminate from S1 into such a U , as the elimination principle for S1 sends hcomS1 to
a composition in the result type. Because U is a base type, it can be equipped with
a free Kan structure in much the same way as bool and S1. First, equip hcomU(. . .)
terms with the minimal operational semantics needed for the Kan conditions:

−⇀ri = x1, . . . , xi−1, ε, ri+1, . . . , rn

hcom
−⇀ri
U (r r′, A;

−−⇀
y.Bε

i) 7−→ Bε
i 〈r′/y〉

r = r′

hcomx1,...,xn
U (r r′, A;

−−⇀
y.Bε

i) 7−→ A

r 6= r′

hcomx1,...,xn
U (r r′, A;

−−⇀
y.Bε

i) val coer r
′

U (A) 7−→ A

Then, expand the canonical elements of U to include well-typed canonical hcomU(. . .)

elements, that is, hcom
−⇀xi
U (r r′, A;

−−⇀
y.Bε

i) ≈Ψ
U hcom

−⇀xi
U (r r′, C;

−−⇀
y.Dε

i) when r 6= r′,

• τ0 |= (A
.
= C type [Ψ]),

• τ0 |=
(
Bε
i
.
=Bε′

j type [Ψ, y | xi = ε, xj = ε′]
)

for all i, j, ε, ε′,

• τ0 |= (Bε
i
.
=Dε

i type [Ψ, y | xi = ε]) for all i, ε, and

• τ0 |= (Bε
i 〈r/y〉

.
= A type [Ψ | xi = ε]) for all i, ε.

If this modified U is to remain a universe, all of its elements—including all
hcomU(. . .)—must be types, that is, they must themselves have elements. The Kan
equations demand that these elements have certain properties. In the scenario:

5It transpires that no Ui is an element of itself, but for reasons of predicativity, rather than size;
F1 would not be monotone if it assigned U0 the PER E rather than E0, as the type U0 would grow
larger in a larger type system.

18

May 10, 2017

A type [Ψ, y]

B type [Ψ, x]

C type [Ψ, y]

A〈0/y〉 .=B〈0/x〉 type [Ψ]

C〈0/y〉 .=B〈1/x〉 type [Ψ]

y

x •

•

•

•

A C

B

hcomx
U (0 1, B; y.A, y.C)

F := hcomx
U (0 y,B; y.A, y.C)

the Kan conditions for U require F 〈0/x〉 .= A ∈ U [Ψ, y], and hence, that F 〈0/x〉 .=
A pretype [Ψ, y]. As a result, any element X ∈ F [Ψ, x, y] must have faces that are
elements of A (X〈0/x〉 ∈ A [Ψ, y]) and of the composite (X〈1/y〉 ∈ F 〈1/y〉 [Ψ, x]). A
straightforward way to ensure these properties is to define the canonical elements of
every canonical hcomU(. . .) as formal composites of elements of the constituent types,
of the same shape. These are given the same operational semantics as hcomU(. . .):

−⇀ri = x1, . . . , xi−1, ε, ri+1, . . . , rn

box
−⇀ri (r r′,M ;

−−⇀
y.N ε

i) 7−→ N ε
i 〈r′/y〉

r = r′

boxx1,...,xn(r r′,M ;
−−⇀
y.N ε

i) 7−→M

r 6= r′

boxx1,...,xn(r r′,M ;
−−⇀
y.N ε

i) val

In our running example, we would say that boxx(0 y,N ; y.M, y.P) is a canonical
element of F whenever:

M ∈ A [Ψ, y]

N ∈ B [Ψ, x]

P ∈ C [Ψ, y]

M〈0/y〉 .=N〈0/x〉 ∈ B〈0/x〉 [Ψ]

P 〈0/y〉 .=N〈1/x〉 ∈ B〈1/x〉 [Ψ]

As required, −〈1/y〉 of this composite steps to P , an element of C. Extend the original
fixed point construction with hcomU pretypes whose canonical elements are boxes;
then U , as previously constructed, will be a type whose elements are pretypes.

Many constructions in book HoTT require a universe type whose elements are also
types. To compute the fundamental group of the circle, one must both construct a
map from S1 into U (requiring U to be Kan) and coerce along the image of that map
(requiring the elements of U to be Kan) [40].

We must therefore define the canonical elements of U not as canonical pretypes in
τ0 but rather canonical types:

Φ1(Ψ,U , A,B) ⇐⇒ (E0,Φ0) |= (A
.
=B type [Ψ])

19

May 10, 2017

As I will discuss in Section 3.3, I want to allow for the possibility of pretypes that are
not also types, although none are currently defined in Angiuli and Harper [6].

The above definition exposes a mismatch in the current definition of cubical type
systems—although we can only specify the canonical elements of U , the condition
of being a type is defined for arbitrary terms, and it is not necessarily the case that
whenever A is a type, its value A ⇓ A0 is also a type. Such a condition can be explicitly
added, and is analogous to the cubicality condition already required of elements.

For such a U to be Kan, however, the types hcomU(. . .) must themselves be Kan.
That is, we must implement the operations hcomhcomU (...)(. . .) and coew.hcomU (...)(. . .).
In our running example, given any composable box of formal boxes in F , we must
produce a formal box in F ; and given any element of F or one of its faces, we
must produce an element of F or its opposite face. Doing so requires extending the
operational semantics and proving that the given operations are defined coherently.
This task is quite challenging, especially because these operations do not always take
boxes to boxes; consider coe0 y

y.F (M), which must take elements of B to elements of F ,

in such a way that −〈0/x〉 of the result is equal to coe0 y
y.A (M〈0/x〉).

