
January 2, 2019

DRAFT

Verifying Concurrent Randomized
Algorithms

Joseph Tassaro�i

January 2, 2019

School of Computer Science

Carnegie Mellon University

Pi�sburgh, PA 15213

�esis Committee:
Robert Harper (Chair)

Jan Ho�mann

Jeremy Avigad

Derek Dreyer (MPI-SWS)

Submi�ed in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2018 Joseph Tassaro�i

�is research was conducted with U.S. Government support under and awarded by DoD, Air Force O�ce of Scien-

ti�c Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Additional

support was provided by a gi� from Oracle Labs. Any opinions, �ndings and conclusions or recommendations

expressed in this material are those of the author and do not necessarily re�ect the views of these organizations.

January 2, 2019

DRAFT

Keywords: concurrency, program logics, separation logic, randomized algorithms, veri�-

cation

January 2, 2019

DRAFT

For my grandparents.

January 2, 2019

DRAFT

iv

January 2, 2019

DRAFT

Abstract

Concurrency and randomization are di�cult to use correctly when program-

ming. Because programs that use them no longer behave deterministically, pro-

grammers must take into account the set of all possible interactions and random

choices that may occur. �is dissertation describes a logic for reasoning about

programs using both of these e�ects. �e logic extends a recent concurrent sep-

aration logic with ideas from denotational semantics for probabilistic and non-

deterministic choice, along with principles for probabilistic relational reasoning

originally developed for sequential programs. �e resulting logic is used to verify

probabilistic behaviors of a randomized concurrent counter algorithm and a two-

level concurrent skip list. �e soundness of the logic, as well as the proofs of these

examples, have been mechanized in Coq.

January 2, 2019

DRAFT

vi

January 2, 2019

DRAFT

Acknowledgments

I have been very fortunate to have had many excellent mentors and colleagues.

When I re-read what is wri�en in this dissertation, I can see how the things I have

learned from these people have shaped my work. I hope that if they read this, they

too will see these connections.

I start by thanking my advisor, Robert Harper. Early on, Bob told me that his

style as an advisor was to suggest interesting ideas to his students, and then let

them pursue what they found most compelling. In my own case, I became very

interested in two topics which Bob and I o�en discussed over the years: reasoning

about programs with “benign e�ects” and the cost semantics of parallel languages.

Randomization is an e�ect that can o�en be used in benign ways, and is used in

many e�cient implementations of parallel languages. �ose implementations are

also concurrent, by necessity. Interest in these two topics then led to the work

described in this dissertation. But even though I can trace the origins of my interest

in this topic to conversations Bob and I had very early in my PhD, the path I took

to get there was circuitous. I am extremely grateful that along the way, Bob was

always interested in and open to what I wanted to work on at the moment. It is

hard not to be inspired by his genuine passion for the �eld, and I have learned so

much from him over the years.

At some point in my �rst year, I asked Bob what I ought to do over the summer.

He said that I should try to do an internship with Derek Dreyer. �at turned out to

have been an excellent suggestion. Working with Derek, I learned the fundamentals

of many of the techniques that are used in this dissertation. He devoted a lot of time

to working with me, not just that summer, but also a�er I went back to Pi�sburgh

and ever since. I am very grateful for his mentorship.

Jan Ho�mann came to CMU during my third year as a student, and has been

an invaluable resource. Listening to talks about his work and reading his papers

carefully inspired some of the core ideas for the logic described herein. He has very

patiently discussed these ideas with me on many occasions.

As an undergraduate, I was fascinated by the formalization projects that Jeremy

Avigad had worked on, and so when I arrived at CMU I asked if he would meet with

me to talk about some of that work. He agreed, and he turned out to be as kind and

approachable as I had heard. I am very pleased that he has agreed to be on my

thesis commi�ee.

I have learned a lot from the rest of the CMU faculty. Karl Crary gave inspira-

tional lectures about parametricity in a course I took my �rst year, and introduced

me to a useful perspective on programming languages for concurrency. Frank Pfen-

ning’s talks and lecture notes are models of pedagogy and present a beautiful per-

spective on logic. Stephen Brookes helped me understand some �ner points about

concurrent separation logic and was very encouraging when I presented my early

work.

January 2, 2019

DRAFT

Viktor Vafeiadis, who co-advised me during my internship at MPI-SWS, taught

me a great deal about concurrent separation logic and the many subtleties involved

in reasoning about concurrent systems. His paper on operational soundness proofs

for concurrent separation logic made many things clear to me for the �rst time.

Greg Morrise� got me started on research when I was an undergraduate, and I

learned a lot from him in lectures, seminars, and informal conversations. It is hard

to imagine a be�er undergraduate advisor. I thank him and Gang Tan for le�ing

me work with them on the RockSalt project. During my time as an undergraduate,

I also learned an immense amount in courses taught by Margo Seltzer and Stephen

Chong.

Jean-Baptiste Tristan has taught me so much over the seven years I have known

him. A recurring theme is that Jean-Baptiste will tell me about some topic he’s

started to learn about, and before I know it I am deeply fascinated by the subject and

reading papers about it. �is has happened so o�en that he promised not to talk to

me about computer science for the last few months I was writing this dissertation so

that I would not get distracted from �nishing it. I thank him for teaching me about

approximate counting algorithms, and suggesting them as an example to consider

in this dissertation. He has been an excellent collaborator, and has looked out for

my career and given me advice at many crucial times.

Before starting graduate school, I did a very pleasant internship at Oracle Labs

in Burlington. I thank Guy Steele and Victor Luchangco, along with the rest of

the lab, for many conversations that guided my thinking about parallelism and

concurrency. I was lucky to be able to do my internship at the same time as Daniel

Huang. Michael Wick arrived at Oracle a�er I le� but subsequently became a valued

collaborator.

My dissertation depends enormously on the Iris project, and I thank all of the

people who have contributed to that project. Ralf Jung and Robbert Krebbers de-

serve particular thanks for many conversations about Iris and related ideas. I am

also grateful to Robbert for suggesting to me the possibility of modifying the Iris

adequacy proof along the lines worked out in Chapter 4 of this dissertation.

Lars Birkedal’s research has had a large in�uence on much of my work. I am

appreciative of the interest he has shown in my ideas over the years, which was

very encouraging to me at important times.

I thank Justin Hsu for explaining to me the work that he and his collaborators

have done on probabilistic program logics. As will be clear, my dissertation owes

much to the ideas they have developed. Justin also gave me helpful feedback on

dra�s of papers about the work that became this dissertation.

I am very grateful to the administrative support sta� in the Computer Science

Department at CMU for their help over the years. In particular, it is hard to imag-

ine how the graduate program could run without Deb Cavlovich, whose prompt

answers to my many questions and gentle reminders about various deadlines were

invaluable. Ben Cook similarly helped me navigate and deal with many university

policies and procedures.

viii

January 2, 2019

DRAFT

I’ve learned a lot from students and post-docs at CMU. Among them, Carlo

Angiuli, Jon Sterling, Daniel Gratzer, Adrien Gua�o, Favonia, Ed Morehouse, and

Michael Sullivan deserve special thanks for many conversations about both the

technical and philosophical aspects of our �eld.

My family has always supported me, and I thank them for their love. It goes

without saying that I would not be where I am today without them. My parents did

so much for my education and have encouraged me to pursue my interests.

Finally, I thank Mari Tanaka for always being there, even as she pursued her

own incredibly challenging education and career. Her hard work has been inspira-

tional to me over the years. I am so lucky to have her love, friendship, and support.

ix

January 2, 2019

DRAFT

x

January 2, 2019

DRAFT

Note

�is document contains text and �gures from a revised version of [114], which

is a manuscript currently under review. I have used LATEX macros from [116] to

typeset proof rules and examples.

January 2, 2019

DRAFT

xii

January 2, 2019

DRAFT

Contents

1 Introduction 1
1.1 Concurrent Randomized Algorithms . 2

1.1.1 Binary Search Trees . 3

1.1.2 Approximate Counters . 4

1.1.3 Skiplists . 7

1.2 Related Work on Program Logics . 9

1.2.1 Hoare Logic . 10

1.2.2 Separation Logic . 11

1.2.3 Concurrency Logics . 13

1.2.4 Probabilistic Logics . 15

1.2.5 Combinations . 17

1.2.6 Alternatives . 17

1.3 Design Choices and Outline . 19

1.4 Veri�cation and Foundations . 22

2 Monadic Representation 25
2.1 Background . 25

2.1.1 Non-deterministic Choice . 26

2.1.2 Probabilistic Choice . 26

2.1.3 Obstructions to Combination . 26

2.2 Indexed Valuations . 27

2.3 Expected Values . 31

2.4 Analogues of Classical Inequalities . 35

2.4.1 Markov’s Inequality . 36

2.4.2 Chebyshev’s Inequality . 36

2.5 Couplings . 37

2.6 Alternatives . 39

3 Iris: A Brief Tutorial 41
3.1 Concurrent ML-like Language . 41

3.2 Resource Algebras . 42

3.3 Basic Propositions and Semantic Entailment . 46

3.4 Weakest Preconditions . 50

3.5 Invariants and Updates for Concurrency . 54

xiii

January 2, 2019

DRAFT

3.6 Style of Wri�en Proofs . 64

4 Iris: Generic Framework and Soundness 67
4.1 Generic Program Logic . 67

4.1.1 Program Semantics . 67

4.1.2 Weakest Precondition . 68

4.1.3 Li�ing Lemmas . 70

4.2 Adequacy . 71

4.3 Instantiation . 73

5 Polaris: Extending Iris with Probabilistic Relational Reasoning 75
5.1 Program Semantics . 75

5.1.1 Probabilistic Transitions . 75

5.1.2 Indexed Valuation Semantics . 77

5.1.3 Randomization for the ML-Like Language 78

5.2 Probabilistic Rules . 79

5.2.1 Rules for the ML-Like Language . 80

5.2.2 Li�ing Lemmas . 80

5.3 Adequacy . 82

6 Examples 89
6.1 Approximate Counter . 89

6.1.1 Speci�cation and Example Client . 89

6.1.2 Counter Resources . 92

6.1.3 Proofs of Speci�cation . 93

6.1.4 Variations . 95

6.2 Concurrent Skip List . 97

6.2.1 Monadic Model . 98

6.2.2 Weakest Precondition Speci�cations and Proof Overview 102

7 Conclusion 105
7.1 Summary . 105

7.2 Comparison with Related Work . 105

7.3 Future Work . 108

7.3.1 Instantiation with Other Languages . 108

7.3.2 Alternative Monads . 108

7.3.3 Termination . 109

7.3.4 Stronger Speci�cations . 110

Bibliography 113

xiv

January 2, 2019

DRAFT

List of Figures

1.1 Approximate counting algorithms . 5

1.2 Diagram for 2-level concurrent skip list . 9

2.1 Equational laws for MN ◦MI monad . 31

2.2 Monadic encoding of approximate counter algorithm 31

2.3 Rules for calculating expected values . 32

2.4 Rules for calculating extrema of expected values 33

2.5 Rules for the ≡p relation on indexed valuations 34

2.6 Rules for ⊆p relation . 35

2.7 Rules for constructing non-deterministic couplings 39

3.1 ML-like Language . 43

3.2 Rules for intuitionistic connectives . 48

3.3 Rules for spatial connectives . 49

3.4 Rules for later modality . 49

3.5 Rules for ownership . 50

3.6 Rules for � modality . 51

3.7 Generic structural weakest precondition rules 52

3.8 Speci�c weakest precondition rules for the ML-like language 53

3.9 Rules for invariants and |V modality . 57

3.10 Timeless assertions . 58

4.1 Input syntactic categories and judgments of generic concurrent language 68

4.2 Rules for |V.V compound modality . 70

4.3 Selection of generic weakest precondition rules 71

5.1 Syntax and semantics of generic probabilistic concurrent language 76

6.1 Approximate counter code and monadic model 90

6.2 Speci�cation for approximate counters . 90

6.3 Example client using approximate counters . 91

6.4 Counter resource rules . 92

6.5 Invariants and de�nitions for proof . 93

6.6 Counter variant without a maximum increment size 98

6.7 Speci�cation for skip list . 103

xv

January 2, 2019

DRAFT

xvi

January 2, 2019

DRAFT

Chapter 1

Introduction

Mechanized program veri�cation has advanced considerably in recent decades. For experienced

users of interactive theorem provers, verifying the correctness of purely functional programs

is o�en not much harder than doing a thorough pencil-and-paper proof. In part, this is because

the semantics of purely functional languages are so well-behaved that there is li�le or no gap

between programs wri�en in them and the idealized pseudo-code that a textbook or paper

might use to describe an algorithm.

However, when programs use e�ects, the situation changes. In some sense, this is to be ex-

pected: e�ects can make it more di�cult to understand and informally reason about programs,

so it is not surprising that they also make formal veri�cation more challenging. But in addition,

the gap between common informal reasoning principles and the formal semantics of these lan-

guages grows in the presence of e�ects. For instance, for pointer manipulating programs, one

wants to employ local reasoning when manipulating distinct parts of a data structure: making

a change to one piece of a structure does not a�ect other parts. However, working “directly”

from the operational semantics in a theorem prover, one would need to constantly re-iterate

that certain pointers are non-aliasing to make this reasoning precise. Similarly, in the concur-

rent se�ing, one o�en thinks of a lock as “protecting” a certain part of the heap, so that when

the lock is held, another thread cannot be manipulating the protected region. But in many pro-

gramming languages, there is no actual concrete association between a lock and parts of the

heap. �e lock is merely a bit, and it is a convention upheld by the programmer that a given

part of the heap will not be accessed without �rst acquiring the lock.

To address this gap, a long standing research tradition has focused on developing logics

and methodologies to make reasoning about e�ectful programs easier. In the best of cases,

these logics codify informal reasoning principles into formal rules. Sometimes, these logics

also provide support for relational or re�nement reasoning: to understand a complex program,

we �rst prove a correspondence between its behavior and that of some simpler program. �en,

we can analyze or verify properties of this simpler program and draw conclusions about the

original program.

One of the most well known examples of a logic developed for reasoning about e�ectful

programs is separation logic [103], developed by Reynolds, O’Hearn, Ishtiaq, Yang, and Pym.

�e idea of separation logic was to introduce a new connective P ∗ Q, called separating con-

junction, which expressed that the program state could be divided up into two separate pieces,

1

January 2, 2019

DRAFT

one satisfying the assertion P and the other satisfying Q. �is logic thus formalized the princi-

ple mentioned above about reasoning locally about pieces of code that operate on disjoint parts

of program state. Yang [129] subsequently extended separation logic to support relational rea-

soning, making it possible to re-use the idea of separation while establishing a relation between

two programs. O’Hearn [94] and Brookes [26] later showed that separation logic could be nat-

urally used to reason about concurrent programs, by formalizing principles like the notion of

a lock protecting or “owning” a region of the heap.

Subsequent work has extended these logics in various ways, providing new support for

reasoning about concurrent algorithms. However, a common criticism [96] of much of the

research in this area is that to reason about some clever use of concurrency, one o�en seems to

need to extend the logic with a new feature or rule. In response to this criticism, recent research

has tried to unify many previous concurrency logics. Jung et al. [64] argue convincingly that

many features developed for reasoning about concurrency can be encoded in a logic built on

simpler foundations.

But of course, there are e�ects other than state and concurrency. One of the most impor-

tant is randomization (probabilistic choice). In a separate line of work, various extensions to

Hoare logic and Dijkstra’s weakest precondition calculus have been developed for randomized

imperative programs [10, 13, 71, 86].

What do we do if we want to reason about programs that use both concurrency and ran-

domization? In this document I describe a program logic called Polaris that I have developed

which has support for reasoning about programs using both of these e�ects. �e design of this

logic, and the scienti�c conclusion of this dissertation, are summarized in the following thesis:

Separation logic, extended with support for probabilistic relational reasoning, pro-

vides a foundation for the veri�cation of concurrent randomized programs.

By “veri�cation”, I mean proving both functional correctness and complexity bounds. In the

rest of this introduction, I provide the background needed to understand this claim. First, I will

describe several examples of concurrent algorithms that use randomization. Next, I will survey

related work on program logics, explaining in more detail the ideas behind the logics alluded

to above. Having done so, I will motivate the design of the logic described herein.

1.1 Concurrent Randomized Algorithms
In this section, I discuss three concurrent algorithms and data structures which either use ran-

domization directly, or whose analysis in the “average case” involves the consideration of ran-

domness. �e purpose is not to give the full details of these algorithms or their analyses, but

simply to suggest the kinds of issues that come up when concurrency is combined with ran-

domness.

In the examples that follow, concurrency and randomization interact directly: either the

concurrent interactions between threads depend on earlier random choices they make, or the

e�ects of their random choices are perturbed by concurrent interaction. �is distinguishes them

from a simpler way in which concurrency and randomized algorithms can be combined: In a

certain sense, if we take any randomized sequential algorithm, and use it in a se�ing where

2

January 2, 2019

DRAFT

there are multiple interacting threads, we suddenly have to reason about both concurrency and

randomness. For example, we can modify imperative randomized �icksort so that it forks a

new thread a�er the partitioning step to help sort one of the two sublists.

However, in this case, the threads do not really interact, because they operate on disjoint

sublists, so their random choices do not a�ect one another
1
. �us, analyzing the total number

of comparisons performed by all threads is not considerably more complicated than the usual

sequential analysis. �at is not to say that formally proving this is simple, but in the examples

that follow, there is a more fundamental interaction between concurrency and randomness.

1.1.1 Binary Search Trees
Binary search trees are a very old and well-studied data structure in computer science. �e

height of a tree, which is the number of edges in the longest path from the root to a leaf, is

related to the worst case time to �nd an element in the tree. If n items are successively inserted

into an empty tree using the traditional algorithm, then it is possible for the resulting tree to

have height n− 1. In this case, the tree is unbalanced, and searching in such a tree is no be�er

than linearly searching through a list. For that reason, a variety of algorithms for self-balancing
trees have been developed that try to maintain a height of O(log n) by doing extra work to

re-balance the tree when items are inserted.

However, even with the classical binary search tree, most insertion orders do not lead to

this worst case height of n− 1. If we insert a set X of n elements, where the insertion order is

given by a random permutation on X , each equally likely, then in expectation the height of the

tree is O(log n). In spite of this, self-balancing binary tree algorithms are o�en still preferred

in non-concurrent applications because they are guaranteed to avoid the worst case behavior
2
.

However, in the concurrent se�ing the trade-o�s are not so clear. Self-balancing algorithms

generally need to acquire a lock while re-balancing the tree, which can prevent other threads

from searching. Ellen et al. [38] proposed a non-blocking concurrent binary tree algorithm

that used atomic compare-and-swap (CAS) instructions instead of locks, but did not perform

rebalancing. Since then, a number of other non-balancing concurrent binary trees have been

proposed [5, 91]. Depending on the number of threads and the work-load, non-balancing trees

can perform be�er than balancing ones [5].

�is raises new interest in properties of non-balancing binary search trees. However, as

Aspnes and Ruppert [6] point out, the prior analysis of random binary search trees in the se-

quential se�ing does not necessarily carry over to the concurrent se�ing. Imagine a simpli�ed

scenario in which c threads are concurrently trying to insert items from some queue into a

tree which is protected by a global lock. To do an insertion, a thread �rst acquires this lock,

performs the usual insertion algorithm, and releases the lock. A�er completing an insertion,

a thread gets the next item from the queue and tries to insert it. �e threads stop once all the

items from the queue have been inserted.

1
In a sense, this is because the underlying algorithm is really data parallel, but when expressed in many lan-

guages the fact that there is no interaction is something that must be proven, rather than an immediate conse-

quence of the semantics of the language.

2
Another issue is that the above results about tree height do not hold under repeated deletions and insertions

of additional elements using standard algorithms [62, 69].

3

January 2, 2019

DRAFT

�e problem is that the order in which items are actually inserted into the tree is not nec-

essarily the same as the order they appear in the queue. In particular, the order of insertions

will depend on the order that the threads actually acquire the lock, which is subject to various

e�ects that are di�cult to model.

Aspnes and Ruppert [6] therefore propose an adversarial model: imagine there is a scheduler

which can compare the nodes each thread is trying to insert, and then gets to choose which

thread goes next, with the goal of maximizing the average depth of nodes in the tree
3
. �ey

show that the expected average depth is O(c+ log n). Of course in reality, the scheduler is not

actually trying to maximize the average depth, but the point is to do the analysis under very

conservative assumptions.

In their analysis, Aspnes and Ruppert [6] do not consider the actual code or algorithms for

concurrent binary trees, but rather phrase the problem as a kind of game involving numbered

cards, where the number of threads c corresponds to the number of cards in the hand of the

player. �is abstraction lets them focus on the relevant probabilistic aspects of the problem

without considering the concrete details of these algorithms. As we will see in the rest of this

section, the process of abstracting away from the concurrent code to a more mathematical

model is very common in the analysis of concurrent randomized algorithms.

1.1.2 Approximate Counters
Approximate counters are another algorithm with renewed relevance in large scale concurrent

systems. �ey were originally proposed by Morris [87] as a way to count a large number of

events in a memory constrained se�ing. Usually, to count up to n with a standard counter, one

needs log2 n bits. Morris’s idea was that rather than storing the current count k, one could store

blog2 kc. �en, one can count up to n using only log2 log2 n bits, at the cost of some inaccuracy

due to round-o�.

�e di�culty is that because one is only storing a rounded-o� approximation of the current

count, when we perform an increment it is not clear what the new value of the counter should

be. Morris proposed a randomized strategy for doing increments. �e code for this increment

routine is shown in Figure 1.1a, wri�en in an ML-like pseudo code. �e command flip(p) re-

turns True with probability p and False otherwise. If the current value stored is x, then with

probability
1
2x

an increment updates the value to x + 1 (in e�ect, doubling our estimate of the

count) and with probability 1 − 1
2x

leaves the value at x. If the counter is initialized with a

value of 0, and Cn is the random variable giving the value stored in the counter a�er n calls

of the increment function, then E[2Cn] = n + 1. Hence we can estimate the actual number of

increments from the approximate value stored in the counter. Morris proposed a generalization

with a parameter that could be tuned to adjust the variance of 2Cn at the cost of being able to

store a smaller maximum count. Flajolet [41] gave a very detailed analysis of the distribution

of Cn, in which he �rst observed that the value stored in the counter can be described as a

very simple Markov chain, which he then proceeded to analyze using techniques from analytic

combinatorics [42].

Morris’s counters may seem relatively unimportant today when even cell phones commonly

3
�e depth of a node is the number of edges from the root to the node.

4

January 2, 2019

DRAFT

incr l ,

let k = !l in

let b = flip(1/2k) in

if b then l := k + 1

else ()

read l , let k = !l in 2k − 1

(a) Sequential approximate counter.

incr l ,

let k = min(!l,MAX) in

let b = flip(1/(k + 1)) in

if b then (FAA(l, k + 1); ())

else ()

read l , !l

(c) An unbiased concurrent counter.

incr l ,

let b = randbits(64) in

incr aux l b

incr aux l b ,

let k = !l in

if lsbZero(b, k) then

if CAS(l, k, k + 1) then ()

else incr aux l b

else ()

(b) Dice et al.’s concurrent counter

(simpli�ed).

Figure 1.1: Approximate counting algorithms.

5

January 2, 2019

DRAFT

have gigabytes of memory and a 64-bit integer can store numbers larger than 1019
. However,

in the concurrent se�ing, multiple threads may be trying to increment some shared counter

to keep track of the number of times an event has happened across the system. In order to

do so correctly, they need to use expensive atomic instructions like fetch-and-increment or

compare-and-swap (CAS) which have synchronization overheads. Dice et al. [32] realized that

if one instead uses a concurrent form of the approximate counter, then as the number stored

in the counter grows larger, the probability that the value needs to be modi�ed gets smaller

and smaller. �us, the number of actual times a thread needs to perform a concurrent update

operation like CAS goes down. In this se�ing, the probabilistic counter is useful not because it

reduces memory use, but because it decreases contention for a shared resource.

Dice et al. [32] propose a number of variants and optimizations for a concurrent approximate

counter. For instance, they suggest that one can use an adaptive algorithm that keeps track of

the exact count until reaching a certain count, and then switches to the approximate algorithm.

�is way, for small counts the values are exact, and if the counts are still small, there must not

be that much contention yet, so there is no need to be using the approximation scheme.

A simpli�ed version of the non-adaptive increment function for one of their proposals is

shown in Figure 1.1b. �e code ignores over�ow checking for simplicity. �e function starts

by generating a 64 bit vector uniformly at random, which is then bound to a variable b. It then

enters a loop in which it reads the current value of the counter. If the current value is k, it

checks whether the �rst k bits of b are 0, which occurs with probability
1
2k

. If so, it a�empts to

increment the counter by atomically updating it to k+1 using a CAS, and otherwise it returns.

If the CAS returns true, this means the CAS has succeeded and no other thread has done an

increment in between, so again the code returns. If the CAS returns false, it repeats.

�e code does not generate a new random number if the CAS fails. Although Dice et al. [32]

do not address this in their work, this raises the possibility for an adversarial scheduler to a�ect

the expected value of the counter, much as the scheduler can a�ect tree depth in the analysis of

concurrent trees by Aspnes and Ruppert [6]. Imagine c threads are a�empting to concurrently

perform an increment, and the scheduler lets them each generate their random value of randbits
and then pauses them. Suppose the current value in the counter is k. Some of the threads may

have drawn values for randbits that would cause them to not do an increment, because there

is a 1 within the �rst k bits of their number. Others may have drawn a number where far more

than the �rst k bits will be 0: these threads would have performed an increment even if the

value in the counter were larger than k. �e scheduler can exploit this fact to maximize the

value of the counter by running each thread one a�er the other in order of how many 0 bits

they have at the beginning of their number.

Figure 1.1c presents an unbiased concurrent approximate counter. Unlike Morris’s algo-

rithm, it tries to store an estimate of the actual count, not the logarithm of the count, so it uses

the standard log2(n) bits. But it still has the property that as the count grows larger, the proba-

bility of an increment decreases – thus, it would have similar scalability as the biased variant of

Dice et al. [32]. �e increment routine �rst reads the current value in the counter. It then takes

the minimum of this value and MAX, which is some parameter to the algorithm, and binds the

minimum to k. �en, with probability
1

k+1
, it adds k + 1 to the value in the counter using an

atomic fetch and add instruction; otherwise, it leaves the count unchanged.

