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Abstract

Cubical type theory is a novel extension of dependent type theory with a form of
equality called a path. Path equality enjoys extensionality properties missing from
traditional treatments of equality, and it is proof-relevant: paths are data, and there
can be many different paths between the same pair of objects. In particular, any iso-
morphism of types gives rise to a path between them; as everything respects equality,
this means that constructions can be transferred between isomorphic objects just as
in informal mathematical practice.

By providing a sensible equality, cubical type theory also enables sensible quotient
types. However, the proof-relevant setting also motivates a more general notion of
quotient known as a higher inductive type. The idea is to regard a quotient as an
inductive definition where the generating operations may construct paths as well as
ordinary elements. From this starting point, several directions of generalization are
possible, just as with ordinary inductive types: there are indexed higher inductive
types, higher inductive-inductive types, and so on. Originally proposed for homotopy
type theory, a progenitor of cubical type theory, instances of higher inductive types
have been used to great effect, but their general theory is still emerging. In this
proposal, I describe a bare-bones schema for indexed higher inductive types, complete
with a computational interpretation. I propose to extend this work to a fully-featured
schema including inductive-inductive types and to implement it as part of a cubical
proof assistant.

Working with proof-relevant equality has its own challenges, and effectively rea-
soning with higher inductive types is still a murky business. I propose that para-
metricity is a useful tool for this purpose, and describe an extension of cubical type
theory with internal parametricity primitives. I propose to establish a connection
between the extended theory and ordinary cubical type theory, to use it to simplify
presently difficult proofs, and to implement the parametric extension.
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1 Introduction

Martin-Löf’s dependent type theory [49, 50] is a powerful language for expressing
constructive mathematics, one that takes seriously the principle that proofs are pro-
grams. It is particularly well-suited as a foundation for formal theorem proving: such
storied proof assistants as Nuprl [26], Coq [60], and Agda [53] are based on closely
related theories. However, its treatment of equality is fraught with complications.

A central tension is between the external judgmental equality, which is used to
determine well-typedness, and identity types, the internal equality with which one
states and proves theorems. In Martin-Löf type theory, these two notions of equality
are tightly coupled—they coincide on closed terms—but are subject to conflicting
demands. In a formalism, it is convenient to include only a decidable fragment of
judgmental equality, enabling algorithmic type-checking. Identity types, on the other
hand, are the subject of theorems, so ought to behave as “mathematically” as possible.
For example, functions should be equal when they are equal pointwise, and equality
of types should be somehow semantic rather than syntactic. But these semantic
equalities are undecidable; so one must make a choice. Nuprl, for example, opts to
work with the full, undecidable judgmental equality, while Coq and Agda sacrifice
function extensionality and related principles.

Cubical type theory [25, 4] is a new solution to the problem of equality. An
extension of Martin-Löf type theory, cubical type theory introduces a second form
of judgmental equality, called a path, that plays the role of mathematical equality in
place of identity types. By decoupling the mathematical equality from the existing
judgmental “exact” equality, the difficulties inherent in Martin-Löf type theory are
neutralized. Function extensionality for paths, for one, is a simple consequence of
their judgmental structure. The separation of exact and mathematical equality also
enables a proof-relevant treatment of the latter: a path is a piece of data, and there
can be many paths between a pair of terms. This allows for a novel view of equality
of types that validates Voevodsky’s univalence axiom [66]: an equality between types
is an equivalence (coherent isomorphism) between them. Univalence formalizes the
familiar informal mathematical practice of treating isomorphic types as equal.

A new treatment of equality demands an attendant reassessment of quotient types.
Quotients are ubiquitous in mathematics, but they present the same issues as func-
tions for practical formalization: to quotient by undecidable relations, one must accept
undecidable equality. (Accordingly, Agda and Coq lack quotient types, while Nuprl
includes them.) Here, too, cubical type theory resolves the tension. In the richer
setting of proof-relevant equality, however, orthodox quotient types are just one piece
of a wilder vista of higher inductive types. In short, it matters not only what terms
one equates, but how one equates them.

The higher inductive approach treats the paths introduced by a quotient type as
constructors of an inductive definition. Intuitively, equalities are higher-dimensional
elements of a type, so can be inductively generated just as ordinary elements are.
Quotient types, then, inherit all the potential for generalization enjoyed by inductive
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types: indexed inductive types [29, 31], inductive-inductive types [52], inductive-
recursive types [32], and so on. These have potential applications not only to for-
malization of results in programming [2] and type theory [1], but also to homotopy
theory, the general study of higher-dimensional structure ([62, 36, 64], to list a few).
However, much of the work in this area is speculative, using axiomatic extensions
of type theory with instances of “higher inductive types” without precisely defining
the general concept or constructing models to verify consistency. Only recently have
researchers begun to address this lacuna [7, 33, 30, 41, 48].

Proof-relevant equality adds new expressiveness to type theory, but it also cre-
ates new obligations. As higher inductive constructions are stacked, for example,
a programmer is forced to reason with two- and higher-dimensional objects. Such
difficulties often arise in proofs of apparently innocuous properties. One notorious
example is the smash product, a binary type constructor used in homotopy theory.
Proving that this operator is associative is already a formidable task; proving that the
associator is properly “1-coherent” even more so. Partial proofs have been given by
van Doorn and Brunerie, but both contain gaps—for reasons of technical rather than
conceptual complexity [64, 18]. For problems like these, the field of programming lan-
guages suggests a proof technique: Reynolds’ relational parametricity [56]. In brief,
parametricity uses a relational interpretation of type theory to prove meta-theoretic
“uniformity” properties of terms, which could in this case be used to see that certain
maps must be equivalences.

For formalized theorem proving, we would like to have access to these properties
inside of type theory. Bernardy, Jansson, and Paterson observe that dependent type
theory is powerful enough to internally express the consequences of parametricity
at a given type [13]. Bernardy and Moulin take this a step farther, developing an
internally parametric type theory [11, 12, 14]. Internally parametric type theory has
a close relationship with cubical type theory, as both use a judgmental notion of
relatedness based on dimension variables. Moreover, it provides a proof-relevant
notion of parametricity, essential for proving results about proof-relevant equality.

Thesis. The program of higher inductive types can be realized in cubical type theory,
providing quotient types appropriate for proof-relevant equality. Internal parametricity
is a tool well-suited to analyzing these types.

I propose to flesh out the theory and practice of higher inductive types in cubi-
cal type theory. On the theory side, I intend to expand the universe of precisely-
understood higher inductive types, building on my work with Robert Harper on ordi-
nary and indexed higher inductive types [22] to encompass higher inductive-inductive
types. On the practice side, I plan to develop parametricity techniques for cubical
type theory, with a focus on internal parametricity. To complete the current picture
of internal parametricity, I intend to examine the degree to which results in type
theory with parametricity primitives can be transferred to ordinary type theory, a
question that is yet unstudied. I plan to implement this work as an extension to the
cubical proof assistant redtt [61].
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2 Background

2.1 Cubical type theory

Cubical type theory extends Martin-Löf type theory with a new form of equality
called a path. I will first summarize the variant of cubical type theory presented
by Angiuli et al. in [5], on which my work is based, then discuss alternatives. Like
Martin-Löf type theory (as presented in [50]), cubical type theory is designed around
four main judgments: A is a type, A and B are equal types, M is an element of A,
and M and N are equal elements of A. In cubical type theory, however, each of these
judgments is parameterized by a context Ψ = (x1, . . . , xn) of dimension variables.

A type [Ψ] A = B type [Ψ] M ∈ A [Ψ] M = N ∈ A [Ψ]

As usual, these have open equivalents parameterized by a context of ordinary
variables Γ: we write Γ ` A type [Ψ] and so on. (Note that the dimension context is
the outermost: the ordinary context, types, and terms above can all refer to variables
in Ψ.) A dimension variable is intuitively thought of as varying in the unit interval
[0, 1] of the real line. Accordingly, there are two dimension constants 0, 1 which can be
substituted for a dimension variable: if we have A type [x], we also have A〈0/x〉 type [·]
and A〈1/x〉 type [·]. Under the topological intuition, we think of A as a path between
the types A〈0/x〉 and A〈1/x〉; logically, as a witness to the equality of A〈0/x〉 and
A〈1/x〉.