I consider the definition of hcomhcomU (...)(. . .) and coew.hcomU (...)(. . .) to be the most
challenging and risky task in this proposal. It is quite possible that defining such
operations requires modifying how the elements of hcomU(. . .) are defined, or even
modifying the Kan operations or cube operations of the entire type theory. Despite
the importance of a Kan universe of Kan types for synthetic homotopy theory, I have
intentionally chosen other tasks in my proposal that do not rely on such a universe,
and I view these tasks as sufficient evidence for my thesis statement in the event that
I cannot define such a universe in a timely fashion.

As a point of comparison, the formal cubical type theory of Cohen et al. [16] defines
a Kan, univalent universe of Kan types, using the gluing construction to simultaneously
define the analogue of hcomU(. . .) types and univalence types (Section 3.2). Their
gluing construction relies crucially on their Kan operation being limited to compositions
0 1, eliminating the need for equations such as those relating F with A and C in
our running example. (In exchange, connections and reversals are needed in their
setting to define Kan fillers.)

While the gluing construction does not seem to apply in my setting, I am nev-
ertheless encouraged that a similar problem has been solved. Even if a univalent
cubical universe is only definable using the precise Kan operations and cube operations
considered by Cohen et al. [16]—which would be quite unexpected—I believe it would
be possible to adapt such operations to my present setting, as the cubical meaning
explanations do not rely in an essential way on the details of those operations.

20

May 10, 2017

3.2 Univalence

The univalence axiom of book HoTT postulates an equivalence between paths in
the universe and equivalences between types. That equivalence induces paths in
the universe between all pairs of equivalent types, coercion along which applies the
equivalence between those types (up to a path).

To validate the univalence axiom in this setting, there must be a line from A to B
for any types A,B and an equivalence E between them. By analogy with the types
notx and iax(A,B, F,G), we say there is a line uax(A,B,E) whenever:

A type [Ψ]

B type [Ψ | x = 1]

E ∈ Equiv(B,A) [Ψ | x = 1]

// x A〈0/x〉

uax(A,B,E)

''

A // A〈1/x〉

B〈1/x〉

fst(E〈1/x〉)

OO

We define Equiv(B,A) as in the HoTT Book [58, Definition 4.2.1]. Recall that
any equivalence E ∈ Equiv(B,A) [Ψ] contains a function fst(E) ∈ B → A [Ψ] and
additional data from which a weak inverse E−1 ∈ A→ B [Ψ] can be computed; the
compositions of these functions differ by a path from the identity function in both
directions.

A univalent universe is simply a universe with a path for each equivalence, satisfying
the additional property that the type of paths is equivalent to the type of equivalences.
Dan Licata has shown (in the setting of book HoTT) that the univalence axiom holds
in any Kan universe of Kan types in which paths exist for every equivalence, and in
which there is a path between coe0 1

x.uax(A,B,E)(M) and app(E−1,M) [36].

In order to be an element of such a universe, uax(A,B,E) must itself be Kan. The
Kan operations on uax(A,B,E) force it to have elements, because coe0 x

x.uax(A,B,E)(M)

computes an element of it when M ∈ A〈0/x〉 [Ψ]. Following the definition of
iax(A,B, F,G), we say that an element of uax(A,B,E) is given by an element of
A (with constructor uainx(−)), and implement the Kan operations of uax(A,B,E)
using the Kan operations of A. Such implementations are simplified by defining an
eliminator uaoutx(−) to project out the underlying element of A.

We also need to ensure that whenever M ∈ uax(A,B,E) [Ψ, x], M〈0/x〉 is an
element of A〈0/x〉 and M〈1/x〉 is an element of B〈1/x〉. (We satisfy the latter
requirement by explicitly providing an element of B〈1/x〉 in the introduction form.)
This complicates the definition of uaoutx(−), as under 〈1/x〉 it must compute an
element of A〈1/x〉 from an element of B〈1/x〉 (presumably, by applying fst(E〈1/x〉)).
The uaoutx(−) operation is coherent only if the provided element of B〈1/x〉 is sent by
fst(E〈1/x〉) to exactly the 〈1/x〉 face of the provided element of A. These considerations
can be summarized by the following intended introduction and elimination rules:

21

May 10, 2017

M ∈ A [Ψ] N ∈ B [Ψ | r = 1] app(fst(E), N)
.
=M ∈ A [Ψ | r = 1]

uainr(M,N) ∈ uar(A,B,E) [Ψ]

M ∈ uar(A,B,E) [Ψ] fst(E)
.
= F ∈ B → A [Ψ | r = 1]

uaoutr(M,F) ∈ A [Ψ]

as well as the following operational semantics:

uax(A,B,E) val ua0(A,B,E) 7−→ A ua1(A,B,E) 7−→ B

uainx(M,N) val uain0(M,N) 7−→M uain1(M,N) 7−→ N

uaout0(M,F) 7−→M uaout1(M,F) 7−→ app(F,M)

M 7−→M ′

uaoutx(M,F) 7−→ uaoutx(M
′, F) uaoutx(uainx(M,N), F) 7−→M

It remains to define the Kan operations in a coherent fashion. For instance,

the implementation of hcom
−⇀ri
uax(A,B,E)(r r′,M ;

−−⇀
y.N ε

i) must have a 〈0/x〉 face equal

to the composition (hcom
−⇀ri
A (r r′,M ;

−−⇀
y.N ε

i))〈0/x〉 and a 〈1/x〉 face equal to the

composition (hcom
−⇀ri
B (r r′,M ;

−−⇀
y.N ε

i))〈1/x〉. Similar challenges already arise in the
Kan operations of iax(A,B, F,G), but uax(A,B,E) has the additional difficulty that
we must provide an exact preimage of the 〈1/x〉 face of the composition in A, even
though fst(E〈1/x〉) has no exact inverse.