How can we show that this counter is unbiased? Because addition is commutative and

6

January 2, 2019

DRAFT

associative, it does not ma�er that in between the moments in which a thread reads the value,

makes its random choice, and then �nally does an increment, another thread may also modify

the counter. �erefore, we want to use a similar abstraction as in the analysis of binary search

trees by Aspnes and Ruppert: we think of the e�ects of concurrency as an adversary that merely

gets to a�ect the value of k that is used in each call to increment. And, because no ma�er what

value k is used in a given call to the increment routine, the expected value it will add to the

count is 1, because

1

k + 1
· (k + 1) +

k

k + 1
· 0 = 1

�us, assuming this adversarial abstraction is correct, we would like to argue that by linearity

of expectation, the expected value a�er performing n increments will be n.

1.1.3 Skiplists
Pugh [100] developed skip lists, a data structure that can be used to implement a dynamic set

interface for ordered data. A skip list consists of several sorted linked lists, where the nodes in

each list contain a key. We visualize each list as running horizontally from le� to right, with

the di�erent lists stacked vertically above one another (see Figure 1.2). For simplicity we will

consider a version only having two lists, and only containing integer keys. �e set of keys con-

tained in the top list is a subset of the keys contained in the bo�om list, and the node containing

a key k in the top list includes a pointer to the corresponding node for k in the list below it.

At the beginning and ends of each list, there are sentinel nodes containing the minimum and

maximum representable integers (which are wri�en as −∞ and +∞ in Figure 1.2).

We �rst consider how operations on this data structure are implemented in the sequential

case. To check whether a key k is contained in the set, we begin by searching for the key in

the top list starting at the le� sentinel. If we �nd a node containing it, we return true. If not,

we stop at the largest key j < k in the list, and then follow the pointer in j’s node to the copy

of j in the bo�om list. We then resume searching for k starting at node j in the bo�om list.

If k is found in the bo�om list we return true, otherwise the key is not in the set so we return

false. To insert k, we �rst �nd the nodes Nt and Nb with the largest keys less than ≤ k in the

top and bo�om list, respectively. If we �nd that k is already in either list, we stop and return.

Otherwise we execute flip(p), where p is some �xed parameter of the data structure that we

can select. If it returns true, we insert new nodes for key k into both the top and bo�om lists,

a�er Nt and Nb. Otherwise, if it returns false, we only insert a node in the bo�om list a�er Nb.

We call Nt and Nb the “predecessor nodes”, because they become the predecessors of k if it is

inserted into each list.

If n distinct keys are inserted into the set, then in expectation n/p of them will appear in

the top list. �en when searching for a key, we will be able to more quickly descend down the

top list, and either �nd they key there, or if not, only have to examine a few additional nodes in

the bo�om list. Of course, it is possible (though unlikely, depending on p) that none or all of the

nodes are inserted into the top list, in which case we are e�ectively searching in a regular sorted

linked list. More precisely, the number of nodes we will examine in the top list is binomially

distributed and the number in the bo�om list is geometrically distributed, so from standard

properties of these distributions we can derive the expected number of nodes searched.

7

January 2, 2019

DRAFT

If there are more than two lists, instead of generating a random bit, we sample from a ge-

ometric distribution to obtain a “height” h for the node, and then only insert the node in the

bo�om h levels. �e analysis is more involved, but one approach, found in Pugh’s early analysis

of the structure, is to show that the number of comparisons is stochastically bounded by the

sum of several independent random variables drawn from “standard” well-known distributions

(negative-binomial and binomial). Other techniques involve deriving recurrence relations for

the expected number of comparisons and then analyzing the asymptotic behavior of these re-

currences [95] or relating the skip list to a probabilistic branching process, and then applying

results from the theory of such processes [31].

�ere are several ways to add support for concurrent operations to a skip list. We will

consider a simpli�ed implementation
4

inspired by that of Herlihy et al. [52]. We start by adding

a lock to each node in the lists. Checking for whether a key is in the set is the same as in the

non-concurrent case, and no locks need to be acquired.

To insert a key k, we again search for the predecessor nodes Nt and Nb. When we identify

one of these nodes, we acquire its lock and then check that the node a�er it has not changed in

the time between when we examined its successor and when the lock was acquired. If it has,

that means another thread may have inserted a new node with key k′ such that Nt < k′ ≤ k
or Nb < k′ ≤ k. In that case Nt or Nb is not the appropriate predecessor, so we release the

locks and search for the new predecessor (or, in fact, �nd that k has already been inserted).

Otherwise, so long as we hold the locks, we are guaranteed that Nt and Nb will remain the

proper predecessors for key k, and that no other thread can insert k. Having acquired both

locks, we proceed as in the sequential case by generating a random bit, and on the basis of that

bit we insert new nodes for k into either both lists or just the bo�om list. We then release the

locks and return.

What e�ect does concurrency have on the number of nodes that must be examined to �nd

a key? �e answer is none, so long as there are no concurrent insertions happening while

searching. �e reason is that in the implementation we have just described, the random choice

is made a�er acquiring the locks for insertion. �us, at the point the random choice is made,

the ordering of operations by threads cannot a�ect where the node will be inserted.

However, an eager programmer might consider the following “optimization” of the concur-

rent insertion routine: If we generate the random bit before acquiring locks for the predecessors,

and the resulting bit says we will only insert the node in the bo�om list, then we only need to

acquire the lock for the bo�om predecessor. More generally, if there were more than two levels

in the list, we could just acquire the locks up to the height we are going to insert the node into,

which might be even more bene�cial.

How does this optimization a�ect the probabilistic analysis? Now the distribution is no

longer equivalent to the classical sequential version. To see why, imagine two threads are

trying to concurrently insert key k into the list. Suppose that the outcome of the �rst thread’s

random bit generation indicates that it will insert the node only into the bo�om list, but the

second thread will try to insert into both lists. �en the scheduler can in�uence the distribution

by pausing the second thread and le�ing the �rst thread �nish; when the second thread is

eventually allowed to run, it will �nd that k is already in the list and so it will return without

4
Some additional subtleties arise if one wants to support deletion from the list.

8

January 2, 2019

DRAFT

−∞ 5 12 99 157 167 +∞

−∞ 5 12 99 157 167 +∞

Figure 1.2: Diagram for 2-level concurrent skip list.

doing anything.

Although I have once more used adversarial language to describe the scheduler, in this case

it is clearer how behavior like this could arise without having to imagine any malice. Because

the �rst thread only has to acquire a single lock, it really is plausible that it might tend to �nish

before the second thread.

In this section, we have examined several algorithms that use both concurrency and prob-

abilistic choice, and brie�y covered how their probabilistic behaviors are analyzed, or at least

how sequential analogues are analyzed. What conclusions can we draw from these examples?

A common pa�ern is that when analyzing the probabilistic behavior, we want to abstract away

from implementation details. For example, it is more helpful to model the behavior of the sched-

uler in terms of adversarial choices over, say, the order nodes are inserted into a search structure,

rather than over the set of possible interleavings of the discrete steps involved in performing
these insertions. Going further, we can sometimes argue that concurrency does not a�ect the

probabilistic quantity we are interested in (e.g., for the expected value of the unbiased counter,

or the skip list without the “optimization”). Finally, when deriving quantitative results, one

o�en shows that the probabilistic quantity of interest obeys some recurrence relation, or that

it can be related to “standard” probability distributions. Once such relations are established,

analysis can proceed without reference to the original algorithm at all. As will become clear

later, these observations have guided the design of the logic presented in this dissertation.

1.2 Related Work on Program Logics

A recurring theme in the previous section is that the analysis of concurrent randomized algo-

rithms usually involves a process of abstraction: the code is modeled by some simpler stochastic

process and then various properties of this model are analyzed.

But how do we prove that these more abstract models faithfully describe the behavior of

the code? More generally, how do we prove even more basic properties of such programs, like

showing that they do not dereference null pointers or trigger other kinds of faults?

To carry out such proofs, researchers have developed various program logics. In this part I

describe prior work on these logics for reasoning about concurrent programs and randomized

algorithms. �e focus here is on what I consider to be the core insight or idea underlying each

logic.

9

January 2, 2019

DRAFT

1.2.1 Hoare Logic
Most program logics for imperative programs are extensions to or otherwise based on Hoare

logic [55]. Recall that in traditional Hoare logic, one establishes judgments of the form:

{P } e {Q}

where e is a program and P and Q are predicates on program states, which we call assertions.

�is judgment, called a “triple”, says that if e is executed in a state satisfying P , then execution

of e does not trigger faults, and a�er e terminates, Q holds. In addition to rules for all of the

basic commands of the language, Hoare logic has two important structural rules:

Ht-csq

P ⇒ P ′ {P ′} e {Q′} Q′ ⇒ Q

{P } e {Q}

Ht-seq

{P } e1 {Q} {Q} e2 {R}
{P } e1; e2 {R}

�e �rst, called the rule of consequence, is a kind of weakening rule: from a derivation

of {P ′} e {Q′} we can weaken the postcondition Q′ to Q and (contravariantly) strengthen the

precondition to P to conclude {P } e {Q}. �e second rule, called the sequencing rule, lets us

reason about the program e1; e2, which �rst executes e1 and then e2, by proving triples about

each expression separately. �e postcondition we prove for e1 must match the precondition

needed by e2.

Subsequently, Benton [21] observed that Hoare logic could be extended to do relational

reasoning about two programs. Instead of the triples from Hoare logic, Benton’s logic featured

a “quadruple” judgment about pairs of programs:

{P } e1 ∼ e2 {Q}

where now the assertions P and Q are relations on pairs of program states, and the judgment

means that if e1 and e2 execute starting from states related by P , a�erward their states will

be related by Q. Benton showed that this logic was useful by using it to verify a number of

compiler transformations.

An alternative formulation of Hoare’s logic, advocated by Dijkstra, is the “weakest precon-

dition calculus” [33]. Instead of Hoare’s triples, there is a predicate wp e {Q}, which holds for

a given program state S if when e is executed from S, it will not fault, and if it terminates, the

resulting state will satisfy Q. �en the triple {P } e {Q} can be encoded as P ⇒ wp e {Q}.
Benton’s quadruples can be similarly presented in this style. In the rest of this introduction, I

will generally present things using Hoare-style judgments, but some of the logics I mention are

actually based on the weakest precondition calculus, and the Hoare triple is de�ned using an

encoding like the above. Later on, we will see why working directly with weakest preconditions

can be preferable.

One �nal variation I will use throughout is that when reasoning about languages where

programs are expressions that evaluate to values (as in ML-like languages), it is more natural

to consider triples of the form:

{P } e {x.Q}

10

January 2, 2019

DRAFT

where x is a variable that may appear inQ, and the judgment now means that if the precondition

holds and e terminates with some value v, then [v/x]Q holds. When x does not appear in Q,

we can omit the binder so that it resembles the traditional Hoare triple. �e sequencing rule

then becomes a “let” rule:

Ht-let

{P } e1 {x.Q} ∀v. {[v/x]Q} [v/x]e2 {y.R}
{P } let x = e1 in e2 {y.R}

At �rst glance, Hoare logic may seem to be restricted to establishing functional correctness

properties, i.e., proving properties about the return value or �nal state of a program a�er ex-

ecution. However, it can also be used to reason about the complexity of a program. �is can

be done in several ways. For example, one can “instrument” a program with “ghost code” that

counts the number of operations performed, and then one can bound the value computed by

this ghost code. Alternatively, the operational semantics of the language can be modi�ed to

track the total number of steps in a designated part of state. Similar encodings can be used with

the other logics that will be discussed throughout this dissertation.

1.2.2 Separation Logic
�e language considered by Hoare in his original work was rather limited. It did not have ref-

erences or pointers between memory cells, which are needed for representing various mutable

data structures such as linked lists and trees.

Unfortunately, adding pointers poses several challenges. To see why, imagine we extend

the logic with a primitive assertion p 7→ v, which says that p is a pointer to a memory cell

containing the value v. Natural rules for writing and reading from pointers would then be:

{p 7→ v} p := v′ {x. x = () ∧ p 7→ v′} {p 7→ v} !p {x. x = v ∧ p 7→ v}

We can now specify various data structures by linking together these pointer assertions. For

example, we can de�ne a predicate list(p, l) which says that p points to a linked list of nodes

containing the values in the abstract list l. If we have a function append(p1, p2), which takes

two pointers p1 and p2 to linked lists, and appends the second list to the end of the �rst. We

might hope to prove that:

{list(p1, l1) ∧ list(p2, l2)} append(p1, p2) {list(p1, l1 ++ l2)}

where ++ is the append operation for abstract lists. Unfortunately, this is very likely to not be

true! �e problem is that the precondition does not rule out the possibility that p1 and p2 are

equal, and if they are, append(p1, p2) might produce a cycle in the list p1, so that the tail points

back to the head.

One solution is to de�ne a predicate disjoint(p1, p2) which states that two linked lists are

disjoint, and then modify the precondition to add this as an additional assumption:

{list(p1, l1) ∧ list(p2, l2) ∧ disjoint(p1, p2)} append(p1, p2) {list(p1, l1 ++ l2)} (1.1)

11

January 2, 2019

DRAFT

Although this works, it soon leads to proofs that are clu�ered with all of these disjointness as-

sumptions. However, an even more fundamental problem is that having proved the above triple,

we soon �nd it is not very re-usable when verifying programs that use the append function.

For example, suppose we wanted to prove:

{list(p11, l11) ∧ list(p12, l12) ∧ list(p21, l21) ∧ list(p22, l22) ∧ (disjointness assumptions)}
append(p11, p12); append(p21, p22)

{list(p11, l11 ++ l12) ∧ list(p21, l21 ++ l22)}

To carry out this proof, we would like to use the sequencing rule and then apply our earlier

proof about append twice. �e problem is that now our precondition mentions the other linked

lists, and so does not match the precondition of the triple in 1.1. We might try to use the rule

of consequence to �x this, because the precondition here certainly implies the precondition of

1.1. �e problem is that in so doing we would “forget” about the other pair of linked lists, p21

and p22, and so the postcondition we would derive for append(p11, p12) would not imply the

precondition needed for append(p21, p22).

What is needed is something like the following additional structural rule:

{P } e {Q}
{P ∧R} e {Q ∧R}

Taking P to be the assumptions about the lists p11 and p12, and le�ing R be the assumptions

about the other lists, this would let us temporarily “forget” about the second pair of lists while

we derive a triple about append(p11, p12). �en, in the postcondition we again recover R, the

facts about the second list.

Unfortunately, this rule is not sound. �e problem is that in general R might mention state

that is subsequently modi�ed by e in a way that makes R no longer hold. For example, we

would be able to derive:

{p 7→ v} p := v′ {p 7→ v′}
{p 7→ v ∧ p 7→ v} p := v′ {p 7→ v′ ∧ p 7→ v}

where now p points to two possibly di�erent values.

�e most complete and satisfying resolution to this problem was developed by Reynolds,

O’Hearn, Ishtiaq, and Yang in an extension to Hoare logic called separation logic [103], in

which the assertions are a form of the substructural logic of Bunched Implications developed

by O’Hearn and Pym [93]. Separation logic introduces a new connective P ∗ Q, called sepa-

rating conjunction. �is assertion holds if the program state (the “heap”) can be split into two

disjoint pieces, which satisfy P and Q respectively. To make this notion of “spli�ing” the heap

precise, one observes that the heap can be thought of as a �nite partial function from locations

to values. �e set of heaps then forms a partial commutative monoid (PCM) where the monoid

operation is disjoint union of the sets representing these heap functions, and the identity is the

empty heap. �en heap h satis�es P ∗ Q if there exists heaps h1 and h2 such that h = h1 · h2,

h1 satis�es P , and h2 satis�es Q.

12

January 2, 2019

DRAFT

�is removes the need for the disjoint(p1, p2) assertions, because from list(p1, l1)∗list(p2, l2)
we can conclude the two lists are disjoint as they must reside in separate pieces of the heap. In

addition, this form of conjunction validates the structural rule we wanted before:

Ht-frame

{P } e {Q}
{P ∗R} e {Q ∗R}

Intuitively, the meaning and soundness of this rule is clear, since if e is only operating on the

part of the heap described by P , it will not modify the part described by R, so that part will

continue to satisfy R a�er e executes.

Unlike normal conjunction, P 0 P ∗ P , because a heap satisfying P may not be decom-

posable into two heaps each satisfying P . As a result, it is best to interpret propositions not as

facts, but as descriptions of “resources” (heap pieces) which can be used and transformed, but

not duplicated.

1.2.3 Concurrency Logics
O’Hearn [94] realized that separation logic’s interpretation of heaps as resources was also use-

ful for veri�cation of concurrent programs. He observed that these programs o�en essentially

divide the heap into pieces which they operate on separately, relying on synchronization primi-

tives like locks to transfer “ownership” between themselves. Writing e1 || e2 for the concurrent

composition of e1 and e2, he proposed the following rule:

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

Intuitively, the soundness of this rule is justi�ed by the fact that the premise about e1 suggests

it only uses the part of the heap satis�ed by P1, and analogously for e2 and P2, so when we run

them concurrently they will not interfere.

Of course, if we could only compose threads that never interacted at all, this would ex-

clude many important uses of concurrency. O’Hearn’s logic was for a programming language

equipped with a monitor-like synchronization primitive (a scoped lock with a condition vari-

able), which threads could use to control access to shared pieces of state. �erefore, O’Hearn

also proposed a way to associate assertions called invariants with these synchronization primi-

tives. �en, the logic had a rule that allowed threads to access the resources described by those

assertions upon entering a critical section guarded by the synchronization primitive, so long

as they re-established the invariant and relinquished the resources upon exiting the critical

section.

Brookes [26] proved the soundness of O’Hearn’s logic by giving a semantics of the concur-

rent language which formalizes this ownership transfer between threads via synchronization

primitives.

But what if we want to verify the correctness of the synchronization primitives themselves?

Brookes and O’Hearn took as given that the language provided these primitives, but in some

programming languages locks and other synchronization primitives are instead implemented

13

January 2, 2019

DRAFT

from even more basic atomic operations. Moreover, some concurrent data structures, like the

ones discussed in §1.1, use these basic atomic operations directly instead of higher-level prim-

itives like locks.

An alternative called rely-guarantee logic [63], which was developed by Jones long before

concurrent separation logic, has some advantages for reasoning in certain situations like these.

�e idea behind rely-guarantee logic is to specify how threads may interfere with one another.

�ese speci�cations are given in the form of rely and guarantee assertions. When verifying a

thread, the rely assertion describes what the e�ects of other threads can be (hence, what the

thread under consideration can “rely” on), and the guarantee assertion describes the e�ects

of the thread itself (that is, what it “guarantees” to other threads). Naturally, for this kind of

reasoning to be sound, the rules of the logic must ensure that these assertions are coherent: what

one thread relies on must indeed be guaranteed by the others. �is style of reasoning is natural

when one wants to model �ne-grained interactions between concurrent threads that may not

necessarily protect access to an entire data structure with a lock. However, a disadvantage

of rely-guarantee logic relative to concurrent separation logic is that one cannot reason about

these rely/guarantee conditions locally, because they make reference to the whole global state

of the program.

A logic combining the bene�ts of rely-guarantee reasoning and concurrent separation logic

was thus a natural goal, and Vafeiadis and Parkinson [124] and Feng et al. [39] independently

proposed such combinations. By now, a number of concurrency logics have been developed

incorporating or extending these and other ideas for reasoning about �ne-grained uses of con-

currency (e.g. [34, 44, 61, 90], among many others).

Parkinson [96] suggested that the trend of having new logics for each new aspect of con-

currency was unsatisfying, and that what was needed was a single logic expressive enough to

handle all of these use cases. In part, he argued that this would be bene�cial because it would

remove the need to produce new soundness theorems for each logic, which o�en required sub-

stantial work.

Since then, a�empts have been made at exactly this kind of uni�cation with a simple foun-

dation. Among these, Dinsdale-Young et al. [35] noted that many reasoning pa�erns from con-

currency logics could be encoded in a logic that provided (1) a means of specifying an abstract

notion of a resource that could be owned by threads, represented as elements of a monoid, (2)

assertions to encode how threads can manipulate and modify these resources, and (3) a way to

connect these abstract resources to the actual physical state of the program. �is was pushed

further by Jung et al. [64] in a logic called Iris [65, 72], which again provided the ability to spec-

ify resources using monoids, but o�ered a more �exible way to encode the relationship between

abstract resources and physical state.

Using this idea of partial commutative monoids as “resources”, it becomes possible to en-
code relational reasoning in the logic. �e idea, originally developed by Turon et al. [122] and

subsequently used and extended in [75, 115] in the se�ing of Iris, is to treat threads from one

program (the “source”) as a kind of resource that can be owned by threads of another program

(the “target”). One starts by de�ning an assertion source(i, e) which says that in the source

program execution, thread identi�er i is executing the expression e. �en there are assertions

like p 7→s v which describe the source program’s heap. Finally, one has rules for simulating

14

January 2, 2019

DRAFT

steps of that source program, such as:

(source(i, l := w; e) ∗ l 7→s v) V (source(i, e) ∗ l 7→s w)

which executes an assignment in the source program, where theV connective, called a “view-

shi�”, can be thought of as a kind of implication in which one may transform these abstract

resources representing threads. �en the following triple:

{source(i, e1)} e2 {v. source(i, v)}

implies that if e2 terminates with value v, there is an execution in which e1 terminates with v.

�e advantage of having these source threads as assertions rather than the four-place judg-

ment of Benton’s relational Hoare logic is that in the concurrent se�ing, one target program

thread may simulate multiple source program threads, or the relationship between threads may

change over time, so we want the ability to transfer these threads just as we can transfer own-

ership of physical resources like a memory location in the heap.

1.2.4 Probabilistic Logics
Given the importance of randomized algorithms, a number of program logics have been devel-

oped for reasoning about programs with the ability to make probabilistic choices.

Ramshaw [101] presented a system like Hoare logic extended with a primitive assertion of

the form Fr(P) = p which says that P holds with “frequency” p. �is can be thought of as

a kind of assertion about the probability that P holds, except that unlike probabilities, these

frequencies are not required to sum to 1. Several program logics featuring explicit probabilistic

assertions have subsequently been developed [17, 30, 102].

Kozen [71] argued that instead of having separate assertions for specifying the probabilities,

all assertions should be interpreted probabilistically. �at is, rather than interpreting assertions

as being true or false, they should denote a value p representing the probability that they are

true. He developed a variant of dynamic logic called probabilistic propositional dynamic logic

based on this idea. �is “quantitative” approach was developed further by Morgan et al. [86]

who describe a probabilistic variant of Dijkstra’s weakest precondition calculus. �ere, they

consider a language with a probabilistic choice operator, e1 ⊕p e2. �is is a program that with

probability p continues as e1 and with probability 1 − p behaves as e2. �en, reasoning about

this kind of choice is done using the following rule for weakest preconditions:

wp e1 ⊕p e2 {P} = p · wp e1 {P}+ (1− p) · wp e2 {P}

Many extensions and variants of this kind of quantitative approach have been suggested. For

example, Kaminski et al. [68] extend this logic with the ability to count the number of steps

taken by the program in order to derive expected time bounds.

An alternative approach is to not introduce probabilities at the level of assertions at all.

Barthe et al. [13] describe a logic where the judgment for the Hoare triple is indexed by a

probability. �ey write `p {P } e {Q} for a judgment which says that if e is executed in a state

satisfying P , upon termination Q will fail to hold with probability at most p. �ey argue that

although this system may be less expressive, it is easier to use for certain examples.

15

January 2, 2019

DRAFT

Probabilistic Relational Hoare Logic (pRHL) [10, 14] takes another approach that avoids

using probabilistic assertions. �is logic is an extension of Benton’s relational Hoare logic to

programs with probabilistic choice. In Benton’s work, the assertions P and Q in the judgment

{P } e1 ∼ e2 {Q} are relations on the start and end states of the two programs. In the probabilis-

tic variant, each of the ei will terminate in a distribution of states, so the relation Q is li�ed to a

relation on distributions. In particular, let S1 and S2 be sets of states for e1 and e2 respectively,

and letD(Si) be the set of all distributions on Si. �en, given a relationQ ⊆ S1×S2, the li�ing

L(Q) ⊆ D(S1)×D(S2) is a relation such that (µ1, µ2) ∈ L(Q) if there exists µ ∈ D(S1 × S2)
for which:

1. If µ(a, b) > 0 then (a, b) ∈ Q.

2. µ1(a) =
∑

b µ(a, b)

3. µ2(b) =
∑

a µ(a, b)

�en {P } e1 ∼ e2 {Q} holds in pRHL if whenever e1 and e2 are executed in states related by P
and terminate with a distribution of states µ1 and µ2, respectively, then (µ1, µ2) ∈ L(Q).

As Barthe et al. [16] noted, a joint distribution µ satisfying the conditions above is what is

known as a coupling between the distributions of states a�er executing e1 and e2. Couplings are

a well-known proof technique in probability theory [80], and the existence of a coupling µ can

o�en tell us useful information about the two distributions µ1 and µ2. For instance, suppose

x and y are integer assignables in the states of the programs e1 and e2, and let X and Y be

random variables for the values of x and y a�er the programs execute. �en if the quadruple

{True} e1 ∼ e2 {x ≥ y} holds, we can conclude that X stochastically dominates Y , that is:

∀r,Pr [X ≥ r] ≥ Pr [Y ≥ r]

In some applications for cryptography and security, establishing this kind of stochastic dom-

inance (or related results), is precisely the desired speci�cation. In other cases, this is useful

because if we want to bound Pr [Y ≥ r], it su�ces to bound Pr [X ≥ r]. As usual with rela-

tional reasoning, ideally e1 is simpler to reason about than e2.