0

1

x 7−→
A〈0/x〉

A〈1/x〉

A

In the same way, we can speak of paths between elements within a given type.
When a type or element depends on a context of n dimension variables, we think of
it as an n-dimensional cube relating its various substitution instances. The higher-
dimensional cubes make it possible, for example, to speak of paths between paths,
that is, of proofs that two ways of equating a pair of terms are themselves equal.
Semantically, a type is defined by explaining what its values are in each dimension
context: a type is an assemblage of n-dimensional cubes. This can be seen as a higher-
dimensional variation on setoid semantics, where a type is defined by a collection of
elements and an equivalence relation upon them.

The ordinary type formers maintain their familiar rules uniformly in the dimension
context. Function types, for example, satisfy the following (among other) rules.

a : A ` N ∈ B [Ψ]

λa.N ∈ (a:A)→ B [Ψ]

N ∈ (a:A)→ B [Ψ] M ∈ A [Ψ]

NM ∈ B[M/a] [Ψ]

The judgmental concept of path is internalized by a path type. These resemble
function types which abstract over dimension variables, but the endpoints of the path
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are also fixed by the type. In the general case, they are dependent function types:
the type can also depend on the dimension variable.

A type [Ψ, x] P ∈ A [Ψ, x]

λIx.P ∈ Pathx.A(P 〈0/x〉, P 〈1/x〉) [Ψ]

In particular, for any A type [Ψ] and element M ∈ A [Ψ], there is a reflexive path
λI .A ∈ Path .A(M,M) [Ψ] given by the constant function. (We will henceforth
abbreviate Path .A(M,N) as PathA(M,N).) A path can be applied at any dimension
term, which can be a dimension variable or one of the constants 0, 1.

Q ∈ Pathx.A(M,N) [Ψ] r ∈ Ψ ∪ {0, 1}
Q@r ∈ A〈r/x〉 [Ψ]

Extensionality principles for path equality follow straightforwardly from the fact
that all rules apply uniformly in the dimension context: a path of pairs has the form
of a pair of paths, a path of functions the form of a function of paths. More explicitly,
if we have functions F0, F1 ∈ (a:A)→ B that are path-equal pointwise, as witnessed
by a term H ∈ (a:A) → PathB(Fa,Ga), then by merely rearranging the order of
binders we obtain λIx.λa.Ha@x ∈ Path(a:A)→B(F,G).

2.1.1 Kan operations

In and of itself, the addition of the dimension context merely endows each type with
some kind of infinite-dimensional reflexive relation. To enforce that this is an equality
relation, cubical type theory requires each type to support two operations: coercion
and (homogeneous) composition. The former ensures that all constructions respect
path equality, while the latter is a higher-dimensional generalization of algebraic
laws such as symmetry and transitivity. These are inspired by the Kan condition of
algebraic topology [40], and are therefore known as (uniform) Kan operations.

Coercion, or coe, takes a term that inhabits one point on a line of types and
converts it into a term at any other point, as shown below. The second rule ensures
that transporting a term from one point to the same point is a no-op.

A type [Ψ, x] M ∈ A [Ψ]

coer sx.A (M) ∈ A〈r′/x〉 [Ψ]

A type [Ψ, x] M ∈ A [Ψ]

coer rx.A (M) = M ∈ A〈r/x〉 [Ψ]

These rules suffice to show that coe0 1
x.A (−) is an equivalence: a map that has a left

and a right inverse, where the inverse conditions hold up to path equality [62, §4.3].
In other words, any path of types x.A gives rise to an equivalence A〈0/x〉 ' A〈1/x〉.
Coercion computes by case analysis on x.A. For example, a coercion across a product
type turns into a product of coercions in the component types, as shown below.

coer sx.A×B(M) 7−→ 〈coer sx.A (fst(M)), coer sx.B (snd(M))〉
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The homogeneous composition operator, called hcom, adjusts the boundary of a
term by a collection of paths. This operation is used to explain how coe computes
when the type argument is a path type. To see why it is necessary, consider the case
of coe0 1

y.Pathx.A(M0,M1)
(−) where A does not depend on y; this function has the following

type.
Pathx.A(M0〈0/y〉,M1〈0/y〉)→ Pathx.A(M0〈1/y〉,M1〈1/y〉)

In words, it takes a path P and adjusts the endpoints of P by the two paths y.M0

and y.M1. Pictorially, we have the following.

x
y

· ·

· ·

P@x

M0 M1

coe0 1
y.Pathx.A(M0,M1)

(P )@x

Intuitively, the output of this operation should be “(λIy.M0)
−1 ·P · (λIy.M1)”, where

−1 is some kind of inversion of paths and · some kind of concatenation: to get from
M0〈1/y〉 to M1〈1/y〉, we follow M0 backwards, then P forwards, and finally M1

forwards. In order to define coercion at path type, every type must support this kind
of operation; the hcom operation is introduced for that purpose. Per the above, we get
symmetry and transitivity of paths as a special case. To begin with an example, the
solution to the “composition problem” described above is provided by the following
hcom term.

hcom0 1
A (P@x;x = 0 ↪→ y.M0, x = 1 ↪→ y.M1)

Here, the cap P@x, which has type A, is adjusted on its x = 0 and x = 1 faces
by the paths y.M0 and y.M1 (also of type A). Like coercion, composition is defined
by cases on the type A. In order to implement composition at path type, a further
generalization is necessary: hcom is permitted to take any number of adjustment faces

as arguments. The general operator is written as hcomr s
A (M ;

−−−−−−⇀
ξi ↪→ y.Ni), where each

ξi is an equation on dimension terms and y.Ni is its accompanying adjustment path.
These adjustments are required to agree where their respective equations overlap. I
refer to [5] for the typing rules for hcom; we will only need an intuitive understanding
of its function.

In addition to Path types, Angiuli et al. [5] define coercion and composition: for
all the standard type formers of Martin-Löf type theory: functions, products, basic
inductive types such as bool, and universes. In addition, it is possible to define a type
former (G in [15], Glue in [25], V in [5, 3]) which creates a path between two types from
an equivalence between them, providing an inverse to the path-to-equivalence map
provided by coercion. Cubical type theory therefore validates Voevodsky’s univalence
axiom [66], which asserts that the type PathU(A,B) of paths between elements A,B
of the universe U is equivalent to the type A ' B of equivalences between them. This
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is a powerful tool: it gives the programmer access to the fact that all constructions
in type theory are invariant under equivalence.

2.1.2 Constructivity and canonicity

Cubical type theory originally grew out of attempts to give a constructive seman-
tics for homotopy type theory (HoTT) [62], an axiomatic extension of Martin-Löf
type theory with the univalence axiom and certain higher inductive types (to be
discussed momentarily). Bezem, Coquand, and Huber gave the first candidate con-
structive model in the category of cubical sets [15].1 If one squints, this model can
be read type-theoretically as an extension of Martin-Löf type theory with substruc-
tural (specifically, affine) dimension variables. Later work shifted to using structural
dimension variables, which are simpler to present type-theoretically and appeared
necessary to treat higher inductive types. Cohen, Coquand, Huber, and Mörtberg
presented a cubical type theory with structural dimension terms carrying a De Mor-
gan algebra structure: minimum, maximum, and negation operations on the interval
[25]. This theory came with the first explicit proof of univalence in a constructive
model. Angiuli, Favonia, and Harper developed a second univalent cubical type
theory, this one based on structural dimension variables but without the additional
De Morgan structure [5]. I take the latter, known as cartesian cubical type theory, as
the basis of my proposal.

The constructivity of cubical type theory can be expressed—in one way, at least—
by the following canonicity theorem, here formulated in terms of a type of booleans.

Proposition. There is an algorithm that, for any closed M ∈ bool [Ψ], produces
evidence either that M = true ∈ bool [Ψ] or that M = false ∈ bool [Ψ].

In other words, any boolean term can be evaluated either to true or to false. In
proving boolean canonicity, one in fact establishes a collection of canonical forms of
each type: for bool, these are true and false, while for functions they are λ-abstractions,
and so on. Canonicity for the Cohen et al. theory was established by Huber [37]; in
the Angiuli et al. theory, it is built into the definitions of the types in the style of [50].

The approach of Angiuli et al. is to define the judgments of type theory—type
and term equality—in terms of computation, so that the closed elements of bool are
by definition those for which (in a certain sense) the canonicity property holds. This
computational semantics of the judgments can serve as a canonicity proof for any
collection of inference rules it models, as long as the equality of the formal system is
closed under reduction in the computation system.

The starting point for a computational semantics is an untyped programming
language, together with a specification of canonical types and canonical elements. In
cubical type theory, the main complication is that one must consider the canonical
values at each context Ψ of dimension variables. The specification of canonical types
and elements is given by the following data.