When combined with the work described in Section 3.1, the above construction equips
computational higher-dimensional type theory with a univalent, Kan universe of Kan
types, making it a suitable framework for synthetic homotopy theory in the style of the
HoTT Book [58]. In Section 3.4, I argue that even in the absence of a universe, Kan
iax(A,B, F,G) and uax(A,B,E) types have interesting programming applications.

The construction of iax(A,B, F,G), described in Section 2.4, is possible in our
setting because we have an extensional judgmental equality distinct from the path
type. As a result, we can easily consider universes with both kinds of univalence—for
strict isomorphisms as well as equivalences. An interesting question is: how do these
two types compare? Is there a “strict univalence axiom” for iax(A,B, F,G) analogous
to the ordinary univalence axiom? The implementations of the Kan operations of
iax(A,B, F,G) will almost certainly be simpler than of uax(A,B,E); in the case where
an equivalence is also a strict isomorphism, is the former more efficient (say, in the
size of the term, or number of steps required)?

22

May 10, 2017

3.3 Extensional Principles

Most formal higher-dimensional type theories, including book HoTT and Cohen et al.
[16], cannot express exact, extensional equality of open terms. In such theories, one
has a path between two functions A→ B whenever they agree on every element of A
up to a path in B, but maintaining families of such paths can result in infinite towers
of coherence data, and is believed to be an obstacle to defining semi-simplicial types
in book HoTT [3]. Consequently, various researchers have proposed “two-level” type
theories in which one can manipulate exact equalities in addition to paths [3, 62].

Furthermore, as remarked in Angiuli et al. [9], it is clear that behavioral equality
of higher-dimensional programs is captured neither by definitional equality, which is
not extensional, nor by the identity type, as 0I and 1I are distinct observations in I
despite being connected by a path.

The equality judgment of the cubical meaning explanations is naturally an exact,
extensional equality, because open terms are considered extensionally as maps from
contexts to types. I have already relied on these semantics to validate inherently
extensional equalities, even between higher inductive types, as in the proof that
not(not(M))

.
=M ∈ bool [Ψ] whenever M ∈ bool [Ψ] [6, Lemma 40].

In fact, one can already define a pretype internalizing the equality judgment:

A
.
= A′ pretype [Ψ]
M

.
=M ′ ∈ A [Ψ]

N
.
=N ′ ∈ A [Ψ]

(M
.
=N ∈ A)

.
= (M ′ .=N ′ ∈ A′) pretype [Ψ]

M
.
=N ∈ A [Ψ]

? ∈ (M
.
=N ∈ A) [Ψ]

P ∈ (M
.
=N ∈ A) [Ψ]

M
.
=N ∈ A [Ψ]

whose canonical elements are ? ≈Ψ
(M
.
=N∈A)

? whenever M
.
=N ∈ A [Ψ]. This pretype

even has hcom(M
.
=N∈A)(. . .), defined analogously to hcomsbool(. . .). Unfortunately, one

cannot define coex.(M .=N∈A)(. . .) for the obvious reason that exact equality does not
respect paths: if P is an x-line from M to M ′, then coe0 1

x.(M
.
=N∈A)

(?) would send a

proof that M
.
=N ∈ A [Ψ] to a proof that M ′ .=N ∈ A [Ψ]. (“Two-level” type theories

handle this problem essentially by axiomatizing both Kan types and non-Kan types.)
In NuPRL, the equality type is used to inductively prove extensional equalities; the

same should hold in computational higher-dimensional type theory for sbool (and any
future strict types), although one must prove a more general form of its elimination
principle. Such equations would enable us to avoid the coherence towers described
above, and are also needed to define interesting instances of iax(A,B, F,G). I will
pursue exposing these reasoning principles in a two-level-style proof theory.

The trick of eliminating into an equality type to prove equations does not work for
higher inductive types, because they can only eliminate into Kan types. As a result,
we have no proof rule for showing not(not(M))

.
=M ∈ bool [Ψ]. Can we formulate a

23

May 10, 2017

different principle for proving such equations? Such a principle would have to reason
about canonical hcombool terms in addition to true and false.

Because they are based on an untyped operational semantics, the cubical meaning
explanations also justify more exotic reasoning principles. In the technical development,
I frequently use the head expansion lemma that if M ′ .= N ∈ A [Ψ] and for all
ψ : Ψ′ → Ψ, Mψ 7−→∗ M ′ψ, then M

.
=N ∈ A [Ψ] [6, Lemma 24]. Such a principle is

helpful because most operational semantics steps, including ordinary β-reductions, are
unaffected by dimension substitutions. Head expansion itself is not directly suitable
for use in a proof assistant, because it does not apply to open terms, and requires
reasoning explicitly about the operational semantics. However, it should be possible
to prove a rule for open terms:

M ′ .=N ∈ A [Ψ] M →M ′

M
.
=N ∈ A [Ψ]

for an explicitly-given open reduction relation M → M ′ that is stable under both
dimension and term substitutions, and includes ordinary β-reductions.