�e important di�erence between pRHL and some of the logics described above is that

assertions are not interpreted probabilistically during the veri�cation, so explicit reasoning

about probability is minimized. �e key rule where probabilistic reasoning enters is when the

two programs e1 and e2 in fact make a probabilistic choice
5
:

f J µ1, µ2

{P } draw(µ1) ∼ draw(µ2) {(x, y). P ∧ y = f(x) ∧ x ∈ support(µ1)}

where µ1 and µ2 are probability distributions on sets A1 and A2, respectively, draw(µ) is the

expression for sampling from a distribution, f : A1 → A2 is a bijection, and f J µ1, µ2 holds

if ∀x ∈ A1. µ1(x) = µ2(f(x)).

5
�e version of this rule in the work by Barthe et al. [10] is di�erent because their draw command mutates

an assignable rather than returning a value. For consistency with the rest of this section, what is shown here is a

simpli�ed rule for an expression based language.

16

January 2, 2019

DRAFT

1.2.5 Combinations
Recently, some work has proposed logics that combine features from the di�erent kinds of

logics mentioned above.

McIver et al. [84] present a probabilistic version of rely-guarantee logic [63]. �ey use their

logic to verify a “faulty” concurrent Sieve of Eratosthenes, in which threads remove numbers

from a list to identify primes, with thread i removing multiples of (i + 1) – however, each

thread only probabilistically removes the elements it is supposed to, and the goal is to give a

lower bound on the probability that the resulting list only contains primes. Like the original

rely-guarantee logic, this logic does not permit local reasoning: one must check stability against

rely-guarantee conditions that refer to the global state of the program. �is makes it hard to

verify a data structure and provide an abstract speci�cation that can be used by a client.

Independently of the work described in this dissertation, Batz et al. [19] developed a ver-

sion of (non-concurrent) separation logic for reasoning about sequential probabilistic programs

with dynamic memory allocation. �ey verify an example of a program which probabilistically

appends nodes to a list (so that the length of the list is geometrically distributed), a tree deletion

procedure which only probabilistically deletes nodes, and an algorithm that shu�es an array.

�eir logic is in the style of the other “quantitative” logics mentioned above, where assertions

denote functions from program states to probabilities/expected values, and rules are given for

computing and bounding these probabilities. �eir logic features an analog of the frame rule,

which says (under certain side conditions)

wp e {P} ∗Q ≤ wp e {P ∗Q}

where the ordering here is the pointwise ordering of functions from states to R. �ey argue

that this is the natural analogue of the frame rule, because the ordering ≤ plays the role of the

ordering given by entailment in non-quantitative separation logics.

1.2.6 Alternatives
�e work discussed above �ts, broadly speaking, into the tradition of Hoare logic. I now discuss

some alternative formalisms and proof techniques outside this tradition.

Probabilistic Automata. One approach to reasoning about concurrent and distributed sys-

tems starts by modeling them as non-deterministic automata. Having formally speci�ed the

possible states and transitions of an automaton, one can reason about its behavior by estab-

lishing invariants that hold throughout execution. In addition, one can use a form of relational

reasoning by exhibiting a simulation relation between the automata and a simpler one. See

Lynch [81] for a very thorough explanation of this approach.

�e thesis of Segala describes how to adapt this to probabilistic automata so as to model

randomized distributed systems. Besides probabilistic simulation relations [107], an important

proof technique developed in this work is the application of coin lemmas (which is elaborated

on further in [106]). At a high level, the idea behind coin lemmas is that in the analysis of

randomized distributed algorithms, one is o�en in the following situation: We want to deter-

mine a lower bound on the probability that the algorithm will “succeed” or enter a “good” state,

17

January 2, 2019

DRAFT

and we can identify a collection of probabilistic choices (called “experiments” in [106]), which,

in the event they all occur, will completely determine whether the algorithm will succeed. If

we could guarantee that regardless of the e�ects of non-determinism these experiments would

all take place, then we could reduce the analysis of the algorithm to a stochastic process in

which the outcomes of the experiments are random variables X1, ... , Xn, and the success of

the algorithm is described by a predicate R on their outcome. �en, we would just need a

lower bound on Pr [R(X1, ... , Xn)]. However, suppose as a consequence of the e�ects of non-

determinism, some of these probabilistic choices will not in fact occur in certain executions.

�en Pr [R(X1, ... , Xn)] is not necessarily a valid bound. However, it does remain a valid bound

so long as we can show that for each execution where only some subset of the experiments take

place, if it is possible to assign values to the other experiments so thatR holds for the combined

collection of outcomes, then the algorithm must have succeeded in that execution. �e coin

lemmas of [105] identify common examples of predicates R and experiments for which this is

indeed the case.

Although approaches based on probabilistic automata have been used to analyse several

sophisticated distributed algorithms, there is a gap between code wri�en in a programming

language and a model of an algorithm expressed as an automaton. How do we show that the

code actually implements the algorithm described by the automaton? A relational program

logic provides a way to do so.

Temporal Logic. An alternative family of logics based on temporal logic have been devel-

oped for verifying concurrent systems [78, 82, 83]. In these logics, assertions are understood as

predicates on states of some system which varies over time. �ere are then various modalities

for describing at which moments of time an assertion holds. For example, �P says that P
always holds. One can then de�ne �P , ¬�¬P , which means (classically) that P eventually

holds. A plethora of additional modalities can be considered, some depending on whether time

is viewed as a discrete sequence of steps or a continuum. In contrast to approaches based on

separation logic, additional emphasis is put on specifying and proving liveness properties, that

is, showing the program eventually performs certain actions, as opposed to merely proving

safety properties that show the program never enters an invalid state. �ese logics are widely

used in automated model checking systems [28]. Some of these logics have been extended with

probabilistic assertions [51].

However, when it comes to reasoning about shared memory concurrency, temporal logic

has the same shortcomings of Hoare logic that motivated the development of separation logic:

we must manually specify that various memory cells are disjoint, and speci�cations have to

mention that they leave particular locations unchanged. �is makes it hard to give composi-

tional speci�cations and reason locally about programs
6
.

Linearizability. Instead of Hoare-style speci�cations, the principal correctness criterion con-

sidered in the community of concurrent algorithm designers is linearizability [53]. Roughly

speaking, a concurrent object or data structure is linearizable if we can regard the execution of

its operations as if they were atomic steps. Besides its intuitive appeal, this property is useful

6
However, not all advocates of temporal logics see this as a pressing problem [77].

18

January 2, 2019

DRAFT

because it seems to suggest that clients using a data structure cannot tell the di�erence between

a complex, e�cient linearizable implementation and a slower or (practically unimplementable)

version in which the operations truly are atomic.

One way to de�ne this idea of indistinguishability formally is known as contextual equiv-
alence [99]: We �rst de�ne what it means for two complete programs e1 and e2 to be observa-
tionally equivalent, which is usually de�ned in terms of what values they can both reduce to

or their termination behavior. �en, we imagine a client C as a “program with a hole”, called

a context. Given an expression e implementing the data structure, we de�ne the operation of

�lling in the hole in C with e to obtain a complete program, which is wri�en as C[e]. Two

implementations e1 and e2 are said to be contextually equivalent if for all contexts C , C[e1]
and C[e2] are observationally equivalent

7
. When considering non-deterministic systems, it is

more natural to instead work with observational re�nement, which says that the set of behaviors

of one program is a subset of behaviors of the other, and then de�ne an analogous notion of

contextual re�nement.
As Filipovic et al. [40] note, it had long been informally understood that linearizability

seemed to imply contextual re�nement between an implementation and an abstract version

of the data structure in which all operations are atomic. Filipovic et al. [40] gave the �rst for-

mal proof that this was indeed the case. Naturally, their proof is with respect to a particular

programming language, since the semantics of the language a�ects what the contexts C can

observe about implementations and what it means for programs to be equivalent. As we add

features to the language considered by Filipovic et al. [40], there is no a priori guarantee that

their result will continue to hold in the extended language.

Indeed, Golab et al. [49] show that if clients can make randomized choices, the distribution

of values they return can di�er when using a linearizable implementation of a data structure

as compared to a truly atomic version. Because any reasonable notion of observational equiv-

alence in the presence of randomization ought to take into account the distribution of values

returned, this means that linearizability may not imply contextual re�nement in languages with

probabilistic choice. Golab et al. [49] propose instead strong linearizability and prove that under

certain assumptions, this alternative notion su�ces to ensure that the distribution of behaviors

is once again indistinguishable
8
. However, in this result they do not permit implementations

of a data structure to have randomized behavior, only clients can make randomized choices.

In light of these issues, neither linearizability nor strong linearizability seem like appropriate

correctness criteria for the kind of data structures described in §1.1.

1.3 Design Choices and Outline
In the previous sections, I have described some concurrent algorithms and surveyed a number

of program logics. However, I argue that none of the logics discussed are expressive enough to

7
Generally, one assigns types to contexts and expressions, and then in the de�nition of contextual equivalence,

we only quantify over contexts C for which the combination of C[e] will be well typed.

8
�e formalism considered by Golab et al. does not use the notion of contextual re�nement or consider a

concrete programming language. Rather, they describe concurrent systems abstractly in terms of sets of sequences

of operations called “histories”, which represent a partial execution.

19

January 2, 2019

DRAFT

verify the probabilistic properties of these example algorithms. All but one of them does not

address the combination of concurrent and probabilistic reasoning, and the one exception [84]

lacks the local reasoning features of modern concurrency logics.

In this section, I describe several choices I have made about the design of Polaris, the logic

that will be presented in this dissertation. As mentioned above, this design is summarized by

the following thesis:

Separation logic, extended with support for probabilistic relational reasoning, pro-

vides a foundation for the veri�cation of concurrent randomized programs.

I now o�er some rationale for the choices implicit in this statement.

Why separation logic? In order to reason about probabilistic properties of concurrent ran-

domized algorithms, one �rst needs to prove the same kinds of intermediate properties that

are used to establish functional correctness. For example, one must show that synchronization

primitives are used appropriately to maintain assorted invariants of data structures. I think the

e�ectiveness of separation logic for reasoning about a wide range of concurrent programs is

clear now, and there is a trend toward some degree of stabilization and uni�cation of ideas from

these logics. Moreover, it is worthwhile to build on a “state of the art” concurrency logic to en-

sure that we have the features needed to reason about �ne-grained concurrent data structures.

To that end, Polaris is an extension of Iris [64], and the extensions are done in a way to ensure

that all the original proof rules of Iris remain sound.

�e choice of how to do probabilistic reasoning is less obvious. As we have seen in the

previous section, there are many Hoare-like program logics for reasoning about probability

with a variety of features and approaches. I believe the most appropriate choice is the relational

style, because I think we want to use a program logic only for the purposes of abstracting away

from low level details of the program, and then use whatever tools from probability theory are

needed to analyze the higher level model of the problem. �is choice is preferable for several

reasons:

1. Relational reasoning is closer to the style used in pencil-and-paper proofs.

As I have already stressed, the common approach to analyzing these algorithms is to

consider a mathematical abstraction of the algorithm’s behavior. �erefore, it seems de-

sirable to have a logic where we can prove that there is a relation between a concrete

implementation and such an abstraction.

2. Relational reasoning is appropriate when we cannot formulate a single speci�-
cation that captures all aspects of an algorithm.

When considering the behavior of probabilistic algorithms, there are many properties

of interest: expected values, variances, tail-bounds, rates of convergence to asymptotic

distributions, and so on. �erefore, we will almost certainly want to carry out multiple

proofs about a given algorithm. However, we do not want to re-prove basic facts about

the correctness of the algorithm each time, such as showing that a particular pointer is

not null or that there will be no data-race when accessing some �eld. If we prove once and

for all that the concurrent algorithm is modeled by some more abstract “pure” stochastic

20

January 2, 2019

DRAFT

process, then subsequent mathematical analysis only needs to consider this stochastic

process.

3. Probability theory is too diverse to embed synthetically in a logic.

In analogy to synthetic di�erential geometry or synthetic homotopy theory, I consider

the union bound logic of Barthe et al. [13] as a kind of “synthetic” approach to a fragment

of probability theory: the rules of the logic codify a common use of the union bound in

probability theory, with minimal mention of explicit probabilities.

Although appealing in some ways, I think this approach is susceptible to the criticisms

Parkinson [96] raised about the proliferation of concurrent separation logics. �at is, one

can envision dozens of specialized logics each trying to encode some commonly used

technique from probability theory: Cherno� bounds, Doob’s optional stopping theorem,

Wald’s lemma, etc. Unfortunately, it seems the analysis of randomized algorithms is too

diverse to encapsulate in some single synthetic logic.

�e approach taken in [17] is to “embed” several specialized synthetic logics in some more

expressive general logic with probabilistic assertions. �is seems promising, but I believe

the right se�ing for such a logic would be in reasoning about more abstract representa-

tions of a stochastic program which does not involve low-level details like pointers or

concurrent interleavings. �at is, we should �rst use relational reasoning techniques to

simplify the program under consideration.

Of course, a full argument in favor of my thesis will be contained in the rest of this disser-

tation, which is as follows.

Because I have argued in favor of a relational style, we �rst need some way to express the

more mathematically abstract version of programs we want to reason about. As the purpose of

doing this is to end up with something that is easier to reason about, we do not necessarily want

to express this abstract version in the same programming language we started with. Instead,

we will write the abstract program in a monadic style, using a monad for the combination of

probabilistic and non-deterministic choice proposed by Varacca and Winskel. I describe this

monadic construction in Chapter 2.

As mentioned above, Polaris is an extension of the Iris logic. �erefore, before the exten-

sions can be explained, I must �rst give some background on Iris. As will become apparent, Iris

provides language-generic components that can be used to derive program logics for speci�c

languages. Chapter 3 provides a brief introduction to Iris by presenting a particular instantia-

tion of the framework with a concurrent ML-like language. �en, Chapter 4 describes the more

general set-up and discusses how soundness of the logic is proved.

Next, I describe in Chapter 5 the new probabilistic extensions constituting Polaris. �e

purpose of relational reasoning in the extended logic is to establish a connection between the

behavior of a concrete program and a monadic computation expressed using the monad de-

scribed in Chapter 2. Once again, Polaris is parameterized by the semantics of a probabilistic

concurrent language, about which few assumptions are made. In fact, specifying the seman-

tics of a language with a combination of concurrency and probabilistic choice involves some

subtleties. �e formulation I give has some restrictions, but it su�ces for the examples we are

21

January 2, 2019

DRAFT

interested in here. A�er describing the semantics, I turn to the new proof rules and sound-

ness statement for the probabilistic extension. �e generic framework is instantiated with a

concurrent ML-like language, this time with primitives for generating random booleans.

Chapter 6 describes how to use the logic, instantiated with this language, to reason about

two of the examples presented in §1.1: approximate counters and skip lists. For each example,

we follow the pa�ern of �rst writing down a monadic model of the algorithm, using the program

logic to establish a relationship between the concrete program and the monadic model, and then

analyzing the behavior of the monadic model.

Finally, Chapter 7 summarizes the development and suggests some directions for future

work.

1.4 Veri�cation and Foundations
All of the new results herein have been formally veri�ed in the Coq theorem prover [117].

�is includes not only the soundness of Polaris, but also the example programs that will be

veri�ed using the logic. �e only things not veri�ed are the simple examples considered in the

tutorial introduction to Iris. �e proofs use the Coq standard library axiomatization of the reals,

along with two axioms for classical reasoning: the law of the excluded middle, and the axiom

of constructive inde�nite description, which is a choice principle similar to Hilbert’s epsilon

operator. �ese axioms are used to reason about probabilities.

With the hope of minimizing discrepancies between the machine checked proofs and the

wri�en versions in this dissertation, I will write the la�er in the style of an “informal type

theory” with classical reasoning principles. �us, I will speak of mathematical objects as having

types, as opposed to being elements of sets. �is informal type theory is intended to correspond

to the Calculus of Inductive Constructions (CiC) [97], the formal type theory underlying Coq,

extended with the axioms mentioned above. In addition to a hierarchy of predicative types

Type0, Type1, Type2, ... , there is an additional impredicative type Prop of propositions. Given

P : Prop, we say that P holds if there is a term of type P . �e type Unit : Type0 consists of a

single term ().

In the Calculus of Inductive Constructions, one generally cannot eliminate existentials in

Prop when de�ning terms whose type does not belong to Prop. �at is, in standard CiC, know-

ing that ∀n : N. ∃n : N. P (n) holds does not provide any means to de�ne a corresponding

function f : N → N with the property that for all n, P (f(n)) holds. However, the above

mentioned axiom of constructive inde�nite description extends CiC with just such a principle.

Namely, it says that given a type T , a predicate P : T → Prop, and a proof that ∃t : T. P (t),

we may derive a term of type T for which the predicate holds.

When I refer to a “set of terms of type T ”, I mean a predicate A : T → Prop, where the

terms t such that A(t) holds are thought of as being “in” the set. �en, union of such sets is

de�ned to be disjunction of the predicates, intersection is conjunction, and so on.

�roughout this dissertation, I will use the “horizontal bar” inference rule notation. When

I write something like

A1 ... An

B

22

January 2, 2019

DRAFT

I mean that there is a term of type A1 → · · · → An → B. Hence, one can conclude B by

showing all of A1 through An. O�en collections of such rules will occur in a �gure, where all

of the types below the horizontal lines will have similar schematic form. Such a list of rules

should not be construed as an inductive de�nition, unless otherwise stated. Rather, the �gure

simply means that there are terms corresponding to all of the rules occurring therein.

23

January 2, 2019

DRAFT

24

January 2, 2019

DRAFT

Chapter 2

Monadic Representation

A common approach to reasoning about e�ectful programs is to model e�ects using a suit-

able monad M . One represents an e�ectful program that returns a value of type T as a term

of type M(T). Next, one usually proves a series of equational rules for simplifying terms

of type M(T), and other lemmas for reasoning about such terms. �is approach has been

used for reasoning about a number of e�ects, including: state [89, 113], non-termination [27],

non-determinism [46], probabilistic choice [7, 46, 98, 126], and even the combination of non-

deterministic and probabilistic choice [46].

What is nice about using this representation in a dependently typed proof assistant is that,

except at points where e�ectful operations are performed, such terms are composed of “just”

pure terms of the appropriate type, which we can write and reason about using all of the stan-

dard facilities of the theorem prover. And, when e�ects are used, we (ideally) have a clean equa-

tional theory for reasoning about them. �us, such a representation makes an ideal candidate

for the more abstract way of expressing concurrent probabilistic algorithms which I motivated

in Chapter 1. We need then a monad for representing the combination of non-deterministic

choice (to model the e�ects of concurrency) and probabilistic choice.

�is turns out to be challenging to obtain, for reasons we begin with. A�er explaining the

di�culties, we discuss the monad of indexed valuations, due to Varacca and Winskel [128],

which can be used to obtain a monad for both probabilistic and non-deterministic choice. In

their original presentation of the monad, Varacca and Winskel focused on its equational proper-

ties and on using it to give an adequate denotational model for a certain programming language.

However, because our eventual goal is to be able to derive quantitative bounds on things like

probabilities and expected values, I de�ne such notions for these monadic computations and

develop some rules for calculating and bounding them. We then consider how to generalize the

notion of coupling (alluded to in Chapter 1) to this se�ing. Finally, some alternative denota-

tional models combining non-deterministic and probabilistic choice are described.

2.1 Background
Let us start by recalling common monadic encodings for non-deterministic and probabilistic

choice (separately).

25

January 2, 2019

DRAFT

2.1.1 Non-deterministic Choice
For non-determinism, we can de�ne MN(T) as the type consisting of predicates A : T → Prop
for which there exists at least some t : T such that A(t) holds. We think of these predicates as

non-empty sets of terms of type T , where each element of the set represents one of the di�erent

non-deterministic outcomes. We say two termsA andB of typeMN(T) are equivalent, wri�en

A ≡ B, if their sets of elements are the same: for all x, x ∈ A ↔ x ∈ B. In addition to

the standard monadic operations (bind and return), we can represent non-deterministic choice

between two computations A and B as the union A ∪B of the two sets, de�ned by:

A ∪B ≡ λt. A(t) ∨B(t)

�is operation satis�es a number of natural rules:

A ∪B ≡ B ∪ A A ∪ (B ∪ C) ≡ (A ∪B) ∪ C A ∪ A ≡ A

�ese, along with the usual monad laws, can be used to prove that one non-deterministic com-

putation is equivalent to another.

2.1.2 Probabilistic Choice
We can represent a (discrete) probabilistic computation of type T as a function f : T → [0, 1],
mapping values of type T to the probabilities that they occur. �e support of f , wri�en supp(f)
is the set of t such that f(t) > 0. Naturally, we want the sum of all the probabilities for the

values in supp(f) to be equal to 1. In order to make sense of such an in�nite sum, we require

the support to be countable. We de�ne MP(T) to be the type of all functions f : T → [0, 1]
such that supp(f) is countable and ∑

x∈supp(f)

f(x) = 1

Given A,B : MP(T), we say A ≡ B if for all x, A(x) = B(x). We can de�ne an operation

which selects between a computation A with probability p and another computation B of the

same type with probability (1− p):

A⊕p B , λx. p · A(x) + (1− p) ·B(x)

�is operation satis�es equational rules such as:

A⊕p B ≡ B ⊕1−p A A⊕p A ≡ A

2.1.3 Obstructions to Combination
In order to reason about programs that use both probability and non-determinism, we would

like some way to combine the monads we have just examined. We might try to represent com-

putations of type T combining both e�ects as terms of type MN(MP(T)), i.e., non-empty sets

of probability distributions.

26

January 2, 2019

DRAFT

But how do we de�ne the monad operations for this combination? One way to derive the

monad operations for a combination of two monads is to specify a distributive law [20]. In so

doing, we can specify how the two e�ects interact. For example, the following equational rule:

A⊕p (B ∪ C) ≡ (A ∪B)⊕p (A ∪ C)

says that probabilistic choice distributes over non-deterministic choice. We can interpret this

as saying that it does not ma�er whether we resolve the non-deterministic choice between B
and C before or a�er the outcome of the probabilistic choice between the alternative A. Such a

property seems natural, if we adopt the “adversarial” perspective outlined in §1.1: to an adver-

sary trying to maximize/minimize some probability or expected value by non-deterministically

selecting betweenB and C , the preferable alternative should not depend on the outcome of the

probabilistic choice.

However, Varacca and Winskel [128] have given a proof (based on an idea they a�ribute to

Plotkin) that no distributive law exists between the monads
1 MN and MP. For our purposes, it

is not necessary to understand this impossibility proof. Instead, we can consider whether by

changing the monads, we might be able to obtain a distributive law. Varacca and Winskel show

that a result by Gautam [45] implies that the most natural way of combining these two monads

cannot work so long as we expect the following equational law to hold:

A⊕p A ≡ A

�us, perhaps the solution is to come up with a monad for probabilistic choice in which this

equivalence does not hold. But might we not be giving up too much? At �rst this equivalence

seems like something we want to retain: if in either case we choose A, then the probabilis-

tic choice was irrelevant. However, when we later add in the e�ect of non-determinism, the

absence of this law becomes more justi�able, because it allows us to account for the fact that

subsequent non-determinism in the computation can be resolved di�erently on the basis of this

seemingly irrelevant probabilistic choice. For example, a scheduler could observe the outcome

of this internal probabilistic choice and use it as a basis for ordering subsequent operations in

a larger computation.

2.2 Indexed Valuations
Using their observations about impossibility results, Varacca and Winskel describe an alterna-

tive way of representing probabilistic choice, which they call the indexed valuation monad, in

which the problematic equivalence A ⊕p A ≡ A does not hold. �ey then describe a distribu-

tive law between MN and the monad of indexed valuations to obtain a monad combining both

e�ects.

De�nition 2.1. An indexed valuation I of type T is a tuple (I, d, v), where

1
More precisely, they consider the case where MN is the monad of �nite non-empty sets of terms of type T ,

and MP consists of �nite distributions, instead of countable ones. However, the impossibility of a distributive law

in the �nitary case precludes one for the non-�nitary versions we have de�ned.

27

January 2, 2019

DRAFT

• I is a countable type
2

whose terms are called indices,

• d is a function of type I → T , and

• v is a function of type I → R≥0
such that

3
:∑

i:I

v(i) = 1

Informally, we can think of the indices as a collection of “codes” or identi�ers, the v function

gives the probability of a particular index occurring, and dmaps these codes to elements of type

T . Importantly, the d function is not required to be injective, so that di�erent codes can lead to

the same observable result. We write MI(T) for the type of indexed valuations of type T and

de�ne the following projections for the components of an indexed valuation:

πidx (I, d, v) = I

πdec (I, d, v) = d

πval (I, d, v) = v

�e indicial support4
of a valuation I, notated isupp(I), is the set of indices i for which

πval(I)(i) > 0

We say I1 ≡ I2 if there exists a bijection h : isupp(I1) → isupp(I2) such that for all i ∈
isupp(I1):

πval(I1)(i) = πval(I2)(h(i)), and

πdec(I1)(i) = πdec(I2)(h(i))

�at is, the bijection can only “relabel” indices in a way that preserves their probabilities and

what they decode to.

�ere is a map H which takes indexed valuations of type T to elements of MP(T):

H(I, d, v) = λx.
∑

i∈d−1({x})

v(i)

In other words, the probability of x in the resulting distribution is the sum of the probabilities

of indices that decode to x. It is clear that if I1 and I2 are two indexed valuations such that

2
A type T is said to be countable if there are functions g : T → N and f : N → Option T such that for all t,

f(g(t)) = Some t.
3
In fact, Varacca and Winskel �rst de�ne a more general structure in which the sums of v(i) do not have

to equal 1, and the indices need not be countable. A�er working out some of the theory of these more general

objects, they restrict to the subcategory where the indices are �nite sets and the probabilities sum to 1. We will not

restrict to �nite sets of indices, since by le�ing them be countable we can model sampling from arbitrary discrete

distributions.

4
Varacca and Winskel call this simply the “support” of the valuation, however I prefer to use that term for

something di�erent, de�ned below.

28

January 2, 2019

DRAFT

I1 ≡ I2, then H(I1) ≡ H(I2). However, the converse is not true because I1 and I2 could have

indicial supports with di�erent cardinalities.

Given a term t of type T , the indexed valuation ret t is de�ned to be (Unit, λx. t, λx. 1). �at

is, the type of codes is a singleton whose sole element decodes to t and occurs with probability

1.