1That this model indeed validates univalence was later shown in [17]; whether it supports higher
inductive types remains unknown.
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Definition. A candidate cubical type system is a four-place relation τ(Ψ, V0, V1, ϕ)
ranging over dimension contexts Ψ, values V0, V1 with dimension variables limited to
Ψ, and binary relations ϕ which themselves range over values W0,W1 with variables
limited to Ψ.

We read an instance τ(Ψ, V0, V1, ϕ) of this relation as saying that V0 and V1 are
equal canonical types in context Ψ, and that the equal canonical values of these
types in context Ψ are given by the relation ϕ. Two terms A0, A1 (not necessarily
values) are said to be equal types when they “coherently evaluate” to equal canonical
types. In brief, this condition requires that not only that A0 and A1 evaluate to
equal canonical types, but that this property is preserved when that evaluation is
interleaved with dimension substitutions. Similarly, two terms in a type are equal
when they coherently evaluate to equal canonical elements of that type.

2.2 Higher inductive types

Higher inductive types, also originally introduced in the context of HoTT, play the
role of quotient types for the proof-relevant equality represented by paths. The central
idea is that generating equalities can be treated as higher-dimensional constructors of
an inductive definition. As a contrived example, consider a definition of the integers
that takes two copies of the natural numbers, one for positive and one for negative
integers, and identifies the negative and positive zero. In cubical type theory, such a
definition might be written in the following form.

data int where
| pos(n : nat) ∈ int
| neg(n : nat) ∈ int
| seg(x : I) ∈ int [x = 0 ↪→ neg(zero) | x = 1 ↪→ pos(zero)]

The equation between neg(zero) and pos(zero) is prescribed by a third constructor
seg, which takes a dimension variable x as a parameter. Unlike an ordinary con-
structor, the seg constructor also specifies a boundary : its x = 0 face is attached
to neg(zero) and its x = 1 face to pos(zero). We can visualize the resulting type as
shown below.

neg(2) neg(1) neg(0) ↓ x

pos(0) pos(1) pos(2)

seg(x)

This is the basic pattern of a higher inductive type used as an ordinary quotient.
That the type is inductively generated is expressed by an elimination principle, which
I will return to momentarily. Generalizing the situation above, we can write down a

8



general operator that quotients a type A by a binary relation R ∈ A × A → type as
a parameterized higher inductive type.

A : type, R : A→ A→ type ` data quo where
| pt(a : A) ∈ quo
| rel(a0 : A, a1 : A, u : R〈a0, a1〉, x : I) ∈ quo [x = 0 ↪→ pt(a0) | x = 1 ↪→ pt(a1)]

Here, we are constructing a path rel(a0, a1, u, i) between any pair of elements a0, a1 : A
for which there is some u : R〈a0, a1〉.

However, this apparently general example does not completely satisfy our desire
for quotients in the setting of proof-relevant equality. To see why, consider the follow-
ing common use case: quotienting a type by the total relation to make all its elements
indistinguishable. The type constructor 〈−〉 defined by 〈A〉 := quo(A, λ .unit), where
unit is the type with a single element ∗, would seem to serve this purpose. Consider,
however, the case of 〈bool〉. We can sketch this type as the following picture, where
arrows indicate paths created by the rel constructor.

pt(true) pt(false)

This type has non-trivial path structure; for example, one can prove that the left loop
λIx.rel(true, true, ∗, x) is distinct from the reflexive loop λIx.true. Although every
pair of zero-dimensional elements is connected by a path, this is not true for the
one-dimensional elements: we can prove (a, b:A) → Path〈A〉(pt(a), pt(b)), but not
(c, d:〈A〉)→ Path〈A〉(c, d).

To get the behavior we are after, a more sophisticated form of higher inductive
type is required2: one with a recursive path constructor. The following type operator
is called the truncation or (−1)-truncation [62, §3.7].

A : type ` data trunc where
| pt(a : A) ∈ trunc
| squash(c : trunc, d : trunc, x : I) ∈ trunc [x = 0 ↪→ c | x = 1 ↪→ d]

Unlike the rel constructor of the quotient type, which only creates paths between pt
terms, the squash constructor of the truncations adds a new path between any pair
of elements in the type being constructed. Because these constructors are uniform in
dimension context, they can themselves be applied to paths to identify them. It can
be shown that trunc(A) ' unit for any inhabited A, so this operator indeed “collapses”
a type’s structure.

As a more exotic example, consider the torus, a simple surface that appears in
algebraic topology. It is notable for us because it involves a two-dimensional or square

2Strictly speaking, this is not true: a type constructor with the desired properties can be encoded
with some difficulty using quo and a natural number type [46, 63]. But such encodings are inefficient
and satisfy fewer useful computation rules, and there are limits to their expressivity [48, §9].
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constructor. To describe it concisely, we borrow some convenient notation from the
redtt cubical proof assistant: we group faces with the same boundary together, and
use ∂[x1, . . . , xn] to stand for the set of faces {(xi = ε) | 1 ≤ i ≤ n, ε ∈ {0, 1}}.

data torus where
| base ∈ torus
| loopa(x : I) ∈ torus [∂[x] ↪→ base]
| loopb(y : I) ∈ torus [∂[y] ↪→ base]
| surf(x : I, y : I) ∈ torus [∂[x] ↪→ loopb(y), ∂[y] ↪→ loopa(x)]

This data declaration, which describes a cellular construction of the torus familiar to
topologists, can be visualized as follows.

x
y base base

base base

loopa(x)

loopb(y) loopb(y)

loopa(x)

surf(x, y)

These simple examples demonstrate the essential features desirable in a general
schema for higher inductive types: higher-dimensional constructors with specified
boundaries that can mention previously declared constructors as well as recursive ar-
guments. In the “ HoTT Book” [62], many more examples are presented—including
some based on indexed inductive and inductive-inductive types—but a general frame-
work is only given as a sketch (in §6.19). Nor are they included in Voevodsky’s initial
(non-constructive) model of univalent type theory in simplicial sets [43]. Only grad-
ually has the theory caught up with the variety of higher inductive types used in
the informal type theory of the HoTT Book and (via postulates) in formalization
projects [19, 8, 65].

Robert Harper and I have developed a schema for higher inductive types in (univa-
lent) cubical type theory and proven canonicity by way of a computational semantics
[20, 22]. We designed the schema to be fairly simple while including most examples in
common use, such as those described above. The schema also includes indexed induc-
tive types, which are non-trivial to implement in higher-dimensional type theory for
much the same reason that higher constructors are. In the remainder of this section,
I summarize our schema and its semantics. As part of my proposed work, which I
describe in Section 3.1, I plan to extend the theory with inductive-inductive types,
as well as more mundane features that we originally excluded for sake of expedience.

10



2.2.1 A schema for indexed higher inductive types

In this section, I summarize the schema and computational semantics that I developed
with Robert Harper in [22]. In short, a declaration of an indexed higher inductive
type takes the following form.

data X(∆) where
| · · ·
| intro`(γ : Γ, θ : Θ, x) ∈ X(I) [

−−−−−⇀
ξi ↪→ mi]

| · · ·

An indexed inductive type is a family of types that is simultaneously generated
by constructors that introduce terms at specific indices [29, 31]; here, the declared
family is indexed by a variable context ∆, and the constructor labelled ` constructs
an element at index I ∈ ∆ (which may depend on the arguments to the constructor).
Indices are distinct from the parameters shown before a turnstile ` in the above
examples; an inductive type is defined uniformly in its parameters, so we will leave
them implicit here.

The arguments to each constructor are divided into three groups: non-recursive
arguments, recursive arguments, and dimensions. The first of these is specified by
a context (i.e., a telescope) γ : Γ of ordinary types. The second is specified by an
argument context θ : Θ. This is a list of argument types a, which are drawn from a
small type theory on the following grammar.

a ::= X(I) | (a:A)→ a

In words, an argument type can either be some index of the family being defined, or
a function from some existing type into an argument type. This grammar enforces
the familiar strict positivity condition on the recursive arguments to an inductive
constructor. Finally, we have the novel list x of dimension arguments; a constructor
with n dimension arguments defines an n-cube in the type.