The cubical meaning explanations coincide at dimension zero with the original NuPRL
semantics [1, 25], so it should be possible to import many NuPRL type formers into
the setting of higher-dimensional type theory, including (exact) quotients of types
by equivalence relations. Such constructions would be useful even if not Kan, in the
presence of a two-level-style proof theory allowing pretype reasoning. Ideally one could
define cubical generalizations of these constructions, valid at arbitrary dimension.
It seems plausible that one could quotient a cubical set by some form of cubical
equivalence relation, but what rules are required?

More modern NuPRL semantics do not require types to be defined by their
canonical elements; instead, all terms are considered modulo untyped computational
equivalence [31], and types are any PERs respecting this equivalence. New types
definable in this setting include the base type of all terms modulo equivalence; partial
types of possibly non-terminating computations [53]; and PER types, which, along
with base, suffice to define most other types [4]. A natural question is: how does
untyped computational equivalence generalize in the cubical setting?

Intriguingly, a pretype whose canonical elements are every canonical term (modulo,
say, α-equivalence) does not have all terminating computations as elements, because
not all terminating computations have coherent aspects. Can the cubical meaning
explanations be modified to allow defining types as evaluation-respecting cubical PERs
on terms, rather than cubical PERs on canonical terms? What is the proper notion of
coherence of aspects in such a setting?

24

May 10, 2017

3.4 Programming Applications

Prior to my work on computational higher-dimensional type theory, I considered
programming applications of higher inductive types and univalent universes. In
Angiuli et al. [9], I model version control systems as higher inductive types, where
repository states are points, patches are paths, and laws equating patch sequences are
paths between paths. Maps from these types into the universe are implementations,
sending repositories to types, and (equal) patches to (equal) equivalences. However,
Angiuli et al. [9] takes place in book HoTT, and relies on a conjectural notion of
computation-up-to-homotopy. If I define a Kan, univalent universe of Kan types, I
hope to re-examine some of these examples in the present setting.

Univalence, and especially the iax(A,B, F,G) type, has programming applications
even in the absence of higher inductive types or universes of Kan types. Let U be a (not
necessarily Kan) universe of Kan types closed under iax(A,B, F,G) types, and define
Magma := (A:U) → (A × A → A). If F,G is a strict isomorphism between A and
B, then the program coe0 1

x.app(Magma,iax(A,B,F,G))(−) takes a Magma(A) to a Magma(B).
While one could always write such a program manually, coe is able to automatically
apply the isomorphism as necessary! If the universe is Kan, univalence can also
generate representation independence results stating that isomorphic implementations
of existential types can be exchanged automatically [37]. I intend to describe a number
of such examples.

Higher inductive types also have applications in the absence of univalence and
universes, as illustrated in the following example (written using pseudocode in the
style of Angiuli et al. [9]). Consider a type of natural numbers with paths between all
numbers:

space I* : Type where

num : Nat � I*

path n : Id (num n) (num n+1)

We can define addition on I* by sending paths to the appropriate paths:

add1 : I* � I*

add1 (num n) = num n+1

add1 (path n) = path n+1

sum : I* � I* � I*

sum r (num 0) = r

sum r (num n+1) = add1 (sum r (num n))

(sum r) (path n) = ?? : Id (sum r (num n)) (sum r (num n+1))

In the above code, ?? requires a routine side proof, omitted, of Id s (add1 s).

The type I* is similar to a quotient of Nat by the total relation, in the sense that
its points must be all sent to path-connected points. Unlike an exact quotient, however,
its points are not considered judgmentally equal, and add1 is not extensionally equal

25

May 10, 2017

to the identity. Consider two functions fib and ffib which return the nth Fibonacci
number paired with the number of recursive calls used, as an element of I*:

fib : Nat � Nat × I*

fib 0 = (1, num 1)

fib 1 = (1, num 1)

fib n+2 = let (a,wa) = fib n

(b,wb) = fib n+1

in (a+b, add1 (sum wa wb))

ffib : Nat � Nat × I*

ffib n = let ((a,b),w) = ffib’ n

in (a,w)

ffib’ : Nat � (Nat × Nat) × I*

ffib’ 0 = ((1,1), num 1)

ffib’ n+1 = let ((a,b),w) = ffib’ n

in ((b,a+b),add1 w)

fib and ffib are related by a path: on all inputs, their first components agree
exactly, and their second components, being elements of I*, are always related by a
path. They are not, however, extensionally equal: fib 3 is (3,num 5) while ffib 3

is (3,num 4). Thus ffib cannot be silently replaced by fib, but one can always
be substituted for the other given a path—acting here as a kind of resource-aware
annotation—to adjust the second component. I plan to find further programming
applications of these “proof-relevant quotients.”

The fib/ffib example requires canonicity at dimension zero for I*, lest points
in I* not have the form num n. Although I have not yet defined I*, a similar result
does hold for the higher inductive types bool and S1 (whose canonical points are true
and false, and base, respectively). Interestingly, the type theory of Cohen et al. [16]
does not have this property for points of higher inductive types; their canonicity
result holds only for a strict form of N (similar to our result for sbool). Our sharper
canonicity result is possible because the hcom and coe Kan operators are distinct.6

Nearly all interesting programming applications require inductive types (both ordinary
and higher-dimensional) not currently considered in Angiuli and Harper [6]. Natural
numbers, lists, coproducts, et cetera, would also provide more examples of strict
isomorphisms and interesting extensional equalities. I intend to define several such
inductive types, whose definitions I expect to follow the pattern of sbool.