If I is an indexed valuation of type T1 and f is a function from T1 to indexed valuations of

type T2, then we de�ne bind f I to be the indexed valuation (I, d, v), where:

I =
{

(i1, i2) | i1 ∈ πidx(I1) ∧ i2 ∈ πidx
(
f
(
πdec(I)(i1)

))}
d = λ(i1, i2). πdec

(
f
(
πdec(I)(i1)

))
(i2)

v = λ(i1, i2). πval(I)(i1) · πval
(
f
(
πdec(I)(i1)

))
(i2)

Intuitively, the idea behind these de�nitions is that they represent �rst sampling a code i1 from

I, decoding it to get some term t, and then sampling a code i2 from the indexed valuation f(t),

with the �nal value returned being whatever i2 decodes to. �us the type of indices consists of

dependent pairs (i1, i2), where i1 is an index from I, and i2 is an index of f
(
πdec(I)(i1)

)
. �e

probability of obtaining the code (i1, i2) is the product of the probabilities of obtaining i1 and

i2. As usual, the notation x← I ; f(x) is de�ned to be bind f I.
Given an indexed valuation I : MI(T), we de�ne idxOf(I) : MI(πidx(T)) as

(πidx(I), λx. x, πval(I))

�is indexed valuation behaves like I, except that rather than decoding indices, it simply returns

them.

�e probabilistic choice between two indexed valuations is then de�ned by:

(I1, d1, v1)⊕p (I2, d2, v2) , (I1 + I2, d
′, v′)

where:

d′(i) =

d1(i′) if i = inl(i′)

d2(i′) if i = inr(i′)

v′(i) =

p · v1(i′) if i = inl(i′)

(1− p) · v2(i′) if i = inr(i′)

When we construct an indexed valuation using these operations, the indices record a kind

of history or trace of the execution, logging the intermediate outcomes used to derive the �nal

value. For example, if we consider the computation(
ret true⊕p ret false

)
⊕p
(
ret true⊕p ret false

)
the type of indices will be (Unit + Unit) + (Unit + Unit). For this computation, the index

inl(inr(())) will decode to false, and represents an execution in which the outermost probabilis-

tic choice yields the le� operand, and then the probabilistic choice within that sub-computation

yields its right operand.

29

January 2, 2019

DRAFT

One can show that for all indexed valuations I1 and I2 and 0 ≤ p ≤ 1, we have I1 ⊕p I2 ≡
I2⊕1−p I1. However, unlike the original probabilistic choice monad discussed above, I⊕p I 6≡ I,
unless p = 0 or p = 1. �e reason is that when p is neither 0 nor 1, the indicial support of I⊕p I
will have a larger cardinality than the indicial support of I, so there can be no bijection between

them. Recall that we do not want this equivalence to hold, because it rules out the existence of

the distributive law we want.

Indeed, since this rule does not hold, it is possible to de�ne appropriate monad operations

on MN ◦MI, and we write MNI for this composition. �e approach followed by Varacca and

Winskel is to de�ne a distributive law, from which the corresponding monad is derived from

general theorems about distributive laws. However, we will instead specify the monad opera-

tions directly.

First, we de�ne a notion of equivalence for elements of MNI(T). Given two non-empty sets

of indexed valuations, I1 and I2, we say I1 ≡ I2 if for each I1 ∈ I1, there exists some I2 ∈ I2

such that I1 ≡ I2, and vice versa.

Let I be a non-empty set of indexed valuations of typeT1, and let f have typeT1 →MNI(T2).

�en bind f I is the set of all I : MI(T2) for which there exists I0 ∈ I and h : πidx(I0) →
MNI(T2) such that:

1. I ≡ x← idxOf(I0) ; h(x), and

2. For all i ∈ isupp(I0), the indexed valuation h(i) is in πidx

(
f
(
πdec(I0)(i)

))
In other words, the elements of bind f I are equivalent to indexed valuations which �rst

sample some index i from an element I0 of I and then select an element from f(πdec(I0)(i)) and

sample from that. �e decision about which element of f(πdec(I0)(i)) is chosen is determined

by a function h. We can think of this function h as representing the strategy of the adversary

that this non-deterministic choice is modeling. Crucially, h is a function from the indices of I0,

not just what they decode to.

For a term t of type T , we de�ne ret t : MNI(T) to be the singleton set containing just the

indexed valuation ({()}, λx. t, λx. 1).

Given I1 and I2 of type MNI(T), the probabilistic choice operation I1 ⊕p I2 is de�ned by

taking the pairwise probabilistic choice of each indexed valuation in the respective sets:

I1 ⊕p I2 ≡ {I1 ⊕p I2 | I1 ∈ I1, I2 ∈ I2}

and non-deterministic choice between I1 and I2 is simply the union I1 ∪ I2 of the two sets.

Given an indexed valuation I : MI(T), the singleton set {I} has type MNI(T). Taking a

singleton set of an indexed valuation commutes with the operations on MI(T). For example,

{I1} ⊕p {I2} ≡ {I1 ⊕p I2}, and similarly for bind and return. We say that a computation

I : MNI(T) is a singleton when there exists I such that I ≡ {I}.
�e choice operations and the monad operations respect the equivalence relation we de�ned

above. A selection of additional equational rules are shown in Figure 2.1 (the standard monad

laws are omi�ed).

Example 2.2 (Modeling approximate counters). In Figure 2.2 we show how to model the ap-

proximate counter code from Figure 1.1c using this monad. �e approxIncr computation �rst

30

January 2, 2019

DRAFT

I1 ⊕p I2 ≡ I2 ⊕1−p I1 I1 ⊕1 I2 ≡ I1 I ∪ I ≡ I I1 ∪ I2 ≡ I2 ∪ I1

I1 ∪ (I2 ∪ I3) ≡ (I1 ∪ I2) ∪ I3 I1 ⊕p (I2 ∪ I3) ≡ (I1 ⊕p I2) ∪ (I1 ⊕p I3)

x← I1 ∪ I2 ; F (x) ≡ (x← I1 ; F (x)) ∪ (x← I2 ; F (x))

x← I1 ⊕p I2 ; F (x) ≡ (x← I1 ; F (x))⊕p (x← I2 ; F (x))

x← {I1} ; y ← {I2} ; F (x, y) ≡ y ← {I2} ; x← {I1} ; F (x, y)

Figure 2.1: Equational laws for MN ◦MI monad.

approxIncr ,

k ← ret 0 ∪ · · · ∪ ret MAX ;

ret (k + 1)⊕ 1
k+1

ret 0

approxN 0 z , ret z

approxN (n+ 1) z ,

k ← approxIncr ;

approxN n (z + k)

Figure 2.2: Monadic encoding of approximate counter algorithm from Figure 1.1c.

non-deterministically selects a number k up to MAX – this models the process of taking the

minimum of the value in l and MAX in the code. �e non-determinism accounts for the fact

that the value that will be read depends on what other threads do. �e monadic encoding then

makes a probabilistic choice, returning k + 1 with probability
1

k+1
and 0 otherwise, which rep-

resents the probabilistic choice that the code will make about whether to do the fetch-and-add.

Finally, the process of repeatedly incrementing the counter n times is modeled by approxN.

�e �rst argument n tracks the number of pending increments to perform, and the second

argument l accumulates the sum of the values returned by the calls to approxIncr. Note that

this model does not try to represent multiple threads in the middle of an increment each waiting

to add its value to the shared count – rather, it is as if the actual calls to incr all happened

atomically in sequential order, with the e�ects of concurrency captured by the non-determinism

in the approxIncr computation.

Of course, we need to show that this model accurately captures the behavior of the code

from Figure 1.1c – this is what the program logic we describe in Chapter 5 will do.

2.3 Expected Values
With what we have described so far, we can express computations with randomness and non-

determinism and derive equivalences between them, but we do not yet have a way to talk about

the standard concerns of probability theory (e.g., expected values, variances, tail bounds).

Given an indexed valuation I = (I, d, v) of type T and a function f : T → R, we can de�ne

31

January 2, 2019

DRAFT

I1 ≡ I2

Ef [I1] = Ef [I2]
Ef [ret v] = f(v)

Ex-Linear

k ≥ 0

E(λx.k·f(x)+c)[I] = k · Ef [I] + c

Ef [I1 ⊕p I2] = p · Ef [I1] + (1− p) · Ef [I2]
Ex-Comp

Eg◦f [I] = Eg[x← I ; ret f(x)]

∀x. k1 ≤ Ef [F (x)] ≤ k2

k1 ≤ Ef [x← I1 ; F (x)] ≤ k2

Ex-Mono

∀x. f1(x) ≤ f2(x)

Ef1 [I] ≤ Ef2 [I]

Figure 2.3: Selection of rules for calculating expected values.

the expected value of f on I as:

Ef [I] ,
∑
i:I

f(d(i)) · v(i)

(this coincides with the usual notion of expected value of a random variable if we interpret the

indexed valuation as a distribution using the map H de�ned above). Because I is a countable

type, the above series may not necessarily converge
5
. We say that the expected value of f on

I exists if the above series converges absolutely. �roughout this dissertation, when expected

values are mentioned in rules and derivations, we will implicitly assume side conditions stating

that all the relevant expected values exist. A selection of rules for calculating expected values

are shown in Figure 2.3.

Given a predicate P : T → Prop, we de�ne [P] as the indicator function

[P](x) =

1 if P (x) is true

0 if P (x) is not true

�en E[P][I] is equal to the probability that P holds of the value returned by I, so we de�ne:

PrP [I] , E[P][I]

Because an I of type MNI(T) is just a non-empty set of indexed valuations, we can apply

Ef [−] to each I ∈ I to get the set of expected values that can arise depending on how non-

deterministic choices are resolved. Generally speaking, we will be interested in bounding the

smallest or largest possible value that these expected values can take. We can de�ne the minimal
and maximal expected value of f on I as:

Emin
f [I] , inf

I∈I
Ef [I] Emax

f [I] , sup
I∈I

Ef [I]

5
In the Coq formalization, I use the Coquelicot library developed by Boldo et al. [23] to reason about such

in�nite series.

32

January 2, 2019

DRAFT

Emin
f [ret v] = f(v)

Extrema-Linear

k ≥ 0

Emin
(λx.k·f(x)+c)[I] = k · Emin

f [I] + c

Emin
f [I1 ⊕p I2] = p · Emin

f [I1] + (1− p) · Emin
f [I2] Emin

f [I1 ∪ I2] = min(Emin
f [I1],Emin

f [I2])

Extrema-Comp

Emin
g◦f [I] = Emin

g [x← I ; ret f(x)]

Extrema-Bind-Case

∀x. k1 ≤ Emin
f [F (x)] ≤ k2

k1 ≤ Emin
f [x← I1 ; F (x)] ≤ k2

Extrema-Mono

∀x. f1(x) ≤ f2(x)

Emin
f1

[I] ≤ Emin
f2

[I]

Figure 2.4: Selection of rules for calculating extrema of expected values (analogous rules for

Emax
f [−] omi�ed).

We say that these extrema exist if for all I ∈ I , Ef [I] exists. Because I may be an in�nite set,

Emin
f [I] and Emax

f [I] can be −∞ and +∞ respectively. Prmax
P [I] and Prmin

P [I] are de�ned in the

analogous way.

Rules for calculating these values are given in Figure 2.4. �ese rules are derived by using

the corresponding rules for expected values from Figure 2.3. As before, we implicitly assume

that all of the stated extrema exist and are �nite.

To help reason about these extrema, we introduce a partial order on terms of type MNI(T):

We say I1 ⊆ I2 if for each I1 ∈ I1, there exists some I2 ∈ I2 such that I1 ≡ I2. If I1 ⊆ I2 then

Emax
f [I1] ≤ Emax

f [I2] and Emin
f [I2] ≤ Emin

f [I1]. �us, we can bound I1’s extrema by �rst �nding

some I2 such that I1 ⊆ I2, and then bounding the la�er’s extrema.

Although we have omi�ed side-conditions on the existence of expected values and extrema

here, they must be dealt with in formal proofs. One way to discharge these side conditions is

to show that the functions we are computing expected values of are suitably bounded. We �rst

de�ne the support of I as the set of all values that occur with non-zero probability:

supp(I) , {v | ∃i ∈ I. d(i) = v ∧ v(i) > 0}

�e support of a set of indexed valuations, I is then the union of their supports:

supp(I) ,
⋃
I∈I

supp(I)

We say that f is bounded on the support of I if there exists some c such that |f(v)| ≤ c for all

c ∈ supp(I). If this holds, then Emin
f [I] and Emax

f [I] exist and are �nite.

Example 2.3 (Expected value of approximate counter.). Using the above rules, we can show

that Emin
id [approxN n 0] = Emax

id [approxN n 0] = n, which implies that no ma�er how the non-

determinism is resolved in our model of the counter, the expected value of the result will be the

number of increments. Let us just consider the case for the minimum, because the maximum

is the same. �e proof proceeds by induction on n, a�er �rst strengthening the induction hy-

pothesis to the claim that Emin
id [approxN n l] = n+ l. �e key step of the proof is to show that

33

January 2, 2019

DRAFT

I ≡p I
I1 ≡ I′1 I2 ≡ I′2 I1 ≡p I2

I′1 ≡p I′2

I1 ≡p I2 I2 ≡p I3

I1 ≡p I3

I1 ≡p I2 ∀x. F1(x) ≡p F2(x)

x← I1 ; F1(x) ≡p x← I2 ; F2(x)

I1 ≡p I2 I′1 ≡p I′2
I1 ⊕p I′1 ≡p I2 ⊕p I′2

(x← I1 ; I2) ≡p I2

Figure 2.5: Rules for the ≡p relation on indexed valuations.

Emin
id [approxIncr] = 1, i.e., each increment contributes 1 to the expected value. By Extrema-

Bind-Case, it su�ces to show that whatever value of k is non-deterministically selected, the

resulting expected value will be 1. We have that for all k:

Emin
id

[
ret (k + 1)⊕ 1

k+1
ret 0

]
=

(
1

k + 1

)
· (k + 1) +

(
1− 1

k + 1

)
· 0

= 1

Let us summarize the discussion so far. Because the non-determinism monad MN could not

be combined with the standard probabilistic choice monad MP, we replaced the la�er with the

monad of indexed valuations,MI. �e distinction betweenMI andMP is that indexed valuations

carry additional data (the indices) and a �ner notion of equivalence. �is additional data was

used to de�ne the bind operation in the combined monad MNI, in which we had functions h
that depend on the indices themselves, rather than just what they decode to.

We then re-developed the notions of expected values and probabilities for MI and de�ned

corresponding extrema of expected values for MNI. Since these de�nitions respect the equiva-

lence relations on MI and MNI, we could bound the extrema of some I by �rst �nding I ′ such

that I ≡ I ′, and then bounding the extrema of I ′. More generally, we also had the ⊆ relation,

so that similar bounds could be obtained solely by showing I ⊆ I ′.
However, the relations ≡ and ⊆ above are �ner than necessary if our goal is to use them to

translate bounds on extrema of I ′ to bounds on I , and similarly so for translating bounds on

expected values of one indexed valuation to another. For example, if f is a bounded function,

then Ef [I] = Ef [I⊕p I], yet we know that I 6≡ I⊕p I.
Because our goal is to do relational reasoning in order to bound expected values, it is useful

to de�ne the coarsest relations that su�ce for this purpose, and derive some properties about

them. We de�ne I ≡p I′ to hold if for all bounded
6

functions f , Ef [I] = Ef [I′]. Because indicator

functions are bounded, observe that if I ≡p I′, then PrA[I] = PrA[I′] for all A. In other words,

this notion of equivalence is the same as saying that the probability distributions H(I) and

H(I′) are equal. Rules for this relation are shown in Figure 2.5. Crucially, it is a congruence

with respect to all the monad operations.

6
�e reason for quantifying over bounded functions is to ensure that the two expected values exist.

34

January 2, 2019

DRAFT

I ⊆p I
I1 ⊆p I2 I2 ⊆p I3

I1 ⊆p I3

I ′1 ⊆ I1 I2 ⊆ I ′2 I1 ⊆p I2

I ′1 ⊆p I ′2

I1 ⊆p I2 ∀x. F1(x) ⊆p F2(x)

x← I1 ; F1(x) ⊆p x← I2 ; F2(x)

I1 ⊆p I2 I ′1 ⊆p I ′2
I1 ⊕p I ′1 ≡p I2 ⊕p I ′2

(x← I1 ; I2) ⊆p I2

Figure 2.6: Rules for ⊆p relation.

Analogously, we de�ne I ⊆p I ′ to hold if for all bounded functions f , Emax
f [I] ≤ Emax

f [I ′].
�us, if this relation holds, one can bound the maxima of I by bounding the maxima of I ′.
Since the negation of f is bounded if and only if f is, this also implies that Emin

f [I ′] ≤ Emin
f [I]

for all bounded f . Some rules for this relation are shown in Figure 2.6.

�e following lemma shows that the de�nition of⊆p generalizes to a larger class of functions

than just the bounded ones:

Lemma 2.4. If I ⊆p I ′ and f is bounded on the support of I ′, then f is bounded on the support

of I and Emax
f [I] ≤ Emax

f [I ′].

Proof. If x ∈ supp(I), then there exists some I ∈ I such that Prλy. y=x[I] > 0. Hence,

Prmax
λy. y=x[I] > 0, and therefore Prmax

λy. y=x[I ′] > 0. �us, there exists some I′ ∈ I ′ such that

Prλy. y=x[I′] > 0, so x ∈ supp(I ′). �is means supp(I) ⊆ supp(I ′) so f is bounded on the

support of I .

We then consider the function

g(x) =

f(x) if x ∈ supp(I ′)

0 otherwise

�en Emax
g [I] = Emax

f [I] and Emax
g [I ′] = Emax

f [I], since g only di�ers from f outside the support

of I and I ′. Moreover, g is bounded, so we have Emax
g [I] ≤ Emax

g [I ′] from the de�nition of

⊆p.

2.4 Analogues of Classical Inequalities

An important part of probability theory is the extensive number of inequalities that can be

used to bound probabilities and expected values. �ese inequalities are frequently used in the

analysis of algorithms. How do these generalize to the extrema of expected values of the form

we have described in the previous section?

35

January 2, 2019

DRAFT

2.4.1 Markov’s Inequality
One of the most fundamental inequalities in probability theory is Markov’s inequality, which

says that if X is a non-negative random variable such that E[X] exists, then for all a > 0

Pr [X > a] ≤ E[X]

a

More generally, ifX is an arbitrary random variable and h : R≥0 → R≥0
is a monotone function

for which h(a) > 0 and E[h(|X|)] exists, then:

Pr [X > a] ≤ E[h(|X|)]
h(a)

�e standard proof of this result generalizes to the following formulation for Emax
:

Lemma 2.5. Let I be a non-empty set of indexed valuations of type T , and let f be a real-

valued function on T . If h : R≥0 → R≥0
is monotone, h(a) > 0, and Emax

λx. h(|f(x)|)[I] exists and

is �nite, then

Prmax
λx. f(x)>a[I] ≤

Emax
λx. h(|f(x)|)[I]

h(a)

Proof. Unfolding de�nitions, we have Prmax
λx. f(x)>a[I] = Emax

[λx. f(x)>a][I]. Moreover, using the

analogue of Extrema-Linear for maxima, we can simplify the right hand side of the inequality:

Emax
λx. h(|f(x)|)[I]

h(a)
= Emax

λx. h(|f(x)|)/h(a)[I]

It su�ces then by Extrema-Mono to show that for all x,

[f(x) > a] ≤ h(|f(x)|)/h(a)

First, consider the case where f(x) ≤ a. �en the le� hand side is 0, and since h is non-

negative, the inequality is immediate. If f(x) > a, then the le� hand side is 1, and we just need

to show that h(a) ≤ h(|f(x)|), which follows from the fact that h is monotone.

2.4.2 Chebyshev’s Inequality
An important instance of the generalized form of Markov’s inequality is known as Chebyshev’s

inequality. In the standard se�ing this says that ifX is a random variable whose expected value

and variance exist, then for all k > 0,

Pr [|X − E[X]| > k] ≤ V[X]

k2

36

January 2, 2019

DRAFT

Recall that V[X], the variance of a random variable, is de�ned to be E[(X − E[X])2]. Gen-

eralizing slightly, we have bounds for deviations around not just the expected value, but any

constant c:

Pr [|X − c| > k] ≤ E[(X − c)2]

k2

�is version has the following analogue for Emax
:

�eorem 2.6. Let I be a non-empty set of indexed valuations of type T , and let f be a real-

valued function on T . If Emax
λx. (f(x)−c)2 [I] exists and is �nite, then

Prmax
λx. |f(x)−c|>k[I] ≤

Emax
λx. (f(x)−c)2 [I]

k2

Directly computing Emax
λx. (f(x)−c)2 [I] to use in this inequality can be di�cult. However, we

can obtain a bound using linearity of expectation:

Lemma 2.7. If c ≥ 0, then

Emax
λx. (f(x)−c)2 [I] ≤ Emax

λx. f(x)2 [I]− 2cEmin
f [I] + c2

Proof. For each I ∈ I , we have:

Eλx. (f(x)−c)2 [I] = Eλx. f(x)2 [I]− 2cEf [I] + c2

Because Eλx. f(x)2 [I] ≤ Emax
λx. f(x)2 [I] and Emin

f [I] ≤ Ef [I], it follows that

Eλx. (f(x)−c)2 [I] ≤ Emax
λx. f(x)2 [I]− 2cEmin

f [I] + c2

2.5 Couplings
As mentioned in Chapter 1, recent work by Barthe et al. [11, 14, 16] has shown that the notion of

coupling [80] is fundamental for relational reasoning in probabilistic program logics. Adapting

the de�nition from Chapter 1 to the monad MP, we have that given two distributions A :
MP(TA) and B : MP(TB), a coupling between A and B is a distribution C : MP(TA× TB) such

that:

1. ∀x : TA. A(x) =
∑

y C(x, y)

2. ∀y : TB. B(y) =
∑

xC(x, y)

�at is, C is a joint distribution whose marginals equal A and B. �ese two conditions are

equivalent to requiring that:

1. A ≡ ((x, y)← C ; ret x)

2. B ≡ ((x, y)← C ; ret y)

37

January 2, 2019

DRAFT

Given a predicate P : A×B → Prop, we say thatC is a P -coupling, if, in addition to the above,

we have:

∀x, y. C(x, y) > 0→ P (x, y)

i.e., all pairs (x, y) in the support of the distribution C satisfy P . �e existence of a P -coupling

can tell us important things about the two distributions. For example, if P (x, y) = (x = y),

then the existence of a P -coupling tells us the two distributions are equivalent. Moreover, there

are rules for systematically constructing couplings between distributions. We will explain some

of these rules once we have described how to adapt couplings to the monad MNI.

Using the monadic formulation of the coupling conditions, it is straightforward to de�ne

an analogous idea for MI. Given I1 : MI(T1) and I2 : MI(T2), a coupling between I1 and I2 is

an I : MI(T1 × T2) such that:

1. I1 ≡p ((x, y)← I ; ret x)

2. I2 ≡p ((x, y)← I ; ret y)

where we use the coarser equivalence ≡p instead of ≡ because ≡p corresponds to equivalence

of the indexed valuations interpreted as probability distributions. Further, we say I = (I, d, v)
is a P -coupling if for all i such that v(i) > 0, P (d(i)) holds. As before, if P is the equality

predicate, then the existence of a P -coupling between I1 and I2 implies I1 ≡p I2.

We can li� this to a relation between a single indexed valuation I and a set of indexed

valuations I : We say
7

there is a non-deterministic P -coupling between I and I if there exists

some I′ such that {I′} ⊆p I and a P -coupling between I and I′. We write I ∼ I : P to denote

the existence of such a coupling. �e word non-deterministic will be omi�ed when it is clear

from context which kind of coupling we mean.

Rules for constructing these couplings are shown in Figure 2.7. If we interpret the P in

I ∼ I : P as a kind of “post-condition” for the execution of the computations I and I , then

these coupling rules have the structure of a Hoare-like relational logic [21], as in the work of

Barthe et al. [11]: e.g., the rule Bind is analogous to the usual sequencing rule in Hoare logic.

�e rule P-Choice lets us couple probabilistic choices I⊕p I′ and I⊕pI ′ with post-condition

P by coupling I to I and I′ to I ′. �is is somewhat surprising: we get to reason about these two

probabilistic choices as if they both chose the le� alternative or both chose the right alternative,

rather than considering the full set of four combinations. �is counter-intuitive rule is quite

useful, as demonstrated in the many examples given in the work of Barthe et al..

�e following theorem lets us use the existence of a non-deterministic coupling to bound

expected values:

�eorem 2.8. Let g be bounded on supp(I) and let P (x, y) = (f(x) = g(y)). If I ∼ I : P ,

then Ef [I] exists and

Emin
g [I] ≤ Ef [I] ≤ Emax

g [I]

7
Barthe et al. [11] use “non-deterministic coupling” to refer to a particular kind of coupling which is unrelated

to adversarial non-deterministic choice.

38

January 2, 2019

DRAFT

Ret

P (a, b)

ret a ∼ ret b : P

Eqiv

I ≡ I′ I ⊆ I ′ I ∼ I : P

I′ ∼ I ′ : P

Conseq

I ∼ I : P ∀x, y. P (x, y)→ P ′(x, y)

I ∼ I : P ′

Bind

I ∼ I : P ∀x, y. P (x, y)→ F (x) ∼ F ′(y) : Q

(x← I ; F (x)) ∼ (y ← I ; F ′(y)) : Q

P-Choice

I ∼ I : P I′ ∼ I ′ : P
I⊕p I′ ∼ I ⊕p I ′ : P

Trivial

I ∼ I : True

Figure 2.7: Rules for constructing non-deterministic couplings.

Proof. We will just show that Emin
g [I] ≤ Ef [I], as the case for the upper bound is similar. Using

Ex-Comp and Extrema-Comp it su�ces to show that

Emin
id [y ← I ; ret g(y)] ≤ Eid[x← I ; ret f(x)]

and to establish that the expected value on the right exists. From Bind we have that(
x← I ; ret f(x)

)
∼
(
y ← I ; ret g(y)

)
:
(
λ(x, y). x = y

)
�us there exists some I′ such that {I′} ⊆p y ← I ; ret g(y) and a (λ(x, y).x = y)-coupling

between x ← I ; ret f(x) and I′. Hence, x ← I ; ret f(x) ≡p I′. Because g is bounded on

supp(I), we have that Eid[I′] exists. �is means that Eid[x ← I ; ret f(x)] exists as well, and

moreover, we have:

Eid[x← I ; ret f(x)] = Eid[I′]
≥ Emin

id [y ← I ; ret g(y)]

where the last inequality follows from the fact that {I′} ⊆p (y ← I ; ret g(y)).