The major addition to the ordinary shape of an inductive declaration is the

list
−−−−−⇀
ξi ↪→ mi of boundary terms, which specify how a higher-dimensional construc-

tor should reduce when particular equations on its dimension arguments hold. Each
ξi is a constraint : an equation r = s, where r, s can each be a variable in x or one of
the constants 0, 1. Each constraint has a corresponding argument term, which may
mention the variables in γ and θ. Argument terms are the elements that inhabit
argument types and are drawn from the following grammar.

m ::= intro`(M,m, r) | hcomr s
I

(m;
−−−−−−⇀
ξi ↪→ x.m) | coer s

x.I
(m) | λa.m | mM

An argument term can thus be a constructor term (which must be declared before
the constructor being specified), a composition term in some index of the type being
defined, a coercion between indices, or a function abstraction or application. The
type theory of argument types and terms consists of two judgments ∆ � a atype [Ψ]
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and ∆�K; Θ ` m : a [Ψ] and their equational equivalents; both are parameterized by
indexing context ∆, while the argument terms are also parameterized by a telescope
K of the preceding constructor declarations and an argument context Θ.

Each inductive type declaration gives rise to a corresponding elimination principle.
As an example, the quotient type quo(A,R) will satisfy the following rule.

d : quo(A,R) ` C type [Ψ] M ∈ quo(A,R) [Ψ]
a : A ` P ∈ C[pt(a)/d] [Ψ] a0, a1 : A, u :Rab ` T ∈ C[rel(a0, a1, u, x)/d] [Ψ, x]

a0, a1 : A, u :Rab ` T 〈0/x〉 = P [a0/a] ∈ C[pt(a0)/d] [Ψ]
a0, a1 : A, u :Rab ` T 〈1/x〉 = P [a1/a] ∈ C[pt(a1)/d] [Ψ]

quo-elimd.C(M ; a.P , a.b.u.x.T ) ∈ C[M/d] [Ψ]

The first four premises resemble those of an ordinary inductive type: the eliminator
takes a motive d.C, a term M in the inductive type, and two cases a.P and a.b.u.x.T
explaining how to behave on pt and rel constructor values. The final two premises
ensure that the eliminator respects the equations imposed on the rel constructor by its
boundary conditions: the behavior of the eliminator applied to rel(a0, a1, u, 0) should
match its behavior on pt(a0), because the former reduces to the latter. The generation
of these boundary conditions is the most complicated component of the schema—it
requires describing the action of the eliminator on each form of boundary term—so I
refer to [20] for the general case.

2.2.2 Canonicity for higher inductive types

A central goal of our work is to give a computational interpretation of higher inductive
types, which for us means giving an operational semantics that realizes a canonicity
theorem. Recall that to prove canonicity for any particular type, it is necessary to
assign a collection of canonical values at every type. Thus, the central conceptual
problem is to determine the canonical values of an inductive type. For an ordinary
inductive type, this is fairly simple: the canonical values are the constructor terms.
However, the situation is more complicated for higher inductive types because of the
need to support the Kan operations.

Consider, for example, the case of the quotient quo(A,R). If we have four points
M,N,P,Q ∈ A which are related to each other by terms U ∈ R〈M,P 〉, V ∈ R〈M,N〉,
and W ∈ R〈N,Q〉, we can assemble the corresponding rel terms into the following
composition problem.

x
y pt(M) pt(N)

pt(P ) pt(Q)

rel(M,N, V, x)

rel(M,P, U, y) rel(N,Q,W, y)

12



By feeding the upper horseshoe into hcom at the inductive type, we obtain a term in
x connecting the bottom two pt terms. For canonicity to hold, this term must reduce
to a canonical value of the inductive type with the same boundary. Unless R happens
to be symmetric and transitive, however, there is no reason for a such a term to exist
among the constructor terms of quo(A,R).

Intuitively, an inductive type is generated not only by its constructor terms, but
also by the Kan operations. With this in mind, we declare the values of an inductive
type to consist not only of constructor terms but also composition values, that is, hcom
terms.3 A side effect of doing this is that we must explain how the eliminator for an
inductive type reduces when applied to a composition value. The solution, modulo
technicalities, is to send composition values in the inductive type to compositions in
the target type. Intuitively, the inductive type has a freely generated composition
structure, so to define into any other type with a composition structure, it suffices to
explain where to send the constructors.

By contrast, coercion in ordinary higher inductive types can be implemented with-
out introducing new values; in brief, a coercion applied to a constructor or composi-
tion value pushes inside its arguments. For indexed inductive types, however, coercion
values are required—even when the type has no higher constructors.

The simplest non-trivial example of an indexed inductive type is Martin-Löf’s
identity type. Given a type A, the identity type family IdA(−,−) is parameterized
by a pair of elements of A and has a single constructor which inhabits the reflexive
instances of the relation.

A : type ` data Id(a0 : A, a1 : A) where
| refl(a : A) ∈ Id(a, a)

To see why coercion values are necessary to implement this type in cubical type
theory, suppose we have a path P ∈ PathA(M,N). Using coercion, we can turn the
reflexive identification at M into an identification between M and N .

coe0 1
x.IdA(M,P@x)(refl(M)) ∈ IdA(M,N)

Unless M and N happen to be exactly equal, there is no constructor value to which
this coercion can reduce. Again, our solution is to introduce a kind of coercion value.
More specifically, we add values for coercion between the indices of the inductive
type.4

A type [Ψ] M0,M1 ∈ A [Ψ, x] P ∈ IdA(M0〈r/x〉,M1〈r/x〉) [Ψ]

fcoer sx.(M0,M1)
(P ) ∈ IdA(M0〈s/x〉,M1〈s/x〉) [Ψ]

3A simple restriction on the shape of compositions, introduced in [5, Definition 12], can ensure
that there are no composition values in an empty dimension context. Thus, for example, a zero-
dimensional computation of type int will always evaluate to a pos or neg term, never a composition.

4We cannot simply introduce values for all coercions, for predicativity reasons: to do so, we
would need to quantify over all type lines x.B such that B〈s/x〉 is an instance of the inductive type,
but such lines can be “larger” than the inductive type itself.
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The values of an indexed inductive type thus consist of constructor values, fcoe values,
and composition values (again necessary even without higher constructors, because
non-trivial composition problems can be formed using coercion values). It is then
possible to implement general coercion using a combination of fcoe values, composi-
tion values, and coercion in the input type A. As with composition values in ordinary
inductive types, the eliminator for an indexed inductive type takes coercion values to
coercions in the target type.

2.2.3 Related work

With regard to the design of schemata, the earliest work is by Basold, Geuvers, and
van der Weide [7] and Dybjer and Moeneclaey [33], who design formats for types with
1-dimensional and 2-dimensional constructors respectively. A more comprehensive
format is developed by Kaposi and Kovács [41]; it includes indexed and inductive-
inductive types as well as general n-dimensional constructors. (However, because
higher constructors are described as elements of iterated Martin-Löf identity types—
there is no native notion of “square”—reasoning with constructors above dimension
one rapidly becomes infeasibly complicated.) None of these address questions of
canonicity. Dybjer and Moeneclaey give a semantics for their theory in the groupoid
model of Hofmann and Streicher [35]. Kaposi, Kovács, and Altenkirch separately
develop a semantics for a schema in a setting with uniqueness of identity proofs (UIP),
the principle that any pair of paths are themselves connected by a path [42]. These
models exhibit 1- and 0-dimensional structure respectively; they are incompatible
with an infinite hierarchy of univalent universes.

The first systematic work on infinite-dimensional models of higher inductive types
is due to Lumsdaine and Shulman [48]. Their approach is purely semantic: rather
than giving a syntactic schema, they develop a semantic notion of cell monad for
simplicial model categories and show it can be used to interpret specific examples of
syntactically specified higher inductive types. Again, this work is not concerned with
constructivity, for which simplicial sets are known to be problematic [16]. Also, they
are unable to model universes closed under parameterized higher inductive types such
as the quotient or truncation.

To develop a univalent type theory with higher inductive types and a canonicity
property, cubical type theory is the most promising route. The initial papers by
Cohen et al. and Angiuli et al. include simple examples of higher inductive types,
but not a schema. More recently, Coquand, Huber, and Mörtberg have worked out
further examples in detail and sketched a schema, accompanied by a semantics in
cubical sets [30].