Surprisingly, these definitions can take advantage of computation being untyped.
Consider a strict coproduct A+B whose canonical elements at every dimension are

6In Cohen et al. [16], compi S1 [] base is a canonical point in S1. The eliminator of S1 sends
compi S1 [(j = 0) 7→ t] base to compi A [(j = 0) 7→ a′] a. 〈1/j〉 of the latter is compi A [] a, which is
not equal to a; therefore 〈1/j〉 of the former, compi S1 [] base, cannot be base.

26

May 10, 2017

inl(−) and inr(−). A natural implementation of hcomA+B might evaluate the cap and
every tube face, then:

hcom
−⇀ri
A+B(r r′, inl(M);

−−−−−−⇀
y.inl(N ε

i)) 7−→ inl(hcom
−⇀ri
A (r r′,M ;

−−⇀
y.N ε

i))

While conceptually clean, such an implementation requires complex operational se-
mantics and coherence conditions. Instead, one can evaluate only the cap, then:

hcom
−⇀ri
A+B(r r′, inl(M);

−−⇀
y.N ε

i) 7−→ inl(hcom
−⇀ri
A (r r′,M ;

−−−−−−−−−−−−−⇀
y.case(N ε

i ; a.a, a.a)))

The right-hand side appears ill-typed, because case(−; a.a, a.a) does not send elements
of A+ B to A. But we may assume that N ε

i 〈r/y〉
.
= inl(M) ∈ A+B [Ψ | ri = ε], in

which case N ε
i evaluates to an inl(−), and the case to an element of A.

3.5 Related Work

Finally, I intend to compare the cubical meaning explanations to other models of
higher-dimensional type theories. As a starting point, can we construct a model of
book HoTT by translating every Γ ` M : A to Γ′ � M ′ ∈ A′ [·]? Such a result
certainly requires a Kan, univalent universe of Kan types (and a proof of the univalence
axiom); a proof of the segβ law (Section 2.1); and Evan Cavallo’s construction7 of a
book-HoTT-style identity type, defined as a higher inductive type family generated
by refl. These proofs are excellent test cases for the RedPRL proof assistant [54].

Huber [33] has proven a canonicity result for the formal higher-dimensional type
theory of Cohen et al. [16] by establishing typed computability predicates by induction
on derivations. While our proofs are structured very differently, Simon Huber and I
have noticed similar ideas, most notably the coherent aspects requirement. I intend
to closely examine the relationship between our arguments. Modulo the differences in
our cube operations and Kan operations, can the cubical meaning explanations (in
principle) form a proofs-as-programs interpretation of Cohen et al. [16]?

Our cubical judgmental structure is inspired by the mathematical notion of cubical
sets [34], typically presented as presheaves over a cube category. Näıvely one might
hope that every A type [Ψ] forms a cubical set {M |M ≈Ψ

A M}Ψ, where the functorial
action of ψ : Ψ′ → Ψ sends M to V for Mψ ⇓ V . This fails for two reasons. First,
the functorial action is only associative up to the relation ≈Ψ

A, not on the nose; we
can restore associativity by quotienting each set by its PER. Second, as a natural
consequence of dependency, A can contain dimension variables, and therefore can be
affected by ψ. Todd Wilson observed8 that the resulting structure forms a presheaf over
the cube category sliced over Ψ—it sends every ψ : Ψ′ → Ψ to the set of equivalence
classes of ≈Ψ′

A0
, where Aψ ⇓ A0. I intend to write up these results and compare these

structures to those found in the mathematical literature.
7Personal communication. Semantically, the construction relates to a suggestion of Steve Awodey

to model book-HoTT-style identity types as the fibrant replacement of the diagonal.
8Personal communication.

27

May 10, 2017

28

May 10, 2017

Bibliography

[1] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987. URL https://ecommons.cornell.edu/

handle/1813/6706.

[2] Thorsten Altenkirch and Ambrus Kaposi. Towards a cubical type theory without
an interval. Preprint, 2015. URL https://akaposi.github.io/towards_a_

cubical_tt_without_interval.pdf.

[3] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending Homotopy
Type Theory with Strict Equality. In Jean-Marc Talbot and Laurent Regnier,
editors, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016),
volume 62 of Leibniz International Proceedings in Informatics (LIPIcs), pages
21:1–21:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. ISBN 978-3-95977-022-4. doi: http://dx.doi.org/10.4230/LIPIcs.CSL.
2016.21. URL http://drops.dagstuhl.de/opus/volltexte/2016/6561.

[4] Abhishek Anand, Mark Bickford, Robert L. Constable, and Vincent
Rahli. A type theory with partial equivalence relations as types. Pre-
sented at 20th International Conference on Types for Proofs and Pro-
grams (TYPES 2014), 2014. URL http://www.nuprl.org/documents/Anand/

ATypeTheoryWithPartialEquivalenceRelationsAsTypes.pdf.

[5] Carlo Angiuli and Robert Harper. Meaning explanations at higher dimension.
Indagationes Mathematicae, November 2016. URL http://www.cs.cmu.edu/

~cangiuli/papers/brouwer.pdf. Draft, to appear in the special issue L.E.J.
Brouwer, fifty years later .

[6] Carlo Angiuli and Robert Harper. Computational higher type theory II: Depen-
dent cubical realizability. Preprint, April 2017. URL http://arxiv.org/abs/

1606.09638.