2.6 Alternatives
A number of denotational models combining probabilistic and non-deterministic choice have

been developed [50, 85, 119, 127]. Many of these are presented as monads on certain categories

of domains, but one can instead consider analogues on the category SET, as done by Varacca

and Winskel. To make the comparison with indexed valuations clearer, I will do so in the

descriptions below.

39

January 2, 2019

DRAFT

In an alternative developed by Mislove [85] and Tix et al. [119], the law A ⊕p A ≡ A
holds again, but the role of non-empty sets for modeling non-determinism is instead ful�lled

by convex sets. Such sets are closed under convex combinations, in the following sense: if A
and B belong to the set, then A ⊕p B does as well, for all p. Operationally, we can think of

this as saying that whenever the adversarial scheduler can pick between two alternatives A
and B, it also has the power to �ip a (weighted) coin and use the outcome to select between

the alternatives. Indeed, Varacca and Winskel use this monad to give an adequate denotational

semantics for a language with such a probabilistic scheduler, and use the monad of �nite sets of

indexed valuations to give an adequate semantics for a variant in which the scheduler cannot

make probabilistic choices. Gibbons and Hinze [46] also used this monad based on convex

powersets to model and reason about several variants of the classic Monty Hall problem. It

would be interesting to consider using this alternative monad. I suspect that natural analogues

of many of the results presented in this chapter could be obtained.

40

January 2, 2019

DRAFT

Chapter 3

Iris: A Brief Tutorial

As explained in Chapter 1, Polaris is an extension of Iris, a recent concurrency logic with many

expressive features. In order to explain these extensions, some background must �rst be given

on Iris. In this chapter and the following one, I explain the aspects of Iris needed to understand

Polaris and the examples veri�ed using it in Chapter 6. Rather than being tied to a particular

programming language, Iris provides a more general framework that can be instantiated to

obtain logics for di�erent languages. �e present chapter gives a brief introduction to how

Iris is used by describing an instantiation of Iris for a concurrent ML-like language. Chapter 4

describes the more general framework and explains the adequacy proof for Iris.

�is chapter summarizes material from the Iris papers and manual [64, 65, 66, 72, 116], and

interested readers are referred to these original sources for a full account. �e lecture notes by

Birkedal and Bizjak [22] provide a more thorough introduction to Iris. Readers familiar with

Iris via some of these sources can skip this chapter.

3.1 Concurrent ML-like Language
�e syntax and per-thread semantics of the example language are given in Figure 3.1. We use

syntactic evaluation contexts to structure the operational semantics. �e values of the language

are recursive functions, pairs and sums of values, unit (), integers (for which we use the meta-

variable z), booleans (with metavariable b), and addresses in the heap (meta-variable l), which

are represented concretely as positive natural numbers. We write λx. e as notation for a recur-

sive function rec f x. ewhen f does not occur free in e. Similarly, let x = e1 in e2 is notation for

the expression (λx. e2) e1. �ere are (partial) coercions expr to val and val to expr between

expressions and values of the language. We specify head step reductions using the judgment

e, σ →h e
′, σ′, T , which means that a thread executing an expression whose head is e in a state

σ can take a step to e′, updating the state to σ′ and creating new threads for each expression in

the list T (which may be empty). �ese are then li�ed to the per-thread step relation→ using

the rule Ctx-Step in the standard way.

�e language has several special concurrent operations. �e expression fork{e} forks a

new thread running e and returns () in the parent thread. �e compare and swap expression

CAS(l, v1, v2) checks whether the value stored in address l is equal to v1: if so, it replaces it

41

January 2, 2019

DRAFT

with v2 and returns true; otherwise it leaves l unchanged and returns false. �e fetch-and-add

command FAA(l, z) adds z to the integer stored at l (if l is not allocated or does not contain

an integer, the command gets stuck), writes the summed value back to l, and returns the value

that was originally stored at l.

We de�ne:

red(e, σ) , ∃e′, σ′, T. (e;σ → e′, σ′, T)

and say that e is reducible in σ if this holds. An expression is said to be atomic if whenever it

can take a step, the resulting expression is not reducible:

atomic(e) , ∀σ, e′, σ′, T. (e;σ → e′;σ′;T)⇒ ¬red(e′, σ′)

�e single-thread semantics is then li�ed into a concurrent semantics. A con�guration is

a non-empty list of threads (called the “thread pool”) and a state. Again, using T as a meta-

variable for a list of threads, we write ++ for the operation of appending two lists together

and [e] for the singleton list consisting of e. �e following reduction relation speci�es how

concurrent steps are taken:

e;σ → e′;σ′;Tf

T1 ++ [e] ++ T2;σ → T1 ++ [e′] ++ T2 ++ Tf ;σ
′

In the above, some thread in the pool takes a step according to the per-thread reduction relation,

generating some list of new threads Tf which are added to the end of the thread pool.

3.2 Resource Algebras
In addition to being parameterized by a language, Iris is also parameterized by a type of re-
sources. Recall from Chapter 1 that in separation logic, one thinks of propositions as asserting

ownership of resources. �ese resources represent both the “real” state of the program one is

verifying, as well as auxiliary “ghost state” that is used to track additional information needed

for veri�cation.

In Iris, these resources
1

are terms from structures called resource algebras:

De�nition 3.1. A resource algebra (RA) is a type M with an operation · : M ×M → M , a

predicate V : M → Prop, and a function |−| : M → OptionM such that for all a, b, c : M ,

(a · b) · c = a · (b · c)
a · b = b · a
V(a · b)⇒ V(a)

1
Iris in fact supports a more general algebraic structure for resources called a “camera”. However, we will

not need to use this more general structure directly in our examples. �us, we will restrict a�ention to the more

limited notion of resource algebras above. Jung et al. [66] make a similar simpli�cation when initially presenting

Iris.

42

January 2, 2019

DRAFT

Syntax:

Val v ::= rec f x. e | (v1, v2) | inl v | inr v | () | z | b | l | ...
Expr e ::= e1 e2 | ref e | !e | e1 := e2 | fork{e} | CAS(e1, e2, e3) | FAA(e1, e2) | ...
Ctx K ::= [] | K e | v K | (K, e) | (v,K) | !K | K := e | v := K | ...
Loc l : N+

State σ : Loc→ Val

ThreadPool T : List Expr

Config ρ : {T : ThreadPool | T 6= ∅} × State

Head Reduction: e;σ →h e
′;σ′;T

l = min(dom(σ)) + 1

ref v;σ →h l;σ[l := v]; nil

l ∈ dom(σ)

!l;σ →h σ(l);σ; nil

l ∈ dom(σ)

l := v;σ →h ();σ[l := v]; nil

fork{e};σ →h ();σ; e
l ∈ dom(σ) σ(l) 6= v1

CAS(l, v1, v2);σ →h false;σ; nil

σ(l) = v1

CAS(l, v1, v2);σ →h true;σ[l := v2]; nil

σ(l) = z1

FAA(l, z2);σ →h z1;σ[l := z1 + z2]; nil

(standard rules omi�ed)

Per-�read Reduction: e;σ → e′;σ′;T

Ctx-Step

e;σ →h e
′;σ′;T

K[e];σ →h K[e′];σ′;T

Figure 3.1: ML-like Language.

43

January 2, 2019

DRAFT

and for each a, if there exists b such that |a| = Some b then,

a = a · b
|b| = Some b

a 4 a′ ⇒ (∃b′. |a′| = Some b′ ∧ b 4 b′) where a 4 b , ∃c : M. a · c = b

We call terms of type M resources, and write RA for the type of all resource algebras. Given

a, b : M , the product a · b represents the composition of the two resources a and b. �is com-

position operation is associative and commutative. �e predicate V indicates which resources

are “well formed”. If V(a) holds we say that a is valid. If the composition a · b is valid, then a
and b are also valid. When |a| = Some b, we say that b is the core of a. If b is the core of a, then

a = a · b, so we think of the core b as being a resource which we can create unlimited copies of

once we own a. Given a resource algebra M , if there exists a term ε : M such that V(ε) holds,

ε · a = a for all a, and |ε| = Some ε, then ε is said to be a unit of M . If an algebra M has a unit,

then for all a : M , ε 4 a, so the rules for the core operation ensure that |a| 6= None.

We give some examples of such resource algebras:

Example 3.2. Let T be a type. �e exclusive RA of T , wri�en Ex(T), has resources of the form

 and ex(t) for all t : M , and operations de�ned by:

a · b =
|a| = None

V(a) = (a 6=)

Example 3.3. Let T be a type. �e agreement RA of T , wri�en Ag(T), has resources of the

form and ag(t) for all t : M . For all a, b : Ag(T), we de�ne

a · b =

a if a = b

 otherwise

We set |ag(t)| = Some ag(t) and | | = None. Finally, V(a) is de�ned to hold if and only if

a 6= .

Example 3.4. LetM be a resource algebra. �e option RA ofM , wri�en Opt(M), has resources

of the form ⊥ and as for all a ∈M . Composition is de�ned as:

⊥ · ⊥ = ⊥
as · ⊥ = as

⊥ · as = as

as · bs = (a · b)s

Validity is de�ned by:

V(⊥) = True

V(as) = V(a)

If |a| = Some b, then |as| = Some bs, otherwise |as| = Some ⊥. Finally, |⊥| = Some ⊥.

44

January 2, 2019

DRAFT

Example 3.5. �e resource algebra Nat has as resources the natural numbers, with composi-

tion given by addition. We de�ne V(n) = True and |n| = Some 0 for all n.

�e previous example is an instance of the following more general construction:

Example 3.6. Let M be a monoid, that is, a type equipped with a commutative, associative

operation + : M ×M → M and a term ε : M such that ε + a = a for all a : M . �en M can

be made into a resource algebra by se�ing a · b = a+ b, V(n) = True, and |n| = Some ε.

Example 3.7. �e resource algebra MaxNat again has as resources the natural numbers, but

with composition de�ned by n ·m = max(n,m). We de�ne V(n) = True and |n| = Some n.

Notice that even though the natural numbers form a monoid under the max operation, the

MaxNat algebra is di�erent from what we would obtain by applying the construction from

Example 3.6 to this monoid, because in the la�er we would have |n| = Some 0 instead of

|n| = Some n.

Example 3.8. �e fraction RA Frac has terms of the form frac(q) for each positive rational

number q, and operations de�ned by

frac(q1) · frac(q2) = frac(q1 + q2)

V(frac(q)) = (q ≤ 1)

|frac(q)| = None

Example 3.9. Given two resource algebras M1 and M2, the product RA M1 ×M2 consists of

pairs (a1, a2) : M1 ×M2. Composition is de�ned componentwise. Coring is de�ned by:

|(a1, a2)| =

Some (b1, b2) if |a1| = Some b1 and |a2| = Some b2

None if |a1| = None or |a2| = None

A pair is valid just when both of the components are valid, that is

V((a1, a2)) = V(a1) ∧ V(a2)

Example 3.10. Let M be a resource algebra and K a countable set. �e �nite map RA, wri�en

FinMap(K,M), consists of partial functions of type K → M with �nite domains. Given such

a map f , we write dom(f) for its domain. �e composition of two maps f1 and f2 has domain

dom(f1) ∪ dom(f2), and for all i ∈ dom(f1) ∪ dom(f2), we de�ne

(f1 · f2)(i) =


f1(i) · f2(i) if i ∈ dom(f1) ∧ i ∈ dom(f2)

f1(i) if i ∈ dom(f1) ∧ i /∈ dom(f2)

f2(i) if i /∈ dom(f1) ∧ i ∈ dom(f2)

Validity is de�ned pointwise. If f is a resource and there exists i ∈ dom(f) such that |f(i)| =
None, then |f | = None. Otherwise, if ∀i ∈ dom(f), the core of f(i) exists, then |f | = Some g,

45

January 2, 2019

DRAFT

where g is a partial function mapping each i ∈ dom(f) to the core of f(i). We write {i 7→ a}
for the singleton map sending i to a, and f [i 7→ a] for the map

λx.

a if x = i

f(x) if x 6= i

which sends i to a and maps all other elements according to f .

Further examples of resource algebras will be given later on.

3.3 Basic Propositions and Semantic Entailment
As mentioned above, the Iris logic is parameterized by a family of resource algebras. �e idea

is that the user of Iris selects some resource algebras that they will need to model ghost state

for the program they want to verify. Formally, Jung et al. [66] de�ne a term

iProp :
∏

(I:Type)

(I → RA)→ Type

which is the parameterized type of Iris propositions. �e type I here is used to index a family

of resource algebras, while the second parameter is a function mapping indices to the corre-

sponding algebras.

�e situation here is di�erent from what the reader may be familiar with from other logics.

Traditionally, one presents a logic by inductively de�ning the syntax of propositions and col-

lections of rules used to prove entailments. Besides constructing derivations using these rules,

one may study the meta-theory of the logic using proof-theoretic techniques, or by constructing

and analyzing models.

However, in Iris, propositions and entailments are not inductively de�ned
2
. Rather, the type

iProp I f is in fact the (canonical) semantic model. Jung et al. [66] de�ne various connectives

as functions whose codomains are the type of propositions. For example, a term

and :
∏

(I:Type)

∏
(f :I→RA)

iProp I f → iProp I f → iProp I f

is de�ned, which represents intuitionistic conjunction. �en, a relation

entailment :
∏

(I:Type)

∏
(f :I→RA)

iProp I f → iProp I f → Prop

is de�ned, which represents semantic entailment. If P and Q are two Iris propositions, we

write P ` Q as shorthand for this entailment relation
3
. �is relation is shown to be re�exive

2
On paper, Jung et al. [66] �rst present a syntactic system with inductive de�nitions, which they justify by

the semantic model construction that I mention, but in the machine checked proofs only the semantic model is

constructed, and one works directly with the connectives de�ned in this model.

3
It is traditional in the study of logic to use � for this kind of a semantic entailment, however we will use ` to

stay closer to the notation used in most presentations of Iris.

46

January 2, 2019

DRAFT

Name Type Notation

and iProp→ iProp→ iProp P ∧Q
or iProp→ iProp→ iProp P ∨Q
implication iProp→ iProp→ iProp P ⇒ Q

exists
∏

τ :Type(τ → iProp)→ iProp ∃x : τ. P

forall
∏

τ :Type(τ → iProp)→ iProp ∀x : τ. P

pure Prop→ iProp pφ : Propq

separating conjunction iProp→ iProp→ iProp P ∗Q
separating implication iProp→ iProp→ iProp P −∗ Q
later iProp→ iProp .P

ownership GName→
∏

i:I f(i)→ iProp f I a : f(i)
γ

validity
∏

i:I f(i)→ iProp f I V(a : f(i))

persistently iProp→ iProp �P

weakest precondition Expr→ Mask→ (Val→ iProp)→ iProp wpE e {x. P}
invariant InvName→ iProp→ iProp P

ι

update Mask→ Mask→ iProp→ iProp |VE1 E2 [P]

Table 3.1: Connectives de�ned in the Iris model.

and transitive, and various lemmas are proved about entailment for the di�erent connectives

by appealing to the semantic model. At a high level, the model is a Kripke style semantics, in

which propositions represent step-indexed sets [4] of resources, and P ` Q holds when each

resource in P is also in Q. However, a user of Iris does not need to understand the underlying

model and can simply use the basic lemmas about entailment proved by Jung et al. [66]. For

that reason, we will not discuss the de�nition of the model.

While using the logic, we will �x a particular collection of resource algebras to use. It is

tedious to keep writing explicitly that connectives are parameterized by such a collection, so

subsequently we will assume that some collection of resource algebras has been selected, and

just write iProp for the type of Iris propositions using that implicit collection, unless we need

to explicitly refer to the indexing type or associated family of resource algebras. Similarly, we

will just write the type of a connective like and as iProp→ iProp→ iProp.

Table 3.1 lists some of the connectives that Jung et al. [66] de�ne in the semantic model of

Iris. Table 3.2 describes several types mentioned in the signatures of these connectives. As we

will see, some connectives can be de�ned directly in terms of the others.

We now describe these connectives and rules for them. Since the connectives and entailment

are de�ned in the model, rather than being de�ned inductively by rules, the rules we list are

simply lemmas about these terms that Jung et al. [66] have proven to hold in the model. �e

�rst several entries in Table 3.1 are the standard connectives of intuitionistic logic, and they

47

January 2, 2019

DRAFT

Name De�nition Meta-variable

GName N γ

InvName N ι

Mask N → Prop E

Table 3.2: Additional types used in the Iris connectives. Jung et al. [66] de�ne Mask as arbi-

trary subsets of natural numbers, as we do here, but in their machine checked proofs they use

an alternate representation that contains �nite sets, co�nite sets, and is closed under union,

intersection, and complement operations.

P ∧Q ` P P ∧Q ` Q
P ` Q P ` R

P ` Q ∧R
P ` P ∨Q Q ` P ∨Q

P ` R Q ` R
P ∨Q ` R

P ∧Q ` R
P ` Q⇒ R

P ` Q⇒ R

P ∧Q ` R
∀t : τ. (P ` [t/x]Q)

P ` (∀x : τ. Q)

t : τ

(∀x : τ. P) ` [t/x]P

∀t : τ. ([t/x]P ` Q)

(∃x : τ. P) ` Q
t : τ

[t/x]P ` ∃x : τ. P

φ

P ` pφq

φ→ (True ` P)

pφq ` P
∀x : τ. pφq ` p∀x : τ. φq

Figure 3.2: Rules for intuitionistic connectives.

behave as in that se�ing. Rules for the intuitionistic connectives are given in Figure 3.2. Note

that the quanti�cation variable x for the quanti�ers ∃ and ∀ can range over an arbitrary type

τ , including the type iProp itself, making the logic higher-order. �e p·q connective embeds

meta-propositions of type Prop into Iris. We call embeddings pφq pure assertions. We can use

this to de�ne True and False as the embeddings of their meta-equivalents:

False , pFalseq True , pTrueq

In addition, we have the separating conjunction ∗ and separating implication−∗ (also called

“wand”) of separation logic. Some motivation for the notion of separating conjunction has

already been given in Chapter 1. �e important point is that a resource satis�es P ∗Q when it

can be split into two pieces, one that satis�es P and one that satis�es Q. Unlike intuitionistic

conjunction, in general, P 0 P ∗P . Separating implication−∗ is the right adjoint of separating

conjunction (just as intuitionistic implication⇒ is to intuitionistic conjunction ∧). A resource

satis�es P −∗ Q if when combined with an additional resource satisfying P , the result satis�es

Q. Rules for these connectives are shown in Figure 3.3.

48

January 2, 2019

DRAFT

P ∗Q ` P P ∗Q ` Q
P ` P ′ Q ` Q′

P ∗Q ` P ′ ∗Q′
P ` True ∗ P P ∗Q ` Q ∗ P

(P ∗Q) ∗R ` P ∗ (Q ∗R)
P ∗Q ` R
P ` Q −∗ R

P ` Q −∗ R
P ∗Q ` R

Figure 3.3: Rules for spatial connectives.

Later-Mono

P ` Q
.P ` .Q

Later-Intro

P ` .P
Later-Sep

.(P ∗Q) a` .P ∗ .Q ∀x : τ. . P ` . ∀x : τ. P

.∃x : τ. P ` . False ∨ (∃x : τ. . P)
Löb

(.P ⇒ P) ` P

Figure 3.4: Rules for later modality.

Next, we have the later modality . [88]. For intuition, one can think of the logic as being

strati�ed over “steps” of time (later, these steps will be linked to steps of program execution).

�en, .P holds at the present step ifP holds in the next step of time. �e purpose of introducing

this strati�cation is that it allows us to take �xed points using the guarded �xed point operator

µx : τ. P , so long as occurrences of x in P appear underneath a . (such occurrences are then

said to be “guarded”). See Figure 3.4 for rules about these connectives. �e rule Löb permits a

form of inductive reasoning called Löb induction, in which to show that P holds it su�ces to

show P under the additional assumption that it holds one time step later (i.e., .P). We o�en

have occasion to repeat a modality like . several times, which we will indicate by annotating

the modality with a superscripted natural number. For example, .n is the modality obtained by

repeating . a total of n times.

Ownership of a resource a from a resource algebraM is represented by an assertion a : M
γ
,

where γ is a “ghost” name used to distinguish two di�erent “instances” of the algebra M . �e

reason for introducing names is that the proof for two code modules may use the same kind

of resource, but the resources used in each proof are distinct and not meant to interact. �e

algebra M must belong to the family used to instantiate the type of Iris propositions. We will

simply write a
γ

when the type of a is clear. Validity of a resource a is also internalized in the

logic as a proposition V(a). Rules for ownership and validity are shown in Figure 3.5. �e rule

Own-Sep indicates that ownership of the composition a · b is equivalent to separately owning

a and b. Next, Own-Val ensures that if a resource is owned, it is valid. We can use this with

Val-Elim to prove that ownership of certain resource combinations is impossible. For example,

recall the exclusive resource algebra Ex(T) from Example 3.2. Using the rules from Figure 3.5,

49

January 2, 2019

DRAFT

Own-Sep

a · b : M
γ a` a : M

γ ∗ b : M
γ

Own-Val

a : M
γ ` V(a)

Val-Comp

V(a · b) ` V(a)

Val-Elim

¬V(a)

V(a) ` False

Figure 3.5: Rules for ownership. �e resource algebra M must belong to the family of algebras

used to instantiate the logic.

for any t1 : T and t2 : T we have:

ex(t1)
γ ∗ ex(t2)

γ ` ex(t1) · ex(t2)
γ

`
γ

` V()

` False

hence, only one resource from this algebra can be owned at a time, explaining the name “ex-

clusive”.

As mentioned above, the separating conjunction is substructural. In particular, P 0 P ∗ P
for arbitrary P because assertions represent ownership of resources. Concretely, we can see

that if we take P to be a
γ

then we only expect a
γ ` a

γ ∗ a γ
to hold if a = a · a. If a is

the core of some other resource, then we know that a = a · a does indeed hold, so ownership

assertions for this resource can be duplicated. More generally, if the resources that satisfy an

assertion P are cores, then ownership of P can be duplicated. �e property that an assertion

holds for resources which are cores is internalized in the logic with a modality �, which is

called “persistently” or “intuitionistically” because �P can be duplicated and behaves like a

fully-structural intuitionistic assertion
4
. Rules for this modality are shown in Figure 3.6. To see

how this modality is used, we will show that a
γ ` a

γ ∗ V(a), that is, from ownership of a

resource, we can continue to own it and (separately) know it is valid. We have:

a
γ ` a

γ ∧ a
γ

` a
γ ∧ V(a)

` a
γ ∧�V(a)

` a
γ ∗�V(a)

` a
γ ∗ V(a)

where the second to last line follows from Pers-Sep.

3.4 Weakest Preconditions
We now discuss the connective that lets us use the logic to state and prove properties of pro-

grams. In Iris, the weakest precondition assertion has the form wpE e {x. P}. Recall from the

4
�is modality is similar in some ways to the exponential modality ! from linear logic [47].

50

January 2, 2019

DRAFT

P ` Q
�P ` �Q

�P ` P �P ` ��P �∀x : τ. P a` ∀x : τ. �P

�∃x : τ. P a` ∃x : τ. �P
Pers-Sep

�P ∧Q ` �P ∗Q
Pers-Dup

�P ` �P ∗�P

|a| = Some b

a : M
γ ` � b : M

γ V(a) ` �V(a)

Figure 3.6: Rules for � modality.

introduction that the notion of weakest precondition was introduced by Dijkstra [33] as an

alternative to Hoare triples. In the context of Iris, a resource satis�es wpE e {x. P} if from

ownership of that resource, we can ensure that ewill not fault, and if it terminates with a value

v, then [v/x]P will be satis�ed. Moreover, any threads forked by e will not fault either. We

will state this guarantee more precisely when we discuss the soundness theorem of Iris. �e

subscripted E is a set of natural numbers, which we call a mask. When E is the full set N, we

omit writing it. We also use > as an alternative notation for the full mask N. For now, we will

ignore the role of the mask.

Hoare triples can be encoded using weakest preconditions as follows:

{P } e {x. Q} , � (P −∗ wp e {x. Q})

i.e., given resources satisfying P , we can prove a corresponding weakest precondition whose

post-condition matches that of the triple. �e separating implication is wrapped in the�modal-

ity to ensure that the only non-duplicable resources needed for veri�cation of e are those ob-

tained in P . Although the Hoare triple notation may be more familiar to some, it is more

convenient to work with the weakest precondition form, both when constructing derivations

in the logic and when doing meta-theory
5
. For the instantiation of Iris with the ML-like lan-

guage we are considering in this section, one can also de�ne a points-to assertion l 7→ v, which

asserts ownership of the heap location l and indicates that it contains the value v, as usual in

separation logic. In particular, l 7→ v∗ l 7→ v′ ` False, since we cannot have separate ownership

of the same location l.
Generic structural rules for weakest precondition that hold for any language used with Iris

are shown in Figure 3.7, and specialized rules for the ML-like language using the points-to as-

sertion are given in Figure 3.8. �e rule WP-Frame is a version of the frame rule for weakest

precondition. Intuitively, it says that if Q is disjoint from whatever resources are used to es-

tablish the weakest precondition of e, then they must not be changed during execution of e,
so Q will hold in the postcondition. WP-Value says that the weakest precondition of a value v

5
Observe that the weakest precondition is a kind of modality, indexed by expressions. From this perspective,

the preference for working directly with weakest precondition rather than Hoare triples is similar to how modal

logicians work with a primitive modality �P rather than a compound proposition equivalent to Q⇒ �P .