2.3 Internal parametricity

With a system for higher inductive types in place, we can begin to study their prop-
erties. This is not such a simple task; study of the spheres, a particular simple
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sequence of higher inductive types, forms the notoriously complex backbone of ho-
motopy theory. However, even some questions that are classically straightforward are
inordinately difficult to answer in higher-dimensional type theory, typically thanks
to a lack of recourse to an internal “strict” (i.e., proof-irrelevant) equality. As an
example, take the aforementioned smash product. The smash product − ∧ − is a
binary operator on pointed types A,B ∈ U∗ := (X:U)×X that can be defined in type
theory as a higher inductive type [62, §6.8]. While it is not difficult to prove that this
operator is commutative (up to equivalence of types), showing that it is associative
is a challenge. Showing that the commutator cX,Y ∈ X ∧ Y ' Y ∧X and associator
aX,Y,Z ∈ (X ∧ Y ) ∧ Z ' X ∧ (Y ∧ Z) interact appropriately is even more difficult
[64, 18].

The field of programming languages suggests a productive line of attack: para-
metricity. Originally developed by Reynolds [56], parametricity studies the uniformity
principles automatically satisfied by polymorphic functions expressible in type theory.
In brief, Reynolds’ abstraction theorem states that the set-theoretic denotation of any
polymorphic function in the simply-typed λ-calculus acts on relations. For example,
consider a term F ∈ X → X defined over a type variable X. Reynolds concludes
that for any two sets A,B, relation R ⊆ A × B, and elements (a, b) ∈ R, we have
(JF KA(a), JF KB(b)) ∈ R, where JF KC is the denotation of F when X is interpreted as
C. The content of the proof of Reynolds’ abstraction theorem is a construction of a
relational interpretation of simple type theory.

The uniformity principle provided by parametricity is quite powerful. For any
F ∈ X → X as above, we can use its action on relations to show that JF K = Jλa.aK:
F must be the polymorphic identity function. As a more interesting example, for
any F ∈ X × Y → X × Y , we can again show that JF K = Jλp.pK, which implies in
particular that any pair of functions X × Y � Y × X “automatically” constitutes
an isomorphism. For ordinary product types, it is straightforward enough to define
such an isomorphism directly; for the smash product, on the other hand, this kind of
principle could drastically simplify existing proofs.

Only recently has Reynolds’ work been extended to dependent type theory [13, 10,
45, 47, 6]. A notable change from the simply-typed setting is that, thanks to the ex-
pressivity of dependent types, the consequences of parametricity can be stated within
the dependent type theory under study. As shown by Bernardy, Jansson, and Pater-
son, one can define an (external) operator that generates a proof of the parametricity
property for a given type. The internalization process can go even further: Bernardy
and Moulin show how the operator computing the relational interpretation of a type
can be internalized as a type constructor [11, 14]. In further work, they simplify this
extended theory by use of a technique familiar to us: dimension variables. In fact,
the demands of internal parametricity are remarkably similar to those of univalence.
Univalence means in particular that all constructions act on equivalences, in the same
way that parametricity expresses that all constructions act on relations. Indeed, both
principles serve to make a uniformity property implicit in type theory available to the
programmer.
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Robert Harper and I have designed an internally parametric extension to cubical
type theory [21]. In Section 3.2, I propose to prove meta-theoretic results connecting
this theory to ordinary cubical type theory and to apply it to prove results in cubical
type theory such as those described above.

2.3.1 The structure of internally parametric type theory

I will present an outline of internal parametricity as an extension to cubical type
theory in particular, following my work with Robert Harper. Aside from the cubi-
cal additions and choice of notation, the theory presented in this section is due to
Bernardy et al. [14]. As in cubical type theory, the first move is to extend the ba-
sic judgments with a context of dimension variables Φ = (x1, . . . ,xn); we call these
bridge variables to distinguish from the existing path variable context Ψ, following
the terminology of Nuyts et al. [55].

A = B type [Φ | Ψ] M = N ∈ A [Φ | Ψ]

Where we think of a type A varying in a path dimension x as representing an equiv-
alence between its endpoints A〈0/x〉 and A〈1/x〉, we think of A varying in a bridge
dimension x as standing for a relation on A〈0/x〉 and A〈1/x〉. In contrast to the
path context, it is apparently essential that the bridge context behave substructurally.
This manifests in a restriction of substitution to fresh variables: we can only substi-
tute r for x in M when r is not a variable already occurring in M .

r ∈ Φ ∪ {0,1} M ∈ A [Φ\r,x | Ψ]

M〈r/x〉 ∈ A [Φ | Ψ]

In the above rule, Φ\r is the context obtained by removing r from Φ if it is a variable
(and doing nothing if r is 0 or 1). We will see in a moment why this restriction is
key. Just as path types internalize dependence on path variables, we introduce bridge
types to internalize dependence on variables.

A type [Φ,x | Ψ] P ∈ A [Φ,x | Ψ]

λ2x.P ∈ Bridgex.A(P 〈0/x〉, P 〈1/x〉) [Φ | Ψ]

These obey similar rules to those for path types, except that bridges can only be
applied at fresh variables.

r ∈ Φ ∪ {0,1} N ∈ Bridgex.A(M0,M1) [Φ\r | Ψ]

N@r ∈ A〈r/x〉 [Φ | Ψ]

The Bridge type former implements one direction of our desired correspondence be-
tween type lines and relations: given A type [Φ,x | Ψ], its associated relation is the
family a0 :A〈0/x〉, a1 :A〈1/x〉 ` Bridgex.A(a0, a1) type [Ψ]. Note that this is a type-
valued relation. Just as cubical type theory is a theory of proof-relevant equality, so
internally parametric type theory is a theory of proof-relevant relations.
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The substructurality of bridge variables comes into play when we consider bridges
at compound types. We expect these to match the definitions of the relational in-
terpretation in ordinary parametricity. For example, a bridge over a product type
x.A×B ought to correspond to a pair of bridges over x.A and x.B respectively.

Bridgex.A×B(M0,M1) ' Bridgex.A(fst(M0), fst(M1))× Bridgex.B(snd(M0), snd(M1))

The same principle holds in cubical type theory if we replace bridges with paths, and
we can prove it in the same way we would for paths. In the forward direction, we
send P to 〈λ2x.fst(P@x), λ2x.snd(P@x)〉; in the backward direction, we send Q to
λ2x.〈fst(Q)@x, snd(Q)@x〉. To reiterate, this “extensionality” principle follows from
the fact that the rules for product introduction and elimination apply in all dimension
contexts.

Function types, on the other hand, are more delicate. In the cubical type theory
I presented in Section 2.1, we have following principle when x does not occur in A.

Pathx.A→B(F0, F1) ' (a:A)→ Pathx.B(F0a, F1a)

This is what we want for paths: equality of functions is pointwise equality. Like
products, it is proven by shifting dimension binders past constructors: the function
from right to left takes H to λIx.λa.Ha@x. In this case, however, the argument does
not translate into a substructural type theory: in the expression λIx.λa.Ha@x, the
variable a is introduced when x is already in scope, so x is not fresh for Ha, and
therefore Ha@x is ill-formed in a substructural theory. This is a feature, not a bug:
for bridges, the principle we need is not the equivalence above but the following.

Bridgex.A→B(F0, F1)

'
(a0:A〈0/x〉)(a1:A〈1/x〉)→ Bridgex.A(a0, a1)→ Bridgex.B(F0a0, F1a1)

That is, a bridge over x.A → B ought to correspond to a function taking bridges
over x.A to bridges over x.B. In fact, it is precisely because bridge dimensions are
substructural that this principle holds. Intuitively, the idea is that we can take Q in
the latter type to “λ2x.λa.Q(a〈0/x〉)(a〈1/x〉)(λ2x.a)@x” in the former, capturing
the “occurrences” of x in a to extract a bridge over x.A and then applying Q to
obtain a bridge over x.B. The technical details are more involved—in particular, the
capture must be delayed until a suitably concrete term is substituted for a—but the
essential point is that variable capture only commutes with dimension substitution
when dimension variables are substructural.

2.3.2 The relativity principle

In the same way that univalence is the centerpiece of cubical type theory, so the
bedrock of parametric type theory is a characterization of bridges in the universe of
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Formation

r ∈ Φ ∪ {0,1} A,B type [Φ\r | Ψ] R ∈ A×B → U [Φ\r | Ψ]

Gelr(A,B,R) type [Φ | Ψ]

Gel0(A,B,R) = A Gel1(A,B,R) = B

Introduction

r ∈ Φ ∪ {0,1} M ∈ A [Φ\r | Ψ] N ∈ B [Φ\r | Ψ] P ∈ R〈M,N〉 [Φ\r | Ψ]

gelr(M,N,P ) ∈ Gelr(A,B,R) [Φ | Ψ]

gel0(M,N,P ) = M ∈ A gel1(M,N,P ) = N ∈ B

Elimination

Q ∈ Gelx(A,B,R) [Φ,x | Ψ]

ungel(x.Q) ∈ R〈Q〈0/x〉, Q〈1/x〉〉 [Φ | Ψ]

ungel(x.gelx(M,N,P )) = P ∈ R〈M,N〉

Q〈r/x〉 = gelx(Q〈0/x〉, Q〈1/x〉,x.ungel(x.Q)) ∈ Gelr(A,B,R)

Figure 1: Rules for Gel types. For notational simplicity, I have assumed that the
relation is “small” (U -valued); the general definition takes a :A, b :B ` R type [Φ | Ψ].

types. In keeping with our original intuition of bridges of types as standing for rela-
tions on their endpoints, the target is the following principle, which we call relativity.