[7] Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper. Homo-
topical patch theory. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages 243–256, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2873-9. doi: 10.1145/2628136.2628158.
URL http://doi.acm.org/10.1145/2628136.2628158.

[8] Carlo Angiuli, Robert Harper, and Todd Wilson. Computational higher type

29

https://ecommons.cornell.edu/handle/1813/6706
https://ecommons.cornell.edu/handle/1813/6706
https://akaposi.github.io/towards_a_cubical_tt_without_interval.pdf
https://akaposi.github.io/towards_a_cubical_tt_without_interval.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/6561
http://www.nuprl.org/documents/Anand/ATypeTheoryWithPartialEquivalenceRelationsAsTypes.pdf
http://www.nuprl.org/documents/Anand/ATypeTheoryWithPartialEquivalenceRelationsAsTypes.pdf
http://www.cs.cmu.edu/~cangiuli/papers/brouwer.pdf
http://www.cs.cmu.edu/~cangiuli/papers/brouwer.pdf
http://arxiv.org/abs/1606.09638
http://arxiv.org/abs/1606.09638
http://doi.acm.org/10.1145/2628136.2628158

May 10, 2017

theory I: Abstract cubical realizability. Preprint, June 2016. URL http://arxiv.

org/abs/1604.08873.

[9] Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper. Ho-
motopical patch theory. Journal of Functional Programming, 26, 2016. doi:
10.1017/S0956796816000198.

[10] Carlo Angiuli, Robert Harper, and Todd Wilson. Computational higher-
dimensional type theory. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, pages 680–693, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.3009861.
URL http://doi.acm.org/10.1145/3009837.3009861.

[11] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity
types. Mathematical Proceedings of the Cambridge Philosophical Society, 146(1):
45–55, January 2009. ISSN 0305-0041. doi: 10.1017/S0305004108001783.

[12] Henning Basold, Herman Geuvers, and Niels van der Weide. Higher inductive types
in programming. Journal of Universal Computer Science, 23(1):63–88, January
2017. URL http://www.jucs.org/jucs_23_1/higher_inductive_types_in.

[13] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in
cubical sets. In 19th International Conference on Types for Proofs and Programs
(TYPES 2013), volume 26, pages 107–128, 2014.

[14] Guillaume Brunerie. The James construction and π4(S
3), 2013. URL https:

//video.ias.edu/univalent/1213/0327-GuillaumeBrunerie. Video of a talk
at the Institute for Advanced Study.

[15] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type
theory. PhD thesis, Université de Nice Sophia Antipolis, 2016. URL http:

//arxiv.org/abs/1606.05916.

[16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical
type theory: a constructive interpretation of the univalence axiom. In 21st
International Conference on Types for Proofs and Programs (TYPES 2015),
Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. To appear.

[17] Robert L. Constable. Näıve Computational Type Theory, pages 213–259.
Springer Netherlands, Dordrecht, 2002. ISBN 978-94-010-0413-8. doi: 10.1007/
978-94-010-0413-8 7. URL http://dx.doi.org/10.1007/978-94-010-0413-8_

7.

[18] Robert L. Constable and Scott F. Smith. Computational foundations of basic
recursive function theory. In Proceedings of the 3rd IEEE Symposium on Logic in
Computer Science, pages 360–371, Edinburgh, UK, 1988. IEEE Computer Society
Press. (Cornell TR 88-904).

[19] Robert L. Constable, et al. Implementing Mathematics with the Nuprl Proof

30

http://arxiv.org/abs/1604.08873
http://arxiv.org/abs/1604.08873
http://doi.acm.org/10.1145/3009837.3009861
http://www.jucs.org/jucs_23_1/higher_inductive_types_in
https://video.ias.edu/univalent/1213/0327-GuillaumeBrunerie
https://video.ias.edu/univalent/1213/0327-GuillaumeBrunerie
http://arxiv.org/abs/1606.05916
http://arxiv.org/abs/1606.05916
http://dx.doi.org/10.1007/978-94-010-0413-8_7
http://dx.doi.org/10.1007/978-94-010-0413-8_7

May 10, 2017

Development Environment. Prentice-Hall, 1985.

[20] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76(2):95 – 120, 1988. ISSN 0890-5401. doi: http://dx.doi.org/10.
1016/0890-5401(88)90005-3. URL http://www.sciencedirect.com/science/

article/pii/0890540188900053.

[21] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge
University Press, Cambridge, UK, 2002. ISBN 0-521-78451-4. URL http://opac.

inria.fr/record=b1077513.

[22] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The Lean theorem prover (system description). In CADE-25:
25th International Conference on Automated Deduction. Springer International
Publishing, 2015. ISBN 978-3-319-21401-6. doi: 10.1007/978-3-319-21401-6 26.
URL http://dx.doi.org/10.1007/978-3-319-21401-6_26.

[23] Florian Faissole and Bas Spitters. Synthetic topology in homotopy type theory
for probabilistic programming. In CoqPL 2017, 2017. URL http://www.cs.au.

dk/~spitters/ProbProg.pdf.

[24] Nicola Gambino and Richard Garner. The identity type weak factorisation system.
Theoretical Computer Science, 409(1):94 – 109, 2008. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/j.tcs.2008.08.030. URL http://www.sciencedirect.

com/science/article/pii/S0304397508006063.