51

January 2, 2019

DRAFT

WP-Frame

wpE e {x. P} ∗Q ` wpE e {x. P ∗Q}
WP-Value

[v/x]P ` wpE v {x. P}

WP-Mono

(∀v. Φ(v) −∗ Ψ(v)) ∗ wpE e {x. Φ(x)} ` wpE e {x.Ψ(x)}

Step-Later-Frame

expr to val(e) = None

wpE e {x. P} ∗ .Q ` wpE e {x. P ∗Q}

WP-Bind

wpE e {x.wpE K[x] {x′. P}} a` wpE K[e] {x′. P}

Figure 3.7: Generic structural weakest precondition rules.

can be established by showing that the postcondition holds for that value. WP-Mono is a form

of the rule of consequence for weakest preconditions. �e rule Step-Later-Frame is a strength-

ening of the frame rule, where we �nally have a connection between steps of execution and

the later modality .: if e is not a value, then at the point the postcondition holds, at least one

step will have elapsed and so we can convert .Q into just Q there. Finally, WP-Bind lets us

decompose the program into a subexpression e and an evaluation context K , and then prove

weakest preconditions for e and K �lled with whatever e may return.

�e language-speci�c rules in Figure 3.8 are wri�en in a “continuation passing style”, in

which the post-condition of the weakest precondition is some arbitrary predicate Φ, and the le�

of the entailment is divided into an assertion needed to execute the command and an implication

showing that the post-condition will hold a�er execution. For example, ml-store says that if

we have l 7→ v, and that l 7→ w −∗ Φ(()) then we can deduce wp l := w {Φ}. Moreover, we

only need to have the implication at one time step later, because it only needs to hold a�er we

are done executing the store. �is is what one might expect, because to do the store we need

permission to write to the location (represented by l 7→ v), and a�er the store is completed, l
will point to w and the return value will be (), so we should get back l 7→ w and need to prove

the post-condition. An alternative way of presenting this rule would be:

. l 7→ v ` wpE l := w {x. px = ()q ∗ l 7→ w} (3.1)

However, the style in Figure 3.8 is easier to use when doing fully formal proofs, because it can

be applied no ma�er what the shape of the postcondition is, whereas the “direct” alternative

requires explicitly using the monotonicity and framing rules when one is trying to prove a

weakest precondition that does not match the format of (3.1).

�e rest of the rules in Figure 3.8 can be understood similarly to ml-store, by comparing the

rule with the operational semantics of the corresponding command. �e interesting case is ml-

fork, where we must prove that the post condition Φ of the parent thread holds in one step and

separately must prove a weakest precondition for the newly forked thread running e, where

52

January 2, 2019

DRAFT

ml-alloc

. (∀l. l 7→ v −∗ Φ(l)) ` wpE ref v {Φ}
ml-load

. l 7→ v ∗ . (l 7→ v −∗ Φ(v)) ` wpE !l {Φ}

ml-store

. l 7→ v ∗ . (l 7→ w −∗ Φ(())) ` wpE l := w {Φ}

ml-faa

. l 7→ z1 ∗ . (l 7→ (z1 + z2) −∗ Φ(z1)) ` wpE FAA(l, k) {Φ}

ml-cas-fail

. l 7→ w ∗ pw 6= v1q ∗ . (l 7→ w −∗ Φ(false)) ` wpE CAS(l, v1, v2) {Φ}

ml-cas-success

. l 7→ v1 ∗ . (l 7→ v2 −∗ Φ(true)) ` wpE CAS(l, v1, v2) {Φ}

ml-rec

.wpE
(
[v/x][(rec f x. e)/f]e

)
{Φ} ` wpE

(
(rec f x. e) v

)
{Φ}

ml-fork

.Φ(()) ∗ .wp> e {True} ` wpE fork{e} {Φ}

Figure 3.8: Speci�c weakest precondition rules for the ML-like language.

the postcondition is simply True. �is postcondition su�ces because we merely want to ensure

that e does not get stuck, and do not care about the value it returns. To be�er understand the

ml-fork rule, consider the following derived rule that is obtained by combining ml-fork with

WP-Bind:

.wp
(
K[()]

)
{Φ} ∗ .wp e {True} ` wp

(
K[fork{e}]

)
{Φ}

Recalling the resource interpretation of separation logic connectives, this says that to verify a

program which forks an expression e in an evaluation context K , it su�ces to establish, using

separate resources, weakest preconditions for the continuation of the parent thread and the

newly forked child thread e. �is is therefore analogous to the reading of O’Hearn’s concurrent

composition rule discussed at the beginning of §1.2.3.

To see how these weakest precondition rules are used, consider the following very simple

program:

let l = ref 0 in fork{!l}
�e program allocates a new location with initial value 0, then forks a thread which simply

reads from that location. We will establish an entailment involving a weakest precondition

whose meaning implies that the program does not get stuck:

True ` wp
(
let l = ref 0 in fork{!l}

)
{x. True} (3.2)

We will start by giving a fully formal proof using the rules explained so far. �e proof proceeds

by a form of backward reasoning. We will repeatedly apply the weakest precondition rules,

53

January 2, 2019

DRAFT

along with transitivity of entailment, to “simplify” the right hand side of the entailment. To

start and illustrate the general pa�ern, observe that by WP-Bind,

wp ref 0
{
x.wp

(
let l = x in fork{!l}

)
{True}

}
` wp

(
let l = ref 0 in fork{!l}

)
{True}

hence by transitivity of entailment, to establish (3.2) it su�ces to show

True ` wp ref 0
{
x.wp

(
let l = x in fork{!l}

)
{True}

}
In the following, we will omit indicating that we are using transitivity of entailment, simply

writing

A

B
H

to indicate that to prove the entailment B, it su�ces to show A, where the optional annotation

H indicates the primary rule used to justify this step. Continuing, we have then:

True ` ∀x. x 7→ 0 −∗ wp
(
let l = x in fork{!l}

)
{True}

True ` . (∀x. x 7→ 0 −∗ wp
(
let l = x in fork{!l}

)
{True})

Later-Intro

True ` wp ref 0
{
x.wp

(
let l = x in fork{!l}

)
{True}

} ml-alloc

Recall from Figure 3.2 to that to introduce a universal quanti�er in the logic, it su�ces to prove

the corresponding statement quanti�ed at the meta-level. Hence, let x be an arbitrary program

location (i.e., an arbitrary positive natural number). �en, from what we have established so

far, it su�ces to show True ` x 7→ 0 −∗ wp
(
let l = x in fork{!l}

)
{True}, for which we have:

Later-Intro

True ` . True

Later-Intro

x 7→ 0 ` . x 7→ 0

x 7→ 0 ` True

True ` . (x 7→ 0 −∗ True)
x 7→ 0 ` . x 7→ 0 ∗ . (x 7→ 0 −∗ True)

x 7→ 0 ` (wp !x {True})
ml-load

x 7→ 0 ` . (wp !x {True})
Later-Intro

True ∗ x 7→ 0 ` . True ∗ . (wp !x {True})
x 7→ 0 ` . True ∗ . (wp !x {True})
x 7→ 0 ` wp fork{!x} {True}

ml-fork

x 7→ 0 ` . (wp fork{!x} {True})
Later-Intro

x 7→ 0 ` wp
(
let l = x in fork{!l}

)
{True}

ml-rec

True ` x 7→ 0 −∗ wp
(
let l = x in fork{!l}

)
{True}

3.5 Invariants and Updates for Concurrency
Although the example we just considered involved forking a new thread, there was no subse-

quent interaction between the parent thread and the child thread. Consider the slightly di�erent

54

January 2, 2019

DRAFT

program

let l = ref 0 in

let = fork{!l} in
!l

in which the parent thread now reads l a�er forking the child. If we try to adapt the proof for

the �rst example to this version, we get stuck when we reach the part of the derivation a�er

invoking ml-fork. Instead of having to show

x 7→ 0 ` . True ∗ . (wp !x {True})

we now must show

x 7→ 0 ` . (wp !x {True}) ∗ . (wp !x {True})

where we have to prove a weakest precondition for the parent and child thread, which are now

both going to read from l. However, the mechanisms of Iris that we have discussed so far do

not su�ce to proceed, because we would need to duplicate the assumption x 7→ 0 to prove the

separating conjunction, which we cannot do.

In general, to reason about the interaction of threads, we need to state the conventions that

each is supposed to follow (e.g., an analogue of the rely and guarantee conditions explained in

Chapter 1). �e mechanism for doing this in Iris is to use a combination of special resources

and an assertion called an invariant. �e proposition P
ι

indicates that P has been established

as an invariant, and the invariant has been assigned the name ι, which is a natural number.

�ese names are used just as a book-keeping device to keep track of the status of various in-

variants. �e idea is that once an invariant P
ι

is established, it can be temporarily “opened”

to obtain resources satisfying P , and then later it can be “closed” by giving up (possibly dif-

ferent) resources satisfying P . While open, we say the invariant is disabled, and when closed

it becomes enabled again. Once an invariant is established, the various threads must ensure

that it remains enabled a�er they complete a step, but correspondingly can expect that it will

be enabled at the start of each step, so that they may temporarily open it. �e assertion P
ι

just represents knowledge that a certain invariant exists, so it can be duplicated, and we have

P
ι ` � P

ι
.

�e “opening” and “closing” manipulations of invariants are done using the update modal-
ity6 |VE1 E2P , where E1 and E2 are sets of invariant names. A resource satis�es this assertion if,

by opening invariants with names in E1, performing certain transformations of resources, and

then closing invariants, we end up with a resource satisfying P and all of the invariants in E2

are enabled. We write > for the full set of all invariant names, and we write |VE as an abbrevi-

ation for |VE E
. �e kinds of transformations of resources permi�ed are those which preserve

validity of composition with other resources that can validly “co-exist” with a. Formally, given

a set of resources B, we de�ne a B to hold if for all a′ such that V(a · a′), there exists b in B
such that V(b · a′) holds. If a B holds, we say that a can be (non-deterministically) updated

to an element of B.

6
Jung et al. [66] call this the “fancy update” modality, in contradistinction to a more primitive “basic” modality.

However, the la�er will not be described here, so we will not use the word “fancy’.

55

January 2, 2019

DRAFT

Rules for the update modality are shown in Figure 3.9. �e rule Res-Update lets us transform

a resource within an ownership assertion. �e rule Res-Alloc lets us create or “allocate” an

initial resource for some fresh ghost name γ, which is non-deterministically selected.

Invariants are manipulated using the rules InvAlloc and InvOpen. �e �rst lets us allocate

a new invariant for P if we can prove that .P holds
7
. We can select some in�nite set E ′ and are

guaranteed that the new ι for the invariant belongs to this set. InvOpen lets us do an update to

open an invariant P
ι
, so long as ι is in the set of enabled invariants for the update. Underneath

the update modality, we obtain .P and a separating implication that lets us close the invariant

by giving up .P again.

Rule Upd-Intro lets us introduce the update modality. If we have resources satisfying P ,

then they continue to satisfy P if in between we open an invariant and then later close it.

Upd-Trans is a kind of transitivity property that lets us collapse nested updates, so long as the

invariants needed for the inner modality are precisely the ones enabled at the end of the outer

modality. �e update modality has a frame rule for propositions (Upd-Frame) and for additional

invariants (Upd-Mask-Frame). �e la�er is justi�ed by the fact that if we did not rely on the fact

that an invariant in Ef was enabled to establish |VE1 E2P , then we could not have disabled that

invariant.

�e rule Upd-Timeless says that we can also replace a later modality with an update modal-

ity when the proposition under the modality belongs to a class of propositions which are

called timeless. Figure 3.10 lists various timeless propositions and closure properties for this

class of propositions. In particular, both the points-to assertion and resource ownership asser-

tions are timeless
8
, and timelessness is closed under the basic connectives of separation logic.

When working with timeless propositions, the following rule, which can be derived from Upd-

Timeless, Upd-Mono, and Upd-Trans, is useful:

Upd-Timeless’

timeless(P)

|VE1 E2 .P ` |VE1 E2P

Finally, we have rules that let us use the update modality while proving weakest precon-

ditions, and we can now explain the meaning of the mask E in the weakest precondition

wpE e {x. P}: it represents the set of invariants that are enabled for use while verifying e.
�e rules Upd-WP and WP-Upd let us perform updates before a weakest precondition or in the

postcondition. Atomic says that when reasoning about an atomic expression e we can tem-

porarily open up invariants (via the outer |VE1 E2
) so long as we close them in the postcondition

(which is done by the |VE2 E1
). �is is sound because e is atomic, so it will take a single step, and

therefore no other thread can observe that the invariant was disabled “during” the execution of

e.
Let us now see how invariants can be used to solve the problem we encountered when we

had two threads that needed to read from the same memory location. Recall that we needed to

7
Recall that P ` .P .

8
When using the more general notion of camera in Iris instead of the simpli�ed resource algebras we are

considering here, ownership of ghost resources is not necessarily timeless.

56

January 2, 2019

DRAFT

Res-Alloc

G is �nite V(a)

P ` |VE E ∃γ 6∈ G. a : M
γ

Res-Update

a A

a
γ ` |VE E ∃a′ ∈ A. a′ γ

Res-Unit-Alloc

M has a unit

P ` |VE E ε : M
γ

InvAlloc

E ′ in�nite

.P ` |VE E ∃ι. pι ∈ E ′q ∗ P ι

InvOpen

ι ∈ E
P

ι ` |VE E\{ι} (.P ∗ (.P −∗ |VE\{ι} E True))

Upd-Intro

E2 ⊆ E1

P ` |VE1 E2 |VE2 E1P
Upd-Trans

|VE1 E2 |VE2 E3P ` |VE1 E3P

Upd-Mono

P ` Q
|VE1 E2P ` |VE1 E2Q

Upd-Frame

(|VE1 E2P) ∗Q ` |VE1 E2 (P ∗Q)

Upd-Mask-Frame

E1 ∩ Ef = ∅
|VE1 E2P ` |VE1∪Ef E2∪Ef P

Inv-Pers

P
ι ` � P

ι

Upd-Timeless

timeless(P)

.P ` |VE EP

Upd-WP

|VE EwpE e {x. P} ` wpE e {x. P}
WP-Upd

wpE e
{
x. |VE EP

}
` wpE e {x. P}

WP-Mono-Upd

E1 ⊆ E2

(∀v. Φ(v) −∗ |VE2Ψ(v)) ∗ wpE1 e {x. Φ(x)} ` wpE2 e {x.Ψ(x)}

Atomic

atomic(e)

|VE1 E2wpE2 e
{
x. |VE2 E1P

}
` wpE1 e {x. P}

Figure 3.9: Rules for invariants and |V modality.

57

January 2, 2019

DRAFT

timeless(l 7→ v) timeless(a
γ
) timeless(V(a))

timeless(P) timeless(Q)

timeless(P ∧Q)

timeless(P) timeless(Q)

timeless(P ∗Q)

timeless(P) timeless(Q)

timeless(P ∨Q)

timeless(P) timeless(Q)

timeless(P ⇒ Q)

timeless(P) timeless(Q)

timeless(P −∗ Q)

∀t : τ. timeless(Φ(t))

timeless(∀x : τ. Φ(x))

∀t : τ. timeless(Φ(t))

timeless(∃x : τ. Φ(x))

Figure 3.10: Timeless assertions.

show

x 7→ 0 ` . (wp !x {True}) ∗ . (wp !x {True})

but we could not duplicate the x 7→ 0 assertion to give to both threads. To handle this, before

forking we will create an invariant of the from x 7→ 0 . �en, each thread will be able to open

the invariant, perform its respective read, and then close the invariant. �e following derivation

shows how the invariant is created prior to forking:

∃ι. x 7→ 0
ι ` . (wp !x {True}) ∗ . (wp !x {True})

∃ι. x 7→ 0
ι ` (wp (let = fork{!x} in !x) {True})

ml-fork,WP-Bind,ml-rec

|V>∃ι. x 7→ 0
ι ` |V>(wp (let = fork{!x} in !x) {True})

Upd-Mono

x 7→ 0 ` |V>(wp (let = fork{!x} in !x) {True})
InvAlloc

x 7→ 0 ` (wp (let = fork{!x} in !x) {True})
WP-Upd

Eliminating the existential, we just have to show that for arbitrary ι,

x 7→ 0
ι ` . (wp !x {True}) ∗ . (wp !x {True})

Because x 7→ 0
ι ` � x 7→ 0

ι
we can duplicate the invariant assertion, so that it su�ces to

show that

x 7→ 0
ι ∗ x 7→ 0

ι ` . (wp !x {True}) ∗ . (wp !x {True})

�is splits into two identical cases, where in each we must prove

x 7→ 0
ι ` . (wp !x {True})

58

January 2, 2019

DRAFT

which is established by the following derivation

. x 7→ 0 ` . x 7→ 0

. x 7→ 0 −∗ |V>\{ι} >True ` x 7→ 0 −∗ |V>\{ι} >True

. x 7→ 0 −∗ |V>\{ι} >True ` . (x 7→ 0 −∗ |V>\{ι} >True)

. x 7→ 0 ∗ (. x 7→ 0 −∗ |V>\{ι} >True) ` . x 7→ 0 ∗ . (x 7→ 0 −∗ |V>\{ι} >True)

. x 7→ 0 ∗ (. x 7→ 0 −∗ |V>\{ι} >True) ` wp>\{ι} !x
{

|V>\{ι} >True
} ml-load

x 7→ 0
ι ` |V> >\{ι}

(
wp>\{ι} !x

{
|V>\{ι} >True

}) InvOpen, Upd-Mono

x 7→ 0
ι ` (wp !x {True})

Atomic

x 7→ 0
ι ` . (wp !x {True})

Later-Intro

�e top right of the derivation follows immediately from the fact that x 7→ 0 ` . x 7→ 0.

Although this use of invariants su�ced for this example, this solution is not completely

satisfying. First, once we have put x 7→ 0 into an invariant, no thread can ever change the

value of that location. Second, the solution seems slightly ad-hoc: do we really need to create

such a special invariant each time we want to share access to such a location?

We can obtain a more �exible solution by de�ning a simpli�ed form of fractional permis-
sions [24, 25]. �e idea behind fractional permissions is to replace the points-to assertion l 7→ v

with an indexed version l
q7−→ v, where q is a rational number such that 0 < q ≤ 1. �e q repre-

sents “fractional” ownership of the location. When q = 1, the assertion is said to represent “full

ownership”, and all of the rules in Figure 3.8 hold with l
17−→ v in place of l 7→ v. In particular,

the location l can be read and modi�ed. However, if q < 1, then the assertion represents only

partial ownership, and the location l may only be read but not modi�ed using the permission.

�at is, when q < 1, we only have an analogue of ml-load:

ml-load-frac

. l
q7−→ v ∗ . (l

q7−→ v −∗ Φ(v)) ` wp !l {Φ}

Permissions can be joined and split using the rule

l
q17−→ v1 ∗ l

q27−→ v2 a` l
q1+q27−−−→ v1 ∗ pq1 + q2 ≤ 1 ∧ v1 = v2q

Read from le� to right, this says that we can combine two fractional permissions for a location

l. A�er doing so, we will also know that the combined permission must be less than or equal

to 1, and that the values pointed to by l in each permission are equal. From right to le�, we can

split a permission so long as the split fractions add up to the original value.

With these fractional permissions, we can verify the example with a parent and child thread

reading from a common location just by spli�ing a permission l
17−→ v into l

1/27−−→ v ∗ l 1/27−−→ v,

and then passing each half to the two threads.

�e original development of fractional permissions in separation logic [24] required a novel

soundness proof with a new semantic model. However, the features of Iris are expressive

enough to permit us to de�ne them directly in terms of the original points-to assertion l 7→ v
and the connectives we have already seen. To do so, we have to use a construction called the

authoritative resource algebra [64]:

59

January 2, 2019

DRAFT

De�nition 3.11. Let M be a resource algebra with a unit. �e authoritative RA Auth(M) has

as a set of elements Opt(Ex(M))×M . Composition is de�ned component-wise, with validity

de�ned by:

V(ex(a)s, b) = ∃c. b · c = a ∧ V(a)

V(s, b) = False

V(⊥, b) = V(b)

Recall that since M has a unit, its core operation is total. �e core of Auth(M) is de�ned by:

|(a, b)| = (⊥, b′) where |b| = Some b′

We de�ne the notations • a , (ex(a)s, ε) and ◦ a , (⊥, a).

�e idea behind this construction is that • a represents some “authoritative” version of a

resource, and ◦ a represents a “claim” or “stake” in a fragment of the authoritative resource.

�at is, ownership of ◦ a is meant to guarantee that the authoritative element can be wri�en as

a product a · b for some b.
We will model fractional permissions using the resource algebra

Auth(FinMap(Loc, Frac× Ag(Val)))

�is algebra combines several constructions, making it initially appear complex, so we will

describe several of its properties. Valid elements of the algebra FinMap(Loc, Frac × Ag(Val))
consist of �nite partial functions mapping locations to pairs of the form (q, ag(v)), where q is

a fraction and v is a value of the ML-like language. We think of these as representing subsets

of the program heap, where each location in the domain is also associated with a fractional

value q. We will omit writing the ag(−) wrapper everywhere since any mapping that sends an

element to is invalid. Recall that we use the notation {l 7→ (q, v)} for the partial function

whose domain is the singleton l, which is sent to (q, v). Using the de�nitions of the operations

for the various constituent resource algebras, we obtain the following facts:

1. If V(• f · ◦ {l 7→ (q, v)}), then l ∈ dom(f), q ≤ 1, and f(l) = v.

2. If V(◦ {l 7→ (q1, v1)} · ◦ {l 7→ (q2, v2)}), then

◦ {l 7→ (q1, v1)} · ◦ {l 7→ (q2, v2)} = ◦ {l 7→ (q1 + q2, v1)}

and both q1 + q2 ≤ 1, and v1 = v2.

Using these facts about validity, we have corresponding rules for ownership:

• f γ ∗ ◦ {l 7→ (q, v)} γ ` pl ∈ dom(f) ∧ f(l) = v ∧ q < 1q

◦ {l 7→ (q1, v1)} γ ∗ ◦ {l 7→ (q2, v2)} γ a` ◦ {l 7→ (q1 + q2, v1)} γ ∗ pq1 + q2 ≤ 1 ∧ v1 = v2q

60

January 2, 2019

DRAFT

�e second is similar to the form of the join/split rule for fractional permissions mentioned

above. Indeed, we will now de�ne the fractional permission as ownership of an appropriate

singleton resource. Given a ghost name γ, we de�ne

l
q7−→γ v , ◦ {l 7→ (q, v)} γ

�e second rule about ownership of these resources then becomes:

l
q17−→γ v1 ∗ l

q27−→γ v2 a` l
q1+q27−−−→γ v1 ∗ pq1 + q2 ≤ 1 ∧ v1 = v2q

�e only di�erence relative to regular fractional points-to assertions is that the assertion has

to be annotated with the ghost name γ.

Now, we just need to link this resource to the corresponding state of the actual program

and show that the weakest precondition rules for fractional permissions hold for this encoding.

We will establish this linkage using an invariant. We �rst de�ne an assertion FracInvγ :

FracInvγ , ∃f. • f
γ ∗ ∗

l∈dom(f)

l 7→ snd (f(l))

�e large∗ above represents an iterated separating conjunction. �is states ownership of the

full resource for some map f , and that for every location l in the domain of f , there is a points-

to assertion mapping l to snd (f(l)). We will show that combined with the knowledge that

an invariant FracInvγ
ι

holds, the fractional permission we have de�ned su�ces to obtain the

expected weakest precondition rules. We explain the proof for allocation in detail, and brie�y

describe the argument for loading and storing. We start with the following lemma:

Lemma 3.12. For all γ, we have timeless(FracInvγ).

Proof. Unfolding the de�nition, and using the fact that timelessness is closed under existentials,

it su�ces to show that for all f we have timeless(• f γ∗∗l∈dom(f)l 7→ snd (f(l))). �is follows

by induction on the domain of f , using the fact that timelessness is closed under separating

conjunction.

We now establish a weakest precondition rule for allocation:

Lemma 3.13. Let E be a mask such that ι ∈ E . �en, the entailment

FracInvγ
ι ∗ . (∀l. l 17−→γ v −∗ Φ(l)) ` wpE ref v {Φ}

holds.

Remark. Unlike ml-alloc, which works with an arbitrary mask E , we have to assume here that

the invariant we are using for fractional permissions is enabled.

61

January 2, 2019

DRAFT

Proof. To start we have:

.
(
FracInvγ

ι ∗ (∀l. (l 17−→γ v) −∗ Φ(l))
)
` . (∀l. l 7→ v −∗ |VEΦ(l))

FracInvγ
ι ∗ . (∀l. (l 17−→γ v) −∗ Φ(l)) ` . (∀l. l 7→ v −∗ |VEΦ(l))

Later-Intro, Later-Sep

FracInvγ
ι ∗ . (∀l. (l 17−→γ v) −∗ Φ(l)) ` wpE ref v

{
|VEΦ

} ml-alloc

FracInvγ
ι ∗ . (∀l. (∃γ. l 17−→γ v) −∗ Φ(l)) ` wpE ref v {Φ}

WP-Upd

To continue, we apply Later-Mono, introduce the universal quanti�er on the right, and elimi-

nate the one on the le�, so that it su�ces to show that for arbitrary l,

FracInvγ
ι ∗ (l

17−→γ v −∗ Φ(l)) ` l 7→ v −∗ |VEΦ(l)

Introducing the wand on the right we have to show

l 7→ v ∗ FracInvγ
ι ∗ (l

17−→γ v −∗ Φ(l)) ` |VEΦ(l)

From here it su�ces to show that l 7→ v ∗ FracInvγ
ι ` |VE l

17−→γ v, since assuming this we

have

Φ(l) ` Φ(l)

l
17−→γ v ∗

(
l

17−→γ v −∗ Φ(l)
)
` Φ(l)

|VE
(
l

17−→γ v ∗
(
l

17−→γ v −∗ Φ(l)
))
` |VEΦ(l)

Upd-Mono

(|VE(l
17−→γ v) ∗ (l

17−→γ v −∗ Φ(l)) ` |VEΦ(l)
Upd-Frame

l 7→ v ∗ FracInvγ
ι
(l

17−→γ v −∗ Φ(l) ` |VEΦ(l)

To complete the last step of showing that l 7→ v∗ FracInvγ
ι ` |VE l

17−→γ v, we begin by opening

the invariant:

l 7→ v ∗ . FracInvγ∗
(
. FracInvγ −∗ |VE\{ι} E True

)
` |VE\{ι} E l

17−→ v

|VE E\{ι}
(
l 7→ v ∗ . FracInvγ∗

(
. FracInvγ −∗ |VE\{ι} E True

))
` |VE l

17−→ v
Upd-Trans, Upd-Mono

l 7→ v ∗ FracInvγ
ι ` |VE l

17−→ v
InvOpen

At this point, the full derivation tree becomes very unwieldy, so we will describe the next

few steps in prose. Using the fact that FracInvγ is timeless, we can eliminate the later guarding it.