BridgeU(A,B) ' A×B → U

More specifically, we want the map C 7→ Bridgex.C@x(−,−), which extracts a relation
from a bridge of types C ∈ BridgeU(A,B), to be an equivalence. To give an inverse, we
define a type former that takes a relation R on A and B and creates a bridge of types
between A and B. The rules for this type former, which we call Gel, are shown in
Figure 1. The introduction and elimination rules make it possible to convert evidence
for R〈M,N〉 into a bridge between M and N over x.Gelx(A,B,R) and vice-versa. The
situation parallels the G, Glue, and V types used by Bezem et al., Cohen et al., and
Angiuli et al. respectively to validate univalence in cubical type theory—particularly
the first, on account of the shared use of substructural dimensions.

The formation rule gives the candidate inverse map to C 7→ Bridgex.C@x(−,−);
the introduction and elimination rules show that Bridgex.Gelx(A,B,R)(M,N) ' R〈M,N〉
for any M ∈ A and N ∈ B, which establishes one of the inverse conditions that the
two maps must satisfy. A more elaborate argument establishes the opposite condition,
which states that Gelr(A,B,Bridgex.C@x(−,−)) ' C@r.
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Note that I have implicitly relied on univalence and function extensionality in the
above. For the first inverse condition, for example, what we actually need is a path
connecting Bridgex.Gelx(A,B,R)(−,−) and R in the type A×B → U . To construct such
a path, we need an understanding of paths in function types and the universe. In
the work of Bernardy, Coquand, and Moulin, which uses “ordinary” dependent type
theory where we use cubical type theory, such principles are not available. Instead,
the inverse conditions are satisfied by adding them as primitive definitional equalities.

Bridgex.Gelx(A,B,R)(M,N) = R〈M,N〉
Gelr(A,B,Bridgex.C@x(−,−)) = C@r

However, care must be taken to construct a model that validates these equations.
In place of the (Kan) presheaf model typical of cubical type theory, Bernardy et al.
introduce an ad-hoc notion of refined presheaf in order to ensure that they hold. By
contrast, adding relational structure to cubical type theory requires no such compli-
cation, a benefit of a base theory with a well-behaved internal equality.

2.3.3 Consequences of parametricity

Using Gel types, it is simple to establish basic theorems of parametricity, such as the
fact that all functions F ∈ (X:U)→ X → X are equal to the identity function. For
that example, we essentially follow the classical proof. For any such F , type X : U ,
and a : X, we define the following relation.

R := λ〈a′, 〉.PathX(a′, a) ∈ X × unit→ U

In words, a′ : X is related to u : unit when a′ is a. (In this case, we are essentially
defining a unary predicate rather than a relation.) We then introduce a fresh bridge
variable x and apply F at the Gel type corresponding to R in direction x.

F (Gelx(X, unit, R)) ∈ Gelx(X, unit, R)→ Gelx(X, unit, R)

We then apply the result to gelx(a, ∗, λI .a), the term of Gel type corresponding to
the fact that a : X and ∗ : unit are related by R.

F (Gelx(X, unit, R))(gelx(a, ∗, λI .a)) ∈ Gelx(X, unit, R)

Next, we use the eliminator for Gel to turn this element into a proof that its endpoints
stand in the relation R. Note that if we substitute 〈0/x〉 in the above, the Gel and
gel terms reduce to their first arguments, giving FXa; if we substitute 〈1/x〉, we get
F (unit)(∗).

ungel(x.F (Gelx(X, unit, R))(gelx(a, ∗, λI .a))) ∈ R〈FXa, F (unit)(∗)〉

By definition of R, this term has type PathX(FXa, a). As X : U and a : A were
arbitrary, we obtain a term of type Path(X:U)→X→X(F, λX.λa.a) by function exten-
sionality. From this, it is straightforward to establish that ((X:U)→ X → X) ' unit.
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Related consequences of parametricity follow by similar arguments; for example,
we can identify elements of (X:U) → X → (X → X) → X with natural numbers.
However, not all standard theorems appear to be true. This is thanks to the lack of
an identity extension lemma [56], which states that the relational interpretation of a
closed type is the equality relation on that type. In this setting, the corresponding
statement would say that Bridge .A(M,N) ' Path .A(M,N): when A is a constant
line, bridges over A are the same as paths over A. Such a property is typically
needed to prove parametricity theorems that involve some externally quantified type:
for example, that A ' (X:U) → (A → X) → X for all A : U . Luckily, Robert
Harper and I observe that one can internally isolate the types that satisfy it as a
sub-universe UBDisc of bridge-discrete types in U which is closed under the standard
type formers and even satisfies the relativity property [22, §10]. One can then show
that A ' (X:U)→ (A→ X)→ X for all A : UBDisc.

5

2.3.4 Related work

As I have already described, internal parametricity begins with Bernardy and Moulin
[11], and the system I have presented is largely similar to the cleaner system later
described by Bernardy, Coquand, and Moulin [14]. In [21], we extend the system
to accommodate cubical type theory and so inherit the benefits of that theory. In
particular, function extensionality is especially relevant for working with Church en-
codings. By relying on univalence rather than exact equations to prove relativity, we
avoid needing the technical device of refined presheaves in constructing a model.6

We also advance the understanding of theorem proving using internal parametric-
ity. We introduce the sub-universe of bridge-discrete types and show that it is closed
under various type-formers; for function types, this requires function extensionality,
while the argument for inductive types (shown for the special case of booleans) is
non-trivial and uses the relativity property. Using the fact that the booleans are
bridge-discrete, we observe that parametric cubical type theory refutes the law of the
excluded middle as formulated in [62, §3.4]. We also prove a simple representative
case of a parametricity theorem for a higher inductive type, showing that the type
(X:U) → susp(X) → susp(X) of polymorphic functions on the suspension [62, §6.5]
has exactly four elements.

In addition to the work of Bernardy et al., there is a second line of work by
Nuyts, Vezzosi, and Devriese which takes a different approach to internal parametric-
ity [55, 54]. Nuyts et al. introduce a system of modalities which distinguish between
ordinary (“continuous”) and parametric dependency on a variable. In brief, a term
is parametric in a variable when it takes bridges in that variable to paths. Types
and elements are checked under different modalities; where the work of Bernardy
et al. centers on the relational interpretation aspect of parametricity, this work thus

5Or that A ' (X:UBDisc)→ (A→ X)→ X for all A : UBDisc, for that matter.
6Our model is operational, while theirs is denotational, but one may essentially mechanically

translate between the two approaches.
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focuses on the distinction between uses of variables in type- and element-level po-
sitions. While Nuyts et al. do use dimension variables to represent bridges, their
variables are structural. The consequences of this choice are mitigated by asserting
the identity extension lemma for small types, but one result is that iterated para-
metricity—the use of parametricity to prove theorems about terms constructed using
parametricity—is impossible. Moreover, said assertion is axiomatic, so it is not clear
if a computational interpretation exists. In later work, Nuyts and Devriese recover
iterated parametricity, but only by extending from merely paths and bridges to an
infinite tower of increasingly coarse relations [54].

To combine internal parametricity and cubical type theory, it is essential that we
have a proof-relevant concept of relation. First of all, we cannot hope to get results
like those in Section 2.3.3 up to exact equality. For example, not every term of type
(X:U) → X → X is exactly equal to the identity function: λX.λa.coe0 1

.X (a) and
λX.λa.a are equal up to a path but not up to exact equality.7 Pathx.A(−,−) is a U -
valued relation, so if we want to construct paths using parametricity, we must work
with U -valued relations. Benton et al. [9], Ghani et al. [34], and Sojakova and Johann
[57] study proof-relevant parametricity from a semantic perspective, complementing
the syntactic parametricity of Bernardy et al. and Nuyts et al. In particular, Johann
and Sojakova [39] define a notion of infinite-dimensional parametric models of System
F using cubical categories.