[25] Robert Harper. Constructing type systems over an operational semantics. J. Symb.
Comput., 14(1):71–84, July 1992. ISSN 0747-7171. doi: 10.1016/0747-7171(92)
90026-Z. URL http://dx.doi.org/10.1016/0747-7171(92)90026-Z.

[26] Robert Harper. Practical Foundations for Programming Languages. Cambridge
University Press, second edition, 2016.

[27] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory. Oxford University Press,
1998.

[28] Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kampen
Theorem in Homotopy Type Theory. In Jean-Marc Talbot and Laurent Regnier,
editors, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016),
volume 62 of Leibniz International Proceedings in Informatics (LIPIcs), pages
22:1–22:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. ISBN 978-3-95977-022-4. doi: 10.4230/LIPIcs.CSL.2016.22. URL
http://drops.dagstuhl.de/opus/volltexte/2016/6562.

[29] Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu
Lumsdaine. A mechanization of the Blakers-Massey connectivity theorem in
homotopy type theory. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, pages 565–574, New York, NY, USA,

31

http://www.sciencedirect.com/science/article/pii/0890540188900053
http://www.sciencedirect.com/science/article/pii/0890540188900053
http://opac.inria.fr/record=b1077513
http://opac.inria.fr/record=b1077513
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://www.cs.au.dk/~spitters/ProbProg.pdf
http://www.cs.au.dk/~spitters/ProbProg.pdf
http://www.sciencedirect.com/science/article/pii/S0304397508006063
http://www.sciencedirect.com/science/article/pii/S0304397508006063
http://dx.doi.org/10.1016/0747-7171(92)90026-Z
http://drops.dagstuhl.de/opus/volltexte/2016/6562

May 10, 2017

2016. ACM. ISBN 978-1-4503-4391-6. doi: 10.1145/2933575.2934545. URL
http://doi.acm.org/10.1145/2933575.2934545.

[30] William A. Howard. The formulae-as-types notion of construction. In J. Roger
Seldin, Jonathan P.; Hindley, editor, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

[31] Douglas J. Howe. Equality in lazy computation systems. In Proceedings of the
Fourth Annual IEEE Symposium on Logic in Computer Science (LICS 1989),
pages 198–203. IEEE Computer Society Press, June 1989.

[32] Douglas J. Howe and Scott D. Stoller. An operational approach to combining
classical set theory and functional programming languages. In and J. C. Mitchell
M. Hahiya, editor, Theoretical Aspects of Computer Software, volume 789 of
Lecture Notes in Computer Science, pages 36–55, New York, April 1994. Springer,
Berlin.

[33] Simon Huber. Cubical Interpretations of Type Theory. PhD thesis, University of
Gothenburg, November 2016. URL http://hdl.handle.net/2077/48890.

[34] Daniel M. Kan. Abstract homotopy. I. Proceedings of the National Academy of
Sciences of the United States of America, 41(12):1092–1096, 1955. ISSN 00278424.
URL http://www.jstor.org/stable/89108.

[35] Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent
foundations (after Voevodsky). Preprint, June 2016. URL https://arxiv.org/

abs/1211.2851.

[36] Dan Licata. Weak univalence with “beta” implies full univalence, Septem-
ber 2016. URL https://groups.google.com/d/msg/homotopytypetheory/

j2KBIvDw53s/YTDK4D0NFQAJ. Email to Homotopy Type Theory mailing list.

[37] Daniel R. Licata. What is homotopy type theory?, 2014. URL http://dlicata.

web.wesleyan.edu/pubs/l14coq/l14coq.pdf. Talk at Coq Workshop.

[38] Daniel R. Licata and Guillaume Brunerie. A cubical type theory, Novem-
ber 2014. URL http://dlicata.web.wesleyan.edu/pubs/lb14cubical/

lb14cubes-oxford.pdf. Talk at Oxford Homotopy Type Theory Workshop.

[39] Daniel R. Licata and Robert Harper. Canonicity for 2-dimensional type theory.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 337–348, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103697. URL
http://doi.acm.org/10.1145/2103656.2103697.

[40] Daniel R. Licata and Michael Shulman. Calculating the fundamental group of
the circle in homotopy type theory. In Proceedings of the 2013 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’13, pages 223–232,
Washington, DC, USA, 2013. IEEE Computer Society. ISBN 978-0-7695-5020-6.
doi: 10.1109/LICS.2013.28. URL http://dx.doi.org/10.1109/LICS.2013.28.

32

http://doi.acm.org/10.1145/2933575.2934545
http://hdl.handle.net/2077/48890
http://www.jstor.org/stable/89108
https://arxiv.org/abs/1211.2851
https://arxiv.org/abs/1211.2851
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
http://dlicata.web.wesleyan.edu/pubs/l14coq/l14coq.pdf
http://dlicata.web.wesleyan.edu/pubs/l14coq/l14coq.pdf
http://dlicata.web.wesleyan.edu/pubs/lb14cubical/lb14cubes-oxford.pdf
http://dlicata.web.wesleyan.edu/pubs/lb14cubical/lb14cubes-oxford.pdf
http://doi.acm.org/10.1145/2103656.2103697
http://dx.doi.org/10.1109/LICS.2013.28

May 10, 2017

[41] Peter LeFanu Lumsdaine. Weak ω-Categories from Intensional Type Theory,
pages 172–187. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN
978-3-642-02273-9. doi: 10.1007/978-3-642-02273-9 14. URL http://dx.doi.

org/10.1007/978-3-642-02273-9_14.