Unfolding the de�nition, we eliminate the existential to get that for some f , we have ownership

of • f γ
and an iterated conjunction of points-to assertions in f . We know that l /∈ dom(f),

because if it were, then a second points-to assertion of the form l 7→ snd (f(l)) would be

contained in this iterated points-to assertion. Yet, before opening the invariant we already had

l 7→ v, and l 7→ v ∗ l 7→ snd (f(l)) ` False.

62

January 2, 2019

DRAFT

Since l /∈ dom(f), we can transform the resource to update f to now map l to (1, v). �at

is, we have that • f {• f [l 7→ (1, v)] · ◦ {l 7→ (1, v)}}. To see why, consider all a′ for which

• f · a′ is valid. We must have that a′ is ◦ f ′ for some f ′. �e domain of f ′ is a subset of f ,

so it is valid when composed with the extended map f [l 7→ (1, v)] and the singleton fragment

◦ {l 7→ (1, v)}.
Using Res-Update we therefore have:

• f γ ` |VE\{ι}
(
• f [l 7→ (1, v)]

γ ∗ ◦ {l 7→ (1, v)} γ)
�e right conjunct is equivalent to l

17−→γ v. We will now establish FracInvγ , choosing the

extended map f [l 7→ (1, v)] for the existential. To establish FracInvγ for this map, we need all of

the points-to assertions for the domain of f (which we obtained when we opened the invariant)

as well as l 7→ v, which we also have. Summarizing the above, it remains to show

|VE\{ι}
(
l

17−→ v ∗ FracInvγ ∗ (. FracInvγ −∗ |VE\{ι} E True)
)
` |VE\{ι} E l

17−→ v

which follows by eliminating the wand and using the frame and transitivity rules for updates.

Lemma 3.14. For all γ, if ι ∈ E , then the following entailments hold

FracInvγ
ι ∗ . l 17−→γ v ∗ . (l

17−→γ w −∗ Φ(())) ` wpE l := w {Φ}

FracInvγ
ι ∗ . l q7−→ v ∗ . (l

q7−→ v −∗ Φ(v)) ` wpE !l {Φ}
Proof. �e proofs of these rules are similar to the proof for allocation. In both cases, we use

the corresponding rule for the non-fractional permission (ml-store or ml-load, respectively)

and open the invariant for FracInvγ to obtain access to the non-fractional points-to fact needed

for these rules. An argument about the validity of the composition of the resource contained

in the invariant and the resource in the fractional permission assertion ensure that the desired

points-to fact will indeed exist. We then re-establish and close the invariant. In the case of

ml-store this requires �rst updating the resource contained in the invariant to account for the

newly stored value.

Finally, we just have to show that the FracInvγ invariant can be proved at the beginning of

a derivation:

Lemma 3.15. For all e, the following entailment holds

(∀ι, γ. FracInvγ
ι −∗ wp e {Φ}) ` wp e {Φ}

Proof. We will establish the invariant by choosing the empty map for the existential in FracInvγ .

By Upd-WP, we may perform updates under the |V> >
modality. We �rst apply Res-Alloc to

obtain ownership of • ∅ γ
for some γ, where ∅ is the empty mapping. �is su�ces to establish

FracInvγ , so that by using InvAlloc we have FracInvγ
ι

for some ι. It then su�ces to show

|V> >(FracInvγ ι ∗ (∀ι′, γ′. FracInvγ′
ι′ −∗ wp e {Φ})

)
` |V> >wp e {Φ}

which follows by eliminating the quanti�ers and the wand.

63

January 2, 2019

DRAFT

�is means that we can always start a veri�cation of a program by assuming that FracInvγ
ι

holds for some arbitrary ι and γ, and then we will be able to use the derived rules for fractional

permissions mentioned above. Since the invariant assertion is duplicable, we can use it as we

verify di�erent threads of a program.

�is example illustrates a common pa�ern in Iris, where we can use a combination of re-

sources and invariants to encode coordination between threads. Many more examples can be

found in the aforementioned Iris papers and the tutorial of Birkedal and Bizjak [22].

3.6 Style of Written Proofs
Unfortunately, formal derivations like the ones we’ve seen throughout this chapter are some-

what hard to read and write, and do not really convey the ideas behind the proof. �erefore, in

the rest of this dissertation, rather than presenting proofs in Iris fully formally, we will write

them in a style closer to the way normal mathematical proofs are wri�en. When considering

an entailment of the form P1 ∗ ... ∗ Pn ` Q, we think of the P1, ... , Pn as a list of assumptions

that may be used. Of course, the base logic is substructural, so some care is needed to make

sure that these assertions are not “used twice”. In order to prove an entailment like

P1 ∗ ... ∗ Pn ` Q1 ∗Q2

it su�ces to split the list of assumptions into disjoint sublists ∆1 and ∆2 and then show that

from ∆i we can prove Qi. When proving an entailment like P1 ∗ ... ∗ Pn ` Q −∗ R we will

say things like “Assume Q, . . . , thus R”, with the idea being that Q is added to this list of

assumptions, from which we then prove R. Certain idioms arise from the interpretation of

propositions as resources. For instance, when we have the assumption P and we know that

P ` Q, we will sometimes say “we transform P to get Q” or we “give up P and get back Q” to

mean that the assumption P is replaced by Q.

Another tedious aspect of formal derivations is the management of modalities like .. Note

that in the above, the Later-Intro rule must be repeatedly invoked at many points. Even more

bureaucratic manipulation is involved when the later modality appears on the le� side of an

entailment. For example, suppose we want to prove P ∗ . (P −∗ Q) ` .Q. To do so, we start

by showing

P ∗ . (P −∗ Q) ` .P ∗ . (P −∗ Q)

` . (P ∗ (P −∗ Q))

By then appealing to Later-Mono it su�ces to show thatP ∗(P −∗ Q) ` Q, which is immediate.

More generally, if we are trying to prove an entailment like:

P1 ∗ ... ∗ Pn ∗ .Q1 ∗Qm ` .R

then it su�ces to “strip o�” a later modality guarding any assumption on the le� and the goal

on the right, and prove

P1 ∗ ... ∗ Pn ∗Q1 ∗ ... Qm ` R

64

January 2, 2019

DRAFT

Rather than always writing out the intermediary steps that justify this, we will describe this

kind of reduction as “eliminating the . modality”.

Finally, notice that although we reason backwards (starting from the bo�om of the deriva-

tion and working up), we end up reasoning about the program itself in a forwards direction. As

we move up the derivation, rules like ml-alloc, ml-fork, and ml-load can be seen as symboli-

cally “executing” steps of the program. It is convenient to speak of executing steps as shorthand

for using these rules in a proof. �us, rather than explicitly applying WP-Bind and then using

a rule such as ml-alloc, we will instead say we allocate a new reference and obtain x 7→ 0 as

an assumption, for some new program location x.

Besides hopefully being more readable, this style is actually closer to how machine checked

Iris proofs are done. Formally, this reasoning style is justi�ed by de�ning a relation Γ
 Q
where Γ is a list of propositions, representing a context of assumptions. �is is de�ned by

se�ing

(P1, ... , Pn
 Q) , (P1 ∗ · · · ∗ Pn ` Q)

�en, various rules for this context formulation are derived from the rules for `. We will not

describe this further. �e interested reader can see the references on the Iris proof mode [73,

74].

65

January 2, 2019

DRAFT

66

January 2, 2019

DRAFT

Chapter 4

Iris: Generic Framework and Soundness

In the previous chapter, we have seen how Iris can be used to reason about programs wri�en in

a concurrent ML-like language. However, as mentioned, Iris can be used to reason about various

other programming languages as well. In this chapter, we discuss the more general framework

and also show how soundness of the logic is established. Again, this chapter summarizes ma-

terial from the Iris papers [64, 65, 66, 72, 116]. Readers familiar with these sources can skip this

chapter. �e only novelty is in §4.2, where the adequacy proof I describe is di�erent from the

version outlined by Jung et al. [66].

4.1 Generic Program Logic

With the exception of the weakest precondition, none of the connectives discussed in the pre-

vious chapter depend in any way on the semantics of the programming language which one

wants to reason about. Indeed, they are all de�ned without reference to any language, and all

the rules we have discussed so far about them are language independent.

Only the weakest precondition is parameterized by the semantics of a language. �e as-

sumptions made about this operational semantics are very weak, meaning it can be instantiated

(in principle) with a wide range of programming languages. Based on the semantics, weakest

precondition is de�ned in terms of the other Iris connectives. From there, rather generic “struc-

tural” rules are derived that will hold for any language that might be used with the framework.

Finally, various “li�ing” lemmas are developed to make it easier to prove rules speci�c to a

given programming language (such as the ones we saw involving the points-to connective for

the example language in the previous chapter).

4.1.1 Program Semantics

�e assumptions made about the language used when de�ning weakest precondition are shown

in Figure 4.1. �e structure will seem familiar from the language described in the previous chap-

ter. We assume there are three syntactic categories: expressions, values, and states, with partial

coercions expr to val and val to expr between expressions and values. We say an expression

67

January 2, 2019

DRAFT

Syntax:

Val v : ...

Expr e : ...

State σ : ...

ThreadPool T : List Expr

Syntactic Operations:

expr to val : Expr→ Option Val

val to expr : Val→ Expr

Per-�read Reduction: e;σ → e′;σ′;T

Figure 4.1: Input syntactic categories and judgments of generic concurrent language.

e is a value if

expr to val(e) 6= None

In addition, there is a small step reduction relation describing how a single thread can take a

step: e, σ → e′, σ′, T means that a thread executing e in a state σ can take a step to e′, updating

the state to σ′ and creating new threads for each expression in the list T . It is assumed that

values cannot take steps. As with the example language from the previous chapter, we de�ne:

red(e, σ) , ∃e′, σ′, T. (e;σ → e′, σ′, T)

and say that e is reducible in σ if this holds. An expression is again said to be atomic if whenever

it can take a step, the resulting expression is not reducible:

atomic(e) , ∀σ, e′, σ′, T. (e;σ → e′;σ′;T)⇒ ¬red(e′, σ′)

We then li� this single-thread semantics into a concurrent semantics in the same way we did

for the ML-like language in the previous chapter. Program con�gurations are tuples consisting

of a non-empty list of threads and a state. Concurrent transitions are speci�ed by the following

non-deterministic rule:

e;σ → e′;σ′;Tf

T1 ++ [e] ++ T2;σ → T1 ++ [e′] ++ T2 ++ Tf ;σ
′

4.1.2 Weakest Precondition
Having �xed a language, a notion of weakest precondition is de�ned out of the other connec-

tives we have seen. �e idea is that if the weakest precondition wp e {x. P} holds, then should

we execute e in any starting state:

68

January 2, 2019

DRAFT

1. it will not reach a “stuck state”, and neither will any threads generated during its execu-

tion, and

2. if it terminates with some value v, then [v/x]P will hold in the resulting program state.

�is will be stated more precisely below when we describe the adequacy statement of the logic.

Notice that so far we have assumed almost nothing about what the “state” of the language

is composed of. �erefore, the de�nition of weakest precondition is also parameterized by a

“state interpretation” predicate S : State → iProp which maps states to propositions. In full

generality, we de�ne an assertionwpSE e {x. P}, where the set E indicates what invariant names

are enabled. �e de�nition is as follows:

wpS , µwp. λ E , e, Φ.
(∃v. expr to val(e) = Some v ∧ |VEΦ(v)) ∨(

expr to val(e) = None ∧ ∀σ. S(σ) −∗

|VE ∅
(

red(e, σ) ∗ .∀e′, σ′, T. (e, σ → e′, σ′, T) −∗

|V∅ E
(
S(σ′) ∗ wp(E , e′, Φ) ∗∗e′′∈Twp(>, e′′, λ . True)

)))
�is is a guarded �xed point, consisting of a disjunction. �e �rst disjunct says that when e is

a value, we should be able to prove that the post-condition holds of the value a�er doing an

update. �e second disjunct says that if e is not a value, then for any possible state σ, if we are

given S(σ) then we have to show that e is reducible in σ, and for each thing it can reduce to,

we have to prove (1) the state interpretation for the new state (σ′), (2) the weakest precondition

for the resulting expression (e′), and (3) weakest preconditions for all of the threads it may fork.

Along the way, we may open up invariants using a update |VE ∅
, so long as we close them at

the end via |V∅ E
. Moreover, the recursive occurrences of wp in this de�nition all occur under

a later modality ., ensuring that the �xed point indeed exists.

Notice that in the de�nition above, we have the occurrence of a modality |VE ∅
followed

further on by |V∅ E
with an intervening later modality .. It is convenient to introduce notation

for the following compound modality called a “step-taking update”:

|V.VEP , (|VE ∅ . |V∅ EP)

Some specialized rules for this compound modality are shown in Figure 4.2. �e �rst two are

simple rules that can be derived from the rules already shown about . and |V. �e last rule,

step-fupd-commute-pure, is more complex. It lets us commute universal quanti�ers over pure

statements around repeated |V.V modalities, so long as quanti�cation is not over an empty

set.

Recall from the previous chapter that there were a number of generic structural rules about

weakest precondition that did not make reference to the particular semantics of the language

we were considering there. A selection of these rules are reproduced in Figure 4.3. All of these

rules can be derived from the de�nition of weakest precondition. �e only rule that requires

69

January 2, 2019

DRAFT

.P ` |V.VEP |VE ∅ |V∅ EP ` |V.VEP

step-fupd-commute-pure

{x | R(x)} inhabited

|V∅ > (|V.Vn
>∀x. pR(x)q⇒ pφ(x)q) a` ∀x. pR(x)q⇒ |V∅ > (|V.Vn

>pφ(x)q)

Figure 4.2: Rules for |V.V compound modality.

some special treatment is WP-Bind. When we discussed this rule in the context of the previ-

ous chapter, the language there had syntactic evaluation contexts that were used to structure

evaluation. In the generic case, rather than assume that the language has a syntactic category

of evaluation contexts, we say that an injective function K : Expr → Expr is an evaluation

context if it has the following properties:

1. For all e, if e is not a value, then neither is K(e).

2. If e;σ → e′;σ′, then K(e);σ → K(e′);σ′.

3. If e′1 is not a value andK(e′1);σ1 → e2;σ2, then there exists some e′2 such thatK(e′2) = e2

and e′1;σ1 → e′2;σ2.

�e �lling operation for the syntactic evaluation contexts of the ML-like example language has

all of these properties.

4.1.3 Li�ing Lemmas
�e weakest precondition rules shown so far are very “structural” or “generic”. Of course, they

have to be because we have not really assumed anything interesting about the generic language.

A�er instantiating the logic with a particular language, the user will need to prove additional

language speci�c rules. �e following rule (one of several “li�ing lemmas” in Iris) provides a

way to make it easier to derive such results:

wp-lift-step

expr to val(e1) = None

∀σ1. S(σ1) −∗ |VE ∅
(

red(e1, σ1) ∗

.∀e2, σ2, T. (e1, σ1 → e2, σ2, T) −∗ |V∅ E
(
S(σ2) ∗ wpSE e2 {x. P} ∗∗ef∈Twp

S ef { . True}
))

` wpSE e1 {x. P}

�is rule is complex, but has a somewhat natural reading. It says that if we want to establish

a weakest precondition about an expression e1 that is not a value, then we have to show that

for any state σ1 we could be in, that e1 can take a step, and for each possible thing it can step

to, we have to prove the weakest precondition for the result; moreover, if reducing e1 happens

70

January 2, 2019

DRAFT

WP-Frame

wpE e {x. P} ∗Q ` wpE e {x. P ∗Q}
WP-Value

[v/x]P ` wpE v {x. P}

Upd-WP

|VE EwpE e {x. P} ` wpE e {x. P}
WP-Upd

wpE e
{
x. |VE EP

}
` wpE e {x. P}

WP-Mono

E1 ⊆ E2

(∀v. Φ(v) −∗ |VE2Ψ(v)) ∗ wpE1 e {x. Φ(x)} ` wpE2 e {x.Ψ(x)}

Atomic

atomic(e)

|VE1 E2wpE2 e
{
x. |VE2 E1P

}
` wpE1 e {x. P}

Step-Later-Frame

expr to val(e) = None

wpE e {x. P} ∗ .Q ` wpE e {x. P ∗Q}

WP-Bind

K is a context

wpE e {x.wpE K(x) {x′. P}} a` wpE K(e) {x′. P}

Figure 4.3: Selection of generic weakest precondition rules.

to fork o� a list of threads T , we have to establish weakest preconditions for each of them. (If

T is an empty list, then the iterated conjunction∗ef∈T is just True.) In order to establish all

these obligations, we are given S(σ1), and are allowed to open up any enabled invariants in E
via the update |VE1 ∅

, but then we are also obliged to close these at the end via |V∅ E1
and prove

the new state interpretation S(σ2).

4.2 Adequacy
We return to the question of what exactly this de�nition of weakest precondition guarantees.

�e answer is summarized in the following adequacy theorem:

�eorem 4.1 (Adequacy). If [e1];σ1 →n [e2] ++ T ;σ2, and

True ` |V>∃S : State→ iProp. S(σ) ∗ wpS> e1 {x. pφ(x)q}

then

1. Every e ∈ [e2] ++ T is either reducible under σ2 or is a value.

2. If e2 is a value, then φ(e2) holds.

Recall that p·q is the embedding of meta-level propositions, so in the second statement here

we mean that φ(e2) holds at the meta-level. �is means that executing the initial thread e1 in

71

January 2, 2019

DRAFT

the state σ will not lead to any thread going wrong, and that the return value indeed satis�es

the postcondition. �e reason the postcondition is stated as a pure embedding is that we want

to say that it holds independent of any understanding of the semantic model of Iris assertions.

�is is only a partial correctness guarantee: if the program has a non-terminating execution,

then for that execution, the theorem merely ensures it never reaches a stuck state.

�is adequacy theorem has been proved several ways throughout the di�erent versions of

Iris. �e proof I give below follows the framework explained in Jung et al. [66], except that

more emphasis is placed on the role of the step-taking update compound modality |V.VE ,
whose importance was observed by Timany et al. [118].

�e proof of this theorem is divided into three steps. First, Jung et al. [66] show the “base”

part of the logic aside from weakest precondition is sound, in the following sense:

�eorem 4.2 (Soundness of Base Logic). If True ` .npφq then φ holds.

�is proof depends upon the details of how . and pφq are de�ned in the semantic model,

which we will not discuss. Because the semantic model will not change when we extend the

program logic to support probabilistic reasoning, we may continue to treat it as a black box.

Using this soundness theorem, one can deduce the following extension, where the .modal-

ity is replaced by iterated step-taking updates:

�eorem 4.3 (Soundness of Step-Taking Updates). If True ` |V.Vn
>pφq then φ holds.

We then prove that from a weakest precondition we can deduce the embedded forms of the

claims made in the adequacy statement, guarded by iterations of the step-taking update.

�eorem 4.4. If [e1] ++ T1;σ1 →n [e2] ++ T2;σ2, then

1. For all e ∈ [e2] ++ T2, the following is derivable

S(σ1) ∗ wpS> e1 {x. pφ(x)q} ∗∗e′∈T1wp
S
> e
′ { . True}

` |V.Vn+1
> pis val(e) ∨ red(e, σ2)q

2. If e2 is a value, then

S(σ1) ∗ wpS> e1 {x. pφ(x)q} ∗∗e′∈T2wp
S
> e
′ { . True}

` |V.Vn+1
> pφ(e2)q

�eorem 4.1 then follows by combining �eorem 4.3 and �eorem 4.4, and using the fact

that entailment is transitive.

Proof of �eorem 4.4. �e �rst step is to prove that if [e1] ++ T1;σ1 →n [e2] ++ T2;σ2, then

S(σ1) ∗ wpS> e1 {x. pφ(x)q} ∗∗e′∈T2wp
S
> e
′ { . True}

` |V.Vn
>

(
S(σ2) ∗ wpS> e2 {x. pφ(x)q} ∗∗e′∈T2wp

S
> e
′ { . True}

)
72

January 2, 2019

DRAFT

�e proof is by induction on n. �e base case is trivial. For the inductive case, we unfold the

de�nition of weakest precondition for whichever thread took the step; because the correspond-

ing thread just took a step, it is not a value, so the right disjunct of wp must hold. Eliminating

the −∗’s that occur in that disjunct gives us the desired results, however they are under an

additional |V.V> because of the occurence of the updates and laters in wp.

Again by unfolding the de�nition of weakest precondition, we have that for all e ∈ [e2]++T2:

S(σ2) ∗ wpS> e2 {x. pφ(x)q} ∗∗e′∈T2wp
S
> e
′ { . True}

)
` |V.V>pis val(e) ∨ red(e, σ2)q

and similarly, if e2 is a value,

S(σ2) ∗ wpS> e2 {x. pφ(x)q} ∗∗e′∈T2wp
S
> e
′ { . True}

)
` |V.V>pφ(e2)q

Pu�ing these two facts together with the inductive result, we get the conclusion of the theorem.

�e n + 1 iterations of |V.V> in the �nal result arise from n iterations in the inductive step,

plus an additional iteration for the �nal conclusion.

4.3 Instantiation
We now return back to the language considered in the previous chapter, describing how the

generic framework we have discussed is instantiated to obtain the language speci�c rules de-

scribed there. We �rst need to pick a state interpretation function. We can use a construction

similar to the one we used to de�ne fractional permissions in that chapter. Namely, we work

with the resource algebra

Auth(FinMap(Loc,Ex(Val)))

In place of maps to pairs of fractions and values, we just need maps to values. We use the

exclusive algebra for values since, unlike fractional permissions, one can only have a single

points-to assertion for a given location at a time. �e structure of this algebra leads to the

following derived rules:

heap-validity

•σ1 · ◦σ2
γ ` p∀l ∈ dom(σ2). σ1(l) = σ2(l)q

heap-alloc

l /∈ dom(σ)

•σ γ ` |VE •σ[l := v] · ◦ {l := v} γ

heap-update

l ∈ dom(σ2)

•σ1 · ◦σ2
γ ` |VE •σ1[l := v] · ◦σ2[l := v]

γ

Using this, we de�ne:

Sγh (σ) , •σ γ

l 7→γ v , ◦ {l 7→ v} γ

73

January 2, 2019

DRAFT

where γ is some arbitrary ghost name. We will omit writing the annotation γ, with the con-

vention that the same implicit γ is being used throughout proofs. Now the rule heap-validity

can be used to ensure that from l 7→ v ∗ Sh(σ) we can deduce that σ(l) = v. Using the above

rules for manipulating the heap resources and the li�ing lemma wp-lift-step, one can derive

the “high level” weakest precondition rules from Figure 3.8 in Chapter 3, in a manner similar

to the arguments described for the fractional permission encoding. �e main di�erence is that

instead of opening up an invariant, the state interpretation Sh is what links the resource algebra

to the physical state.

Lastly, the following lemma lets us apply the adequacy theorem (�eorem 4.1) directly to a

weakest precondition proved with this instantiation of the framework:

Lemma 4.5. If for all γ, True ` wpS
γ
h e {x. P}, then for all σ,

True ` |V>∃S. S(σ) ∗ wpS> e {x. P}

Proof. We use Res-Alloc to obtain •σ γ
for some γ, which is equivalent to Sγh (σ). By assump-

tion, wpS
γ
h e {x. P} holds for this choice of γ, and the result follows.

74

January 2, 2019

DRAFT

Chapter 5

Polaris: Extending Iris with Probabilistic
Relational Reasoning

�is chapter presents Polaris, an extension of Iris with support for probabilistic relational rea-

soning. As mentioned already, the Iris semantic model is unchanged during the extension. Only

the program logic changes, which is done by altering the de�nition of weakest precondition.

Now that we have seen over the previous two chapters both the speci�c instantiation of Iris with

the ML-like language as well as the general framework, we will explain Polaris by alternating

between the general set-up and an instantiation.

5.1 Program Semantics

5.1.1 Probabilistic Transitions
As before, the logic is parameterized by a generic operational semantics, but this time for a

probabilistic language. In addition to the assumptions about the language made in §4.1.1, we

further assume that there is a function

P : Expr× State× Expr× State× ThreadPool→ R

where P (e1, σ1, e2, σ2, T) is meant to describe the probability that the transition e1;σ1 →
e2;σ;T occurs. In other words, if we de�ne RedTo(e1, σ1) = {(e2, σ2, T) | e1;σ1 → e2;σ2;T},
then P (e1, σ1,−,−,−) will induce a distribution on RedTo(e1, σ1). We restrict to discrete dis-

tributions by requiring each RedTo(e1, σ1) to be countable. To ensure that P indeed describes

proper probability distributions, we further require:

1. P (e1, σ1, e2, σ2, T) is non-negative.

2. If RedTo(e1, σ1) is non-empty, then

∑
(e2,σ2,T)∈RedTo(e1,σ1)

P (e1, σ1, e2, σ2, T) = 1

75

January 2, 2019

DRAFT

Syntax:

Val v : ...

Expr e : ...

State σ : ...

ThreadPool T : List Expr

Config ρ : {T : ThreadPool | T 6= ∅} × State

Trace χ : {l : List Config | l 6= ∅}
Sched ϕ : Trace→ N

Per-�read Reduction: e;σ → e′;σ′;T

Concurrent Reduction: ρ i→ ρ′

|T1| = i e;σ → e′;σ′;Tf

T1 ++ [e] ++ T2;σ
i→ T1 ++ [e′] ++ T2 ++ Tf ;σ

′

Trace Semantics: χ −→ϕ χ
′

ϕ(χ, ρ) = i ρ
i→ ρ′

χ, ρ −→ϕ χ, ρ, ρ
′

ϕ(χ, ρ) = i ¬(∃ρ′. ρ i→ ρ′)

χ, ρ −→ϕ χ, ρ, ρ

Figure 5.1: Syntax and semantics of generic probabilistic concurrent language.