3 Proposed Work

In the area of higher inductive types, I propose to flesh out the simple schema I
developed with Robert Harper in [22] in two ways:

• incorporating higher inductive-inductive types,

• designing a more expressive language for constructors and boundaries.

For cubical internal parametricity, I intend to put the theory defined in [21] to good
use. This program can be divided into two pieces:

• establishing a relationship between theorems proven in parametric and ordinary
cubical type theory,

• using parametric type theory to prove a useful result from cubical type theory
in a substantially simpler way.

Finally, I propose to complete the implementation of higher inductive types in the
experimental cubical proof assistant redtt [61] and to incorporate parametric cubical
type theory as an extension.

7The fact that coercion in a constant line of types is not exactly the identity function is known
as the failure of regularity. Early attempts at cubical type theory (e.g., [27]) required coercion to be
regular, but this is problematic for univalent universes; see [28, 59] for details.
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3.1 Extending higher inductive types

3.1.1 Higher inductive-inductive types

Introduced by Nordvall Forsberg and Setzer [52], inductive-inductive definitions allow
the simultaneous definition of an inductive type and an inductive family indexed by
that type. For example, given a type A ∈ U with an order O ∈ A → A → U , one
may define a type sorted ∈ U of sorted lists of elements of A together with a predicate
leq ∈ A→ sorted→ U that tests when a number is less than or equal to all elements
of a list [51, Example 3.2].

data sorted where
| nil ∈ sorted
| cons(a : A, s : sorted, p : leq(a, s)) ∈ sorted

and leq(a : A, s : sorted) where
| leqnil(a : A) ∈ leq(a, nil)
| leqcons(a : A, b : A, s : sorted, l : O(a, b), p : leq(b, s)) ∈ leq(a, cons(b, s, p))

Other classic examples include internal definitions of type theory as an inductive
type ctx ∈ U of contexts (generated by an empty context and context extension)
together with a family ty ∈ ctx → U of types in each context (generated by the
type formers) [51, Example 3.1]. Hugunin has shown by example that inductive-
inductive types can be encoded using indexed inductive types in cubical type theory
[38]. Note that constructing ordinary (i.e., non-higher) inductive-inductive types in
cubical type theory is already non-trivial; they raise the same issues as those described
in Section 2.2.2 for indexed inductive types.

In the “HoTT Book” [62], a higher inductive-inductive definition is used to for-
mulate a type of Cauchy reals, avoiding issues with choice raised by the standard
definition in a constructive setting. As the name suggests, this is simply an inductive-
inductive definition where constructors may introduce identities in addition to ele-
ments. More recently, Kaposi and Kovács have developed a schema for higher induc-
tive types that includes inductive-inductive definitions [41]. However, this work does
not address the problem of constructing instances of that schema. Kaposi, Kovács,
and Altenkirch have now shown how to construct higher inductive-inductive types in
a setting with UIP [42], but the non-truncated case remains open.

I intend to extend our schema to encompass inductive-inductive types and give
a computational interpretation. I conjecture that such an extension requires few
new insights. As far as design of the schema goes, the work of Kaposi and Kovács
provides a blueprint, which need only be adapted to the cubical setting. As to the
computational interpretation, Hugunin’s encoding suggests the issues with construct-
ing inductive-inductive types in cubical type theory are already raised with indexed
inductive types, which our schema presently includes.8 Moreover, it seems likely

8The likely existence of an encoding of higher inductive-inductive types as indexed higher in-

22



that the “higher” aspect of higher inductive-inductive types will be orthogonal to the
inductive-inductive aspect.

Time permitting, I also plan to investigate inductive-recursive types [32]. Where
an inductive-inductive type simultaneously defines a type inductively and a family
over that type inductively, an inductive-recursive type defines a type inductively and
a family over that type recursively. I am aware of no prior work on combining higher
inductive types with induction-recursion.

3.1.2 Constructor language

The schema we design in [22] is designed to cover most commonly-recognized higher
inductive types while being as simple as possible. The result is that there is plenty
of room for polish. Recall the grammars of argument types and elements from Sec-
tion 2.2.1.

a ::= X(I) | (a:A)→ a

m ::= intro`(M,m, r) | hcomr s
I

(m;
−−−−−−⇀
ξi ↪→ x.m) | λa.m | mM

The most glaring absence here, at least for those familiar with homotopy type the-
ory, is that of path types in the type being constructed. These could be used to define
higher truncations, the higher-dimensional generalizations of the (−1)-truncation type
trunc introduced in. For example, the 0-truncation could be defined as follows.

A : type ` data trunc0 where
| pt(a : A)
| squash(c : trunc0, d : trunc0, p : Pathtrunc0(c, d), q : Pathtrunc0(c, d), x : I, y : I)

[x = 0 ↪→ p@y | x = 1 ↪→ q@y | y = 0 ↪→ c | y = 1 ↪→ d]

Where the (−1)-truncation identifies every pair of points in a type, the 0-truncation
identifies every pair of paths. Intuitively, it trivializes the higher-dimensional structure
of A, leaving a “set” behind. While it is possible to define the 0-truncation indirectly
using the schema we present (by way of the so-called “hub-and-spokes” construction
[62, §6.7]), such an encoding is inefficient and more difficult to program with than
the one shown above.

A second issue is the inability to define argument terms by case analysis on (or-
dinary) terms of positive type. It is less clear that such an extension is practically
useful. However, it is of theoretical interest: it is used in Lumsdaine and Shulman’s
example of a higher inductive type not definable from pushouts [48, §9].

As with inductive-inductive types, these two extensions are already present in
the schema of Kaposi and Kovács and given a semantics in the presence of UIP by
Kaposi, Kovács, and Altenkirch, so the goal is to present a cubical version and give
a (computational) semantics in the presence of univalence.

ductive types does not obviate the value of a direct definition, as existing encodings are not at all
computationally efficient.
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3.2 Internal parametricity

3.2.1 Connecting parametric and ordinary type theory

Suppose we have a type A type [· | Ψ] which is well-formed in both ordinary and
parametric cubical type theory. It is highly unlikely that any proof of A in parametric
cubical type theory can be transformed into a proof in the ordinary fragment. For
example, I mentioned in Section 2.3.4 that the parametric theory refutes the law of
the excluded middle. Conversely, it is probable that the cubical set models of type
theory validate the excluded middle (assuming a classical metatheory), though to my
knowledge this is an open problem.9 Despite this, it should be possible to give a
transfer theorem for a restricted class of types A.

There are multiple levels on which we can pose the question: formal logics, com-
putational interpretations, or denotational models. Fix a formal type theory—a col-
lection of inference rules—consisting of the constructs of cubical and parametric type
theory as described in this proposal. Such a theory can be interpreted into the
computational interpretation described in [21]. One can mechanically translate this
construction into a denotational model in Kan presheaves (suitably formulated) on
the product of the cartesian cube category (for the path direction) and the BCH cube
category (for the bridge direction); I will construct this model explicitly in my thesis.
The theory and interpretations have ordinary cubical counterparts: formal cartesian
cubical type theory, its computational interpretation [5], and its model in cubical sets
[3]. Note that the formal cubical type theory is a fragment of the parametric theory,
so it also has an interpretation in the parametric models.

The following theorem, which gives one way of relating the parametric and cubical
models (denotational or computational), follows by straightforward inspection of the
interpretation functions.10

Proposition. Let Γ ` A type [· | Ψ] be derivable in the fragment of formal cubical
type theory without function types. If this type’s parametric interpretation is inhabited,
then its cubical interpretation is also inhabited.

The idea behind the proof is that in either the computational or denotational
interpretation, we can “truncate” a semantic parametric type to obtain a semantic
cubical type, remembering only its elements in an empty bridge variable context.
This truncation operation commutes with all of the cubical type formers except the
function type. The trouble with the semantics of functions is that they quantify
over future dimension substitutions (à la Kripke semantics), so that the semantics
of A → B in an empty bridge context depends on the semantics of A and B in
non-empty contexts.

9Kapulkin and Lumsdaine have verified that the law of the excluded middle holds in the simplicial
model of homotopy type theory [44]. One may see from their proof that the question is not entirely
trivial.

10For the computational version of the theorem, we assume that the cubical and parametric
interpretations are built on the same untyped programming language.
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We can also ask whether the theorem holds on the level of formal theories: if
Γ ` A type [· | Ψ] is as above and is inhabited in the parametric theory, is it also
inhabited in the cubical theory? The semantics results suggests that this may be
the case, and I plan to test that hypothesis. Theorems of this kind are sufficient to
transfer the results I will discuss in the following section to cubical type theory; they
do not concern higher order functions, so can be written as open sequents without
function types.