[42] Zhaohui Luo. Notes on universes in type theory, October 2012. URL http://www.

cs.rhul.ac.uk/~zhaohui/universes.pdf. Notes for a talk at the Institute for
Advanced Study.

[43] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose
and J.C. Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic
Colloquium, volume 80 of Studies in Logic and the Foundations of Mathematics,
pages 73–118. North-Holland, 1975.

[44] Per Martin-Löf. Constructive mathematics and computer programming. In
L. Jonathan Cohen, Jerzy Loś, Helmut Pfeiffer, and Klaus-Peter Podewski,
editors, Logic, Methodology and Philosophy of Science VI, Proceedings of the Sixth
International Congress of Logic, Methodology and Philosophy of Science, Hannover
1979, volume 104 of Studies in Logic and the Foundations of Mathematics, pages
153–175. North-Holland, 1982. doi: 10.1016/S0049-237X(09)70189-2. URL
http://dx.doi.org/10.1016/S0049-237X(09)70189-2.

[45] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984. ISBN 88-7088-105-9. Notes by Giovanni Sambin of a series of
lectures given in Padua, June 1980.

[46] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf ’s
Type Theory. Oxford University Press, 1990.

[47] Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

[48] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2013. ISBN 9781107017788.

[49] A. M. Pitts. Nominal Presentation of Cubical Sets Models of Type Theory. In
H. Herbelin, P. Letouzey, and M. Sozeau, editors, 20th International Conference on
Types for Proofs and Programs (TYPES 2014), volume 39 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 202–220, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-88-0.
doi: http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.202. URL http://drops.

dagstuhl.de/opus/volltexte/2015/5498.

[50] Mike Shulman. Homotopy type theory, VI, 2011. URL https://golem.ph.

utexas.edu/category/2011/04/homotopy_type_theory_vi.html. Blog post
on the n-category café.

[51] Mike Shulman. Elementary (∞, 1)-topoi, April 2017. URL https://golem.ph.

33

http://dx.doi.org/10.1007/978-3-642-02273-9_14
http://dx.doi.org/10.1007/978-3-642-02273-9_14
http://www.cs.rhul.ac.uk/~zhaohui/universes.pdf
http://www.cs.rhul.ac.uk/~zhaohui/universes.pdf
http://dx.doi.org/10.1016/S0049-237X(09)70189-2
http://drops.dagstuhl.de/opus/volltexte/2015/5498
http://drops.dagstuhl.de/opus/volltexte/2015/5498
https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html

May 10, 2017

utexas.edu/category/2017/04/elementary_1topoi.html. Blog post on the
n-category café.

[52] Jan M. Smith. The independence of Peano’s fourth axiom from Martin-Löf’s type
theory without universes. The Journal of Symbolic Logic, 53(3):840–845, 1988.
ISSN 00224812. URL http://www.jstor.org/stable/2274575.

[53] S.F. Smith. Partial Objects in Type Theory. PhD thesis, Cornell University,
Ithaca, NY, 1989.

[54] Jonathan Sterling, Danny Gratzer, Vincent Rahli, Darin Morrison, Eugene
Akentyev, and Ayberk Tosun. RedPRL – the People’s Refinement Logic. http:
//www.redprl.org/, 2016.

[55] T. Streicher. Identity types vs. weak omega-groupoids: some ideas, some problems.
Talk given in Uppsala at the meeting on “Identity Types: Topological and
Categorical Structure”, 2006. URL http://www.mathematik.tu-darmstadt.

de/~streicher/TALKS/uppsala.pdf.gz.

[56] The Coq Project. The Coq proof assistant, 2016. URL http://www.coq.inria.

fr.

[57] The NuPRL Project. Prl project, 2016. URL http://nuprl.org.

[58] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. http://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

[59] Benno van den Berg and Richard Garner. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society, 102(2):370–394, 2011. doi:
10.1112/plms/pdq026. URL http://plms.oxfordjournals.org/content/102/

2/370.abstract.

[60] Vladimir Voevodsky. A very short note on homotopy λ-calculus, 09 2006. URL
http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf.

[61] Vladimir Voevodsky. The equivalence axiom and univalent models of type theory,
2010. URL http://www.math.ias.edu/vladimir/files/CMU_talk.pdf. Notes
from a talk at Carnegie Mellon University.

[62] Vladimir Voevodsky. A simple type system with two identity types. Lecture notes,
February 2013. URL https://www.math.ias.edu/vladimir/sites/math.ias.

edu.vladimir/files/HTS.pdf.

34

https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
http://www.jstor.org/stable/2274575
http://www.redprl.org/
http://www.redprl.org/
http://www.mathematik.tu-darmstadt.de/~streicher/TALKS/uppsala.pdf.gz
http://www.mathematik.tu-darmstadt.de/~streicher/TALKS/uppsala.pdf.gz
http://www.coq.inria.fr
http://www.coq.inria.fr
http://nuprl.org
http://homotopytypetheory.org/book
http://plms.oxfordjournals.org/content/102/2/370.abstract
http://plms.oxfordjournals.org/content/102/2/370.abstract
http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf

	1 Introduction
	1.1 Acknowledgements

	2 Background and Prior Work
	2.1 Higher-Dimensional Type Theory
	2.2 Canonicity and Definitional Equality
	2.3 Martin-Löf's Meaning Explanations
	2.4 Computational Higher-Dimensional Type Theory

	3 Proposed Work
	3.1 Universes
	3.2 Univalence
	3.3 Extensional Principles
	3.4 Programming Applications
	3.5 Related Work

	Bibliography