However, this still leaves us far from recovering the full power of external para-
metricity. For example, one may use external parametricity to show that any closed
term of type (X:U) → X → (X → X) → X in formal Martin-Löf type theory is
equal to λX.λz.λs.snz for some closed n ∈ nat (see, for example, [13]). This is like-
wise provable in parametric type theory, but the theorem above does not suffice to
transfer it to cubical type theory thanks to the presence of a higher order function.
I propose to push the boundaries of transferability, with the goal of matching the
power of external parametricity.

3.2.2 Applications

The central novelty in bringing parametricity to cubical type theory is that we can
prove uniformity properties of higher inductive types. I intend to realize this potential
using the smash product example discussed in the introduction.

The smash product is a binary operator on pointed types, types with a dis-
tinguished element. I write U∗ := (X:U) × X for the universe of pointed types,
|A| := fst(A) ∈ U for the underlying type of a pointed type, and pt(A) := snd(A) ∈ |A|
for its distinguished point. The smash product is a higher inductive type defined as
follows [64, Definition 4.3.6].

X : U∗, Y : U∗ ` data smash where
| smprod(a : |X|, b : |Y |) ∈ smash
| basel ∈ smash
| baser ∈ smash
| gluel(b : |Y |, x : I) ∈ smash [x = 0 ↪→ gluel(pt(X), b), x = 1 ↪→ basel]
| gluer(a : |X|, x : I) ∈ smash [x = 0 ↪→ gluer(a, pt(Y )), x = 1 ↪→ baser]

I will abbreviate smash(A,B) as A ∧ B. Intuitively, the smash product is a quo-
tient of the product |A| × |B| obtained by identifying elements of the form 〈pt(A), b〉
and 〈a, pt(B)〉 with the base-point 〈pt(A), pt(B)〉. It appears frequently in algebraic
topology, as it provides a (monoidal) product structure on pointed spaces which is
left adjoint to the internal hom functor (taking A,B to the space A →∗ B of base-
point-preserving functions between them). It also provides a means of relating the
higher-dimensional spheres to each other: Sm ∧ Sn = Sm+n.

However, as discussed previously, the basic algebraic properties of the smash
product—unit laws, commutativity, associativity, and coherences between these—
are difficult to establish, a fact which has prevented the complete formalization of
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multiple projects in synthetic homotopy theory [18, 64].11 This is the result of co-
herence problems arising from nested induction on elements of the smash product.
To define a map out of (X ∧ Y ) ∧ Z, for example, one must induct on both the in-
ner and outer product. Among the cases is, for example, that of gluer(gluer(a, y), x)
where a : |X| and x, y : I, a two-dimensional term which must be mapped to a
two-dimensional term in the target type. As soon as the lower-dimensional cases are
the least bit non-trivial, the higher-dimensional cases that relate them become quite
painful.12 Proving an equality between maps out of (X ∧ Y ) ∧ Z adds another layer
of dimensionality. So defining the associator α : (X ∧Y )∧Z → X ∧ (Y ∧Z) requires
proving with 2-dimensional terms, and proving it is an equivalence requires construct-
ing 3-dimensional terms. Then there is Mac Lane’s pentagon, which establishes that
the two different ways of re-associating a quaternary smash product are the same.

(X ∧ Y ) ∧ (Z ∧W )

((X ∧ Y ) ∧ Z) ∧W X ∧ (Y ∧ (Z ∧W ))

(X ∧ (Y ∧ Z)) ∧W X ∧ ((Y ∧ Z) ∧W )

αα

α∧W
α

X∧α

Proving this requires 4-dimensional terms! In fact, while they have been not been
required in formalization efforts thus far, there are infinitely many properties of in-
creasing dimensionality satisfied by the smash product (relating, for example, different
ways of combining uses of the pentagon).13

I contend that parametricity provides a path to discharging all these obligations
uniformly. Beyond the definitions of the commutator and associator and their candi-
date inverses, they can all be rephrased in terms of maps of the following form.

(X1, . . . , Xn:U∗)→
∧
i≤nXi →∗

∧
i≤nXi

For example, if we have an associator α : (X ∧Y )∧Z → X ∧ (Y ∧Z) and a candidate
inverse β : X ∧ (Y ∧ Z) → (X ∧ Y ) ∧ X, showing α is an equivalence amounts to
showing that β◦α and α◦β are identity maps. Once we know that α is an equivalence,

11These proofs are notably simpler in classical algebraic topology. In the classical definitions, the
gluel and gluer paths are replaced by strict equations, which are easier to work with than paths.
However, this definition does not a priori ensure that −∧− respects equivalences: it is not necessarily
homotopy invariant. In homotopy or cubical type theory, only homotopy invariant constructions are
possible (thanks to univalence), so an alternative definition is required. Two-level type theories
[67, 1, 5] aim to make strict equality available in higher-dimensional type theory. However, it is not
possible in existing theories to establish internally that a type is homotopy invariant.

12For a concrete demonstration of this phenomenon, one may see pointed.smash in the redtt

library [61].
13It is not currently clear whether the full spectrum of conditions can even be formulated in type

theory, but see Stay [58, §4] for the next level of coherences.
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the pentagon can be read as expressing that the round-trip around its perimeter is
the identity. I therefore propose to prove the following conjecture.

Conjecture. In parametric cubical type theory, for any n : nat, any term of type

(X1, . . . , Xn:U∗)→
∧
i≤nXi →∗

∧
i≤nXi

(where both products are associated in the same way) is either the polymorphic con-
stant pointed function (sending everything to the basepoint) or the polymorphic iden-
tity function.

Crucially, I conjecture that this can be proven uniformly in n. This means that
it takes the same amount of effort to prove that the commutator and associator are
equivalences, that the pentagon commutes, or that to verify any higher coherence
condition one can cook up.

For example, we can say that β ◦α : (X ∧Y )∧Z → (X ∧Y )∧Z above is either a
constant function or the identity (uniformly in X, Y, Z). To determine which is true
is a matter of computation. The type of booleans is a unit for the smash product
(this is not so hard to verify), so if we instantiate each type variable with bool, we
get the following map.

bool (bool ∧ bool) ∧ bool (bool ∧ bool) ∧ bool bool∼ β◦α ∼

By applying this map to true and false and evaluating it (which is completely mechan-
ical, as we are working in a system with a canonicity property), we can determine
whether it is the identity or constant, which then determines the behavior of β ◦ α
for every X, Y, Z!

In addition to this specific example, I propose to seek out other applications
of internal parametricity to the practice of cubical type theory; particularly in the
area of synthetic homotopy theory, where higher inductive types are most liberally
employed. Candidate applications include proving properties of the join [62, §6.8], a
related binary operator.

3.3 Implementation

I propose to implement my extensions to cubical type theory as part of redtt, an
experimental proof assistant for cubical type theory currently under development [61].

Where higher inductive types are concerned, redtt supports a fragment of the
schema presented in [22]: it lacks indexed higher inductive types and recursive argu-
ments of function type (generalized inductive types in Dybjer’s terminology [31]). I
will extend redtt to accommodate the full schema from [22] as well as the additions
I proposed in Section 3.1.

I also propose to develop an extension to redtt for iterated parametricity. This
is a more ambitious task, because it requires dealing with substructural variables.
The judgmental apparatus used to manage apartness in my work with Robert Harper
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is based on that of Cheney’s nominal dependent type theory [23]; that work has
not been implemented to my knowledge, but does describe a method of algorithmic
type-checking. However, it is not clear whether the additional demands of dimension
variables (principally, the presence of constants 0 and 1) complicates the story. The
cubical type-checker [24] is also related, but it is a type-checker for (some variation
of) homotopy type theory combined with an interpretation into a cubical semantic
domain, rather than a type-checker for a cubical type theory per se.

3.4 Timeline

Jul–Aug 2019 Develop an expanded schema for higher inductive types, including
in particular inductive-inductive types.

Sept–Nov 2019 Establish connections between internally parametric and ordinary
type theory, first on the semantic and then on the syntactic level.

Dec 2019–Feb 2020 Extend the redtt implementation with the expanded higher
inductive type schema and with internal parametricity, giving priority to the latter.
Use the implementation to explore applications of internal parametricity.

March–May 2020 Write thesis.
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