3. e1;σ1 → e2;σ2, T if and only if P (e1, σ1, e2, σ2, T) > 0.

�e �rst two requirements ensure that probabilities are non-negative and sum to 1 whenever we

consider a non-stuck con�guration. �e last requirement ensures that a step is said to happen

with non-zero probability exactly when the operational semantics permits the step.

As before, this per-thread reduction relation is then li�ed to a concurrent transition sys-

tem, whose rules and syntactic categories are shown in Figure 5.1. Whereas in the previous

chapter, concurrent reduction was modeled just with a non-deterministic relation, in order to

eventually discuss probabilities of concurrent transitions, we now need to describe how concur-

rent non-determinism will be resolved by a scheduler. Rather than explicitly modeling realistic

schedulers, we will represent them as functions over the whole history of the program exe-

cution. Of course, a real implementation of a scheduler never inspects the whole execution

history, but by conservatively considering this strong class of adversarial schedulers, results

we prove will also hold for realistic schedulers, as we motivated in Chapter 1.

As before, we de�ne con�gurations to be pairs of a non-empty thread pool and a state. �en

a trace χ is a non-empty list of con�gurations representing a partial execution. We write χ, ρ
for the trace which extends χ by appending the single con�guration ρ to the end. A scheduler

76

January 2, 2019

DRAFT

is a function ϕ of type Trace → N. Given such a scheduler, we de�ne a reduction relation

χ −→ϕ χ
′

on traces. If ϕ(χ) = i, then this indicates that the scheduler selects thread i to try

to run next a�er the partial execution χ to obtain χ′. If the scheduler returns a thread number

which cannot take a step or which does not exist, the system takes a “stu�er” step and the

current con�guration is repeated again at the end of the trace. We write curr(χ) for the last

con�guration in a trace. We write −→n
ϕ for the n-ary iteration of this relation, and if χ −→n

ϕ χ
′

holds then we say that χ reduces to χ′ in n steps under ϕ. A con�guration ρ is said to have

terminated if the �rst thread in the pool is a value. We say that χ is terminating in at most n
steps under ϕ if

∀χ′, n′. (n′ ≥ n ∧ χ −→n′

ϕ χ′)⇒ (curr(χ′) has terminated)

5.1.2 Indexed Valuation Semantics
We now want to use P and this reduction relation to de�ne a distribution on program execu-

tions given an initial state and a scheduler. However, in general, this would require measure

theoretic probability to handle properly: even though our language only involves countable

single step transition distributions, the set of all executions of a program may be uncountable if

the program does not necessarily terminate. However, if we restrict consideration to programs

that terminate in a bounded number of steps, we can avoid these issues
1
. Because Iris is a par-

tial correctness logic, restricting consideration to such terminating executions does not lead to

much further loss of generality.

With this restriction in place, we can interpret program executions as indexed valuations

(as explained in Chapter 2, indexed valuations can be interpreted as probability distributions,

and vice versa). Using P , we �rst de�ne indexed valuations

primStep(e1, σ1) : MI(Option (Expr× State× ThreadPool))

for per-thread steps from e1;σ1. If e1 is not reducible in state σ1, then this is the trivial indexed

valuation that always returns None. If e1, σ1 is reducible, then because RedTo(e1, σ1) is count-

able, we can take the set of indices to be precisely RedTo(e1, σ1). �en the decode function d
for this indexed valuation is just the function λx. Some(x), and probabilities are assigned to

indices with the function λ (e2, σ2, T). P (e1, σ1, e2, σ2, T).

We then li� this to an indexed valuation cfgStep(ρ, i) : MI(Option Config) which runs

primStep on the ith thread in ρ (if it exists), and otherwise just returns None. Using this, we

�nally de�ne an indexed valuation for the trace step relation:

tstepϕ(χ) , match cfgStep(curr(χ), ϕ(χ)) with

| Some ρ⇒ ret (χ, ρ)

| None⇒ ret (χ, curr(χ))

end

1
A more denotational alternative, based on an approach due to Kozen [70], is to interpret programs as monotone

maps on sub-distributions of states. �en recursive commands are interpreted as least �xed points. However,

because the original soundness proof of Iris is given in terms of a language with an operational semantics, I found

it more natural to use the semantics described in this section.

77

January 2, 2019

DRAFT

�is uses the scheduler ϕ to select which thread to run with cfgStep. As with the relational

trace step judgment, this “stu�ers” if we cannot step the selected thread. For each n, we de�ne

the indexed valuation resStepnϕ(χ) recursively by:

resStep0
ϕ(χ) , curr(χ)

resStepn+1
ϕ (χ) , χ′ ← tstepϕ(χ) ; resStepnϕ(χ′)

�is corresponds to stepping the trace n times and returning the �nal con�guration of the

resulting trace. We regard the “return value” of a concurrent program to be the value that

the �rst thread evaluates to, so in the event that the program terminates in n steps under the

scheduler, the �rst thread in the con�guration returned by resStepnϕ(χ) will be this return value.

However, when considering an expected value such as Eg[resStepnϕ(χ)] the function g must be

of type Config → R, so we have to say what real number to assign in the case where the

�rst thread has not terminated. We will do so by assigning an arbitrary value in that case.

(Later, the adequacy theorem for this logic will imply that this arbitrary value r does not a�ect

the expected value of programs for which we can prove an appropriate weakest precondition.)

Concretely, if f : Val→ R, we de�ne

coercefun(f, r) = λρ.

f(v) if ρ = ([v, ... ,], σ)

r otherwise

And then we will consider expected values of the form Ecoercefun(f,r)[resStepnϕ(χ)]. Similarly,

given a relation φ : Val × T → Prop we de�ne a li�ing of this relation to con�gurations as

follows:

coercepred(φ) = λ(ρ, x).

φ(v, x) if ρ = ([v, ... ,], σ)

False otherwise

An alternative to using these coercions would have been to work with a dependently typed

version, where the expected value is only de�ned if one can exhibit a proof that the program

terminates in a well formed value within n steps. However, such a de�nition is less convenient

to work with, because then one must constantly manipulate these termination proofs.

5.1.3 Randomization for the ML-Like Language
We now extend the language from Chapter 3 with a command for generating random bits with

a speci�ed probability. �e syntax of expressions and evaluation contexts is extended to be

e ::= · · · | flip(e1, e2)

K ::= · · · | flip(K, e) | flip(v,K)

with additional head step reductions

Flip-True

0 <
z1

z2

≤ 1

flip(z1, z2);σ →h true;σ

Flip-False

0 ≤ z1

z2

< 1

flip(z1, z2);σ →h false;σ

78

January 2, 2019

DRAFT

�e idea is that with probability
z1
z2

, flip(z1, z2) should return True, and otherwise return False.

For 0 ≤ z1
z2
≤ 1 we therefore de�ne

Pr(K[flip(z1, z2)], σ,K[true], σ, []) = z1
z2

Pr(K[flip(z1, z2)], σ,K[false], σ, []) = 1− z1
z2

All of the other possible per-thread reductions are deterministic, so we de�ne the corresponding

probabilities of their transitions to be 1.

5.2 Probabilistic Rules
We are now ready to discuss how to extend Iris with probabilistic relational reasoning. Our goal

is to be able to use the logic to prove that there exists a suitable coupling between the indexed

valuation of a program and some set I of indexed valuations. �e existence of an appropriate

coupling will let us use �eorem 2.8, so that we can bound the expected values of the program

by bounding the extrema of I .

To motivate the formulation of the extension, let us recall some of the background about

probabilistic relational reasoning in the pRHL logic of Barthe et al. that was described in Chap-

ter 1. �e idea there, following Benton’s Relational Hoare Logic [21], is to replace Hoare triples

with Hoare quadruples, in which pre and post-conditions become pre and post-relations about

pairs of programs. Translated to our se�ing, we would have assertions of the form:

{P } e ∼ I {x, y.Q}

where e is the program we are trying to relate to I , and in the post-relation Q, we would

substitute the return value of e in for x and the return value of I for y. �en, we would adapt

the standard Hoare rules to consider the pairs of steps of e and I , along with a special rule for

coupling when e makes a randomized choice.

Although the work of Barthe et al. shows that this approach can be useful for reasoning

about non-concurrent probabilistic programs, there is an issue with applying it in the concur-

rent se�ing: what do we do when e forks a new thread? We would then need to relate I to

multiple program expressions at once.

Instead, we adapt the idea originally developed by Turon et al. [122] for non-probabilistic

concurrent relational reasoning which was discussed in Chapter 1. Rather than including the

I as part of a Hoare quadruple, we add a new assertion Prob(I) to the logic. �at is, the speci-

�cation computation becomes just another kind of “resource” that can be transferred between

threads. Because Prob(I) is just an assertion like any other, we can control access to it between

threads by storing it in an invariant. �is idea of representing a speci�cation computation as a

resource assertion has been used in other separation logics based on Iris [75, 115].

We will then modify the de�nition of weakest precondition so that when an entailment of

the form

Prob(I) ` wpE e {x. ∃x
′.Prob(ret x′) ∗ pR(x, x′)q}

holds, it will imply the existence of an R-coupling between the concrete execution of e and

I . �e exact statement and the new de�nition of weakest precondition will be given in the

79

January 2, 2019

DRAFT

next section. We �rst describe some of the reasoning rules we will obtain with the new form of

weakest precondition. As we will see, the idea is that when a thread e owns Prob(x← I ; g(x))
and takes a randomized step, it will then have “permission” to modify Prob(I) by establishing

a coupling between its step and I .

5.2.1 Rules for the ML-Like Language

We start by examining what the resulting probabilistic rules look like for our example ML-like

language. Using the same state interpretation as in §4.3, all of the previous weakest precondition

rules from Figure 3.8 still hold. In addition, we have two new rules for flip(z1, z2):

flip-couple

0 ≤ z1

z2

≤ 1 ret true⊕ z1
z2

ret false ∼ I : R

.Prob(x← I ; F (x)) ∗ . (∀b. (∃x. Prob(F (x)) ∗ pR(b, x)q) −∗ Φ(b)) ` wpSh
E flip(z1, z2) {Φ}

flip-irrel

0 ≤ z1

z2

≤ 1

. (∀b. p(z1

z2

= 0⇒ b = false ∧ z1

z2

= 1⇒ b = true)q −∗ Φ(b)) ` wpSh
E flip(z1, z2) {Φ}

�ese rules are again wri�en in the same continuation-passing style as those from Figure 3.8.

�e �rst rule requires owning a monadic computation of the form x← I ; F (x), and we must

exhibit a coupling between a random choice between true and false, (weighted by
z1
z2

) and the

monadic speci�cation I . �en, a�erward, we get back the monadic resource, but updated so

that it is now of the form Prob(F (x)) for some x. In addition, b (the outcome of the flip(z1, z2)
command) and this x are related by R, the postcondition of the coupling we exhibited.

�e second rule, flip-irrel, lets us establish a weakest precondition about flip(z1, z2) in the

case where we do not want to couple its reduction to the monadic computation. In this case, all

we know is that if
z1
z2

is 0, then the return value must be false, and analogously if
z1
z2

= 1.

In both rules there is a side-condition requiring that
z1
z2

corresponds to a proper probability,

because otherwise the expression gets stuck.

5.2.2 Li�ing Lemmas

Now that we have seen rules for Prob(I) in the speci�c case of the ML-like language, let us turn

to the general se�ing. Just as Iris had the li�ing lemma wp-lift-step to derive language-speci�c

weakest precondition rules, Polaris has the following “coupling” li�ing lemma (di�erences from

80

January 2, 2019

DRAFT

wp-lift-step are highlighted in blue):

wp-lift-couple-step

expr to val(e1) = None

.Prob(x← I ; g(x)) ∗ ∀σ1. S(σ1) −∗ |VE ∅
(

red(e1, σ1) ∗ (.pprimStep(e1, σ1) ∼ I : Rq) ∗

. ∀e2, σ2, T, x. p(e1, σ1 → e2, σ2, T) ∧R(Some(e2, σ2, T), x)q ∗ Prob(g(x))

−∗ |V∅ E
(
S(σ2) ∗ wpSE e2 {x. P} ∗∗ef∈Twp

S ef { . True}
))

` wpSE e1 {x. P}

As with wp-lift-step, the rule says that to establish a weakest precondition about an expression

e1 which is not a value, we have to show that for any state σ1, assuming we have the state

interpretation S(σ1), that e1 is reducible in σ1 and for all e2, σ2, T which it can step to, we have

to prove the weakest precondition for e2 and all threads in T . However, we now also start with

Prob(x← I ; g(x)) and must exhibit an R-coupling between primStep(e1, σ1) and I . �en, in

addition to quantifying over the things e1 can step to, we also quantify over a return value x
for I , and get Prob(g(x)), the “updated” form of the probabilistic computation. In addition, we

can assume that R relates (e2, σ2, T) and x – that is, we’re reasoning as if the returned values

are linked by the coupling we exhibited.

�ere are cases where one wants to prove a weakest precondition about an expression whose

next step is either not randomized, or if it is randomized, has nothing to do with the coupling

we want to establish with the monadic computation (like flip-irrel). In that case, the above

rule turns out to be problematic to use: we don’t want to always have to own this Prob(I)
assertion just to take a step. Fortunately, the original wp-lift-step is still sound under the

modi�ed de�nition of weakest precondition, so we can use that instead. �is means that if

we take a pre-existing instantiation of Iris with some language, and we add some additional

probabilistic operations, any non-probabilistic language-speci�c rules derived in Iris using wp-

lift-step automatically also hold in Polaris.

Moreover, all other generic weakest precondition rules from Iris (some of which were listed

in Figure 4.3) continue to hold. �e only change is that in the rule WP-Bind, we must assume

the following fourth property about the context K :

4. For all e1, σ1, e2, σ2, T , if e1 is not a value, then

P (e1, σ1, e2, σ2, T) = P (K(e1), σ1, K(e2), σ2, T)

which ensures that the context does not a�ect transition probabilities.

Finally, we permit weakening ownership of a resource using the following rule:

ProbLe

I ′ ⊆p I
Prob(I) ` Prob(I ′)

We can use this to manipulate the I into a form required by something like wp-lift-couple-step.

Because I ′ ≡ I implies I ′ ⊆p I , it follows that if I ′ ≡ I then Prob(I)⇔ Prob(I ′).

81

January 2, 2019

DRAFT

5.3 Adequacy
In order to discuss the adequacy result for this extension, we �rst de�ne Prob(I) in terms of

the other connectives of Iris. �e approach is similar to how the state interpretation and l 7→ v
assertions were de�ned for the language in §3. Namely, if I has type MNI(T), we use the RA

2

Auth(Opt(Ex(MNI(T)))) so as to be able to represent an “authoritative” version of the monadic

computation along with a “fragment” that is used in the de�nition of Prob:

Probγ(I) , ∃I ′. pI ⊆p I ′q ∗ ◦ ex(I ′)
γ

�e fully formal de�nition here is parameterized by a ghost name γ. But, as before when the

same technicality arose with the de�nition of l 7→ v in §4.3, we can leave this name implicit as

long as we work with the convention that throughout a proof we quantify over some common

name.

�e authoritative RA instantiated with Opt(Ex(MNI(T))) supports the following derived

rules:

prob-res-validity

• ex(I1) · ◦ ex(I2)
γ ` pI1 ≡ I2q

prob-res-update

• ex(I) · ◦ ex(I)
γ ` |VE • ex(I

′) · ◦ ex(I ′) γ

prob-res-init

True ` ∃γ. |VE • ex(I) · ◦ ex(I)
γ

Essentially, because of the way that the exclusive RA works, we can freely change the repre-

sented monadic computation so long as we have both the authoritative and fragment resources.

�e following adequacy theorem for the logic will guarantee that if we prove an appropriate

weakest precondition involving Prob(I), then a certain coupling exists between the concrete

program and I :

�eorem 5.1. For all I : MNI(T) and φ : Val× T → Prop, if

True ` |V>∃S. ∀γ. S(σ) ∗ (Probγ(I) −∗ wpS> e1 {x. ∃x′. Probγ(ret x′) ∗ pφ(x, x′)q})

holds, and ([e1], σ1) terminates in at most n steps under the scheduler ϕ, then there exists a

coercepred(φ)-coupling between resStepnϕ([e1], σ1) and I .

�e following corollary lets us transfer bounds on the extrema of a monadic model to a

concrete program:

Corollary 5.2. Under the same assumptions and notation as �eorem 5.1, suppose f : Val→ R
and g : T → R are functions such that g is bounded on the support of I . If for all x and x′,
φ(x, x′) implies f(x) = g(x′), then for all r, Ecoercefun(f,r)[resStepnϕ([e1], σ1)] exists and

Emin
g [I] ≤ Ecoercefun(f,r)[resStepnϕ([e1], σ1)] ≤ Emax

g [I]

2
In the machine checked proofs, we instead use a version that does not �x the type T of the represented

monadic computation ahead of time. Speci�cally, we use the RA Auth(Opt(Ex(ΣT :TypeMNI(T)))), so that we

work with dependent pairs of a type T and a monadic computation of that type. However, within a given proof

one will only use a particular type T , so we do not describe the dependently typed version here.

82

January 2, 2019

DRAFT

Proof. By �eorem 5.1, there is a coercepred(φ)-coupling between resStepnϕ(e1], σ1) and I . We

next show that for all ρ and x, if coercepred(φ)(ρ, x) holds, then coercefun(f, r)(ρ) = g(x). From

the de�nition of coercepred(φ) there are two cases. In the �rst, ρ is of the form ([v, ... ,], σ) for

some v and σ and φ(v, x) holds, so by assumption f(v) = g(x) and coercefun(f, r)(ρ) = g(x).

In the second case, ρ is not of this form, but then coercepred(φ)(ρ, x) is False by de�nition, so

the conclusion follows immediately.

Applying Conseq, we obtain a (λρ, x. coercefun(f, r)(ρ) = g(x))-coupling. �eorem 2.8

then gives the desired conclusion.

Finally, we have an analogue of �eorem 4.1:

�eorem5.3. If [e1];σ1 →n [e2] ++ T ;σ2 and True ` |V>∃S. ∀γ. S(σ)∗(Probγ(I) −∗ wpS> e1 {x. pφ(x)q}),

then:

1. Every e ∈ [e2] ++ T is either reducible under σ2 or is a value.

2. If e2 is a value, then φ(e2) holds.

Like Iris, Polaris is a partial correctness logic. Note that �eorem 5.1 and Corollary 5.2 only

hold for schedulers under which the program is guaranteed to terminate in some number of

steps.

�e modi�ed de�nition of weakest precondition for which these results hold is (di�erences

highlighted in blue):

wpS , µwp. λ E , e, Φ.
(∃v. expr to val(e) = Some v ∧ |VEΦ(v)) ∨(

expr to val(e) = None ∧ ∀σ, I. (S(σ) ∗ • ex(I)
γ
) −∗

|VE ∅
(
pred(e, σ)q ∗ .∃R, I ′, F.

p(x← I ′ ; F (x) ⊆p I) ∧ primStep(e, σ) ∼ I ′ : Rq ∧ ∀e′, σ′, T, x.
p(e, σ → e′, σ′, T) ∧R(Some(e2, σ2, T), x)q −∗

|V∅ E
(
S(σ′) ∗ • ex(F (x))

γ ∗ wp(E , e′, Φ) ∗

∗e′′∈Twp(>, e′′, λ . True)
)))

Compared to the original de�nition of weakest precondition, this says that in the case where

e is not a value, we get not only the state interpretation S(σ) for some state, but also the

authoritative resource version • ex(I)
γ

of some monadic computation. From there, we have

to show that I is greater than or equal to x ← I ′ ; F (x) under the ⊆p ordering for some I ′
and F , and must exhibit anR-coupling between the reduction of e in state σ and I ′. �en, as in

the li�ing lemma, in addition to quantifying over what e can reduce to, we also quantify over

values x that can be returned by I ′, and can assume that the reducts of e and x are related by

R. Besides establishing the new state interpretation and weakest preconditions for the results

83

January 2, 2019

DRAFT

of stepping e, we also have to update the authoritative copy of the monadic computation to

• ex(F (x))
γ
.

�e proof of �eorem 5.3 is very similar to that of �eorem 4.1, so we will not discuss it. For

the proof of �eorem 5.1, we we start with the following result, which plays a role similar to that

of �eorem 4.4. Namely, we will show that if an appropriate weakest precondition holds, then

this entails the existence of the coupling guarded by iterated step-taking update modalities:

�eorem 5.4. Let ϕ be a scheduler and χ be some partial trace. If χ, ([e1] ++ T, σ) terminates

in at most n steps under ϕ, then

S(σ) ∗ • ex(I)
γ ∗ wpS> e1 {x. ∃x′. Probγ(ret x′) ∗ pφ(x, x′)q} ∗∗e′∈TwpS> e

′ { . True}

` |V.Vn+1
> presStepnϕ(χ, ([e1] ++ T, σ)) ∼ I : coercepred(φ)q

Proof. Before delving into the details, let us sketch the idea at a high level. We have re-de�ned

weakest precondition so that if it holds, then for each step of the concrete program there is a

coupling between that step and the current “head” of the monadic computation I . All we need

to do then is to combine these step-by-step couplings together to get a coupling between the

whole concrete program and I . �e way we combine them together is via the rule Bind. Of

course, as we unfold the de�nition of weakest precondition, the existence proofs for the step-by-

step couplings are under successively more iterations of the update and later modalities, which

is why the iterated step-taking update modality appears in the statement of the theorem.

Now, the formal proof is by induction on n. In the base case, e1 must be a value, (by the

assumption about termination) and resStep0
ϕ(χ, ([e1] ++ T, σ)) = ret ([e1] ++ T, σ). Because e1

is a value, we must be in the se�ing of the le� disjunct of wp, so the post-condition holds under

an update. Hence there exists some x′ such that ret x′ ⊆p I and φ(e1, x
′). �is means we have

pcoercepred(φ)(([e1] ++ T, σ), x′)q under the update modality. We eliminate the modality, and

then the existence of the coupling follows from Ret from §2.5.

For the inductive case where n > 0, set i = ϕ(χ, ([e1] ++ T, σ)). �en there are three

subcases, either: (1) i is greater than the length of [e1] ++ T , (2) the ith thread in [e1] ++ T is a

value, or (3) the ith thread is a non-value. For the �rst two of these three, the trace semantics

takes a stu�er step. We have cfgStep(([e1] ++ T, σ), i) ≡ ret None and hence

resStepnϕ(χ, ([e1] ++ T, σ)) ≡ resStepn−1
ϕ (χ, ([e1] ++ T, σ), ([e1] ++ T, σ)) (5.1)

�en χ, ([e1] ++ T, σ), ([e1] ++ T, σ) terminates in at most n− 1 steps under ϕ, so the induction

hypothesis applied to this extended trace gives us

|V.Vn
> presStep

n−1
ϕ (χ, ([e1] ++ T, σ), ([e1] ++ T, σ)) ∼ I : coercepred(φ)q

We may use the equivalence (5.1) to obtain:

|V.Vn
> presStep

n
ϕ(χ, ([e1] ++ T, σ)) ∼ I : coercepred(φ)q

Finally, we can weaken by an additional iteration of |V.V>.

For the third case, let ei be the ith thread in [e1] ++ T , so that there exists lists Tl and Tr
such that [e1] ++ T = Tl ++ [ei] ++ Tr. Set ρ = (Tl ++ [ei] ++ Tr, σ). We start by unfolding the

84

January 2, 2019

DRAFT

weakest precondition for ei. Because this thread is not a value, the right disjunct must hold.

Eliminating the �rst−∗ that occurs in that disjunct, in addition to the corresponding update and

later modalities, gives us that there exists I ′, F , and R such that

(x← I ′ ; F (x)) ⊆p I (5.2)

and

primStep(ei, σ) ∼ I ′ : R (5.3)

Rewriting by (5.2) and unfolding the de�nition of resStep, it su�ces to prove

|VE ∅ |V.Vn
>p
(
x← primStep(ei, σ) ; G(x)

)
∼
(
x← I ′ ; F (x)

)
: coercepred(φ)q (5.4)

where

G , λx.match x with

| Some (e′i, σ
′, T ′)⇒ resStepn−1

ϕ (χ, ρ, (Tl ++ [e′i] ++ Tr ++ T ′, σ′))

| None⇒ resStepn−1
ϕ (χ, ρ, ρ)

end

Note that because we eliminated the modalities in the weakest precondition, the outermost

|V.V> in what we are trying to prove has become just a |VE ∅
in (5.4).

De�ne

R′ , λx, y. R(x, y) ∧ ∃e′i, σ′1, T ′. x = Some((e′i, σ
′
1, T

′)) ∧ ei;σ1 → e′i;σ
′
1;T ′

We can strengthen the coupling in (5.3) to obtain primStep(ei, σ1) ∼ I ′ : R′ because ei is

reducible in σi, so the support of primStep(ei, σ1) only contains things which ei can step to in

state σ1. Applying Bind with this strengthened coupling, it su�ces to show:

|VE ∅ |V.Vn
>p∀x, y. R

′(x, y)⇒ G(x) ∼ F (y) : coercepred(φ)q

�e set {(x, y) | R′(x, y)} is inhabited. To see this, recall that for any non-deterministic R′-
coupling to hold, there must be an underlying R′-coupling between two indexed valuations.

And, an R′-coupling between two indexed valuations is itself an indexed valuation for which

R′ must hold on any elements of its support. Finally, the support of an indexed valuation must

be non-empty because the probabilities of all indices sum to 1, so at least one index must occur

with non-zero probability.

�us, we can use step-fupd-commute-pure and so it su�ces to prove

∀x, y. pR′(x, y)q⇒ |VE ∅ |V.Vn
>pG(x) ∼ F (y) : coercepred(φ)q

Introducing these quanti�er and the pure assertion R′, we have that x = Some((e′i, σ
′, T ′))

and ei;σ → e′i;σ
′;T ′, and R(x, y) holds. Simplifying the de�nition of G(x), it su�ces to show:

|VE ∅ |V.Vn
>presStep

n−1
ϕ (χ, ρ, (Tl ++ [e′i] ++ Tr ++ T ′, σ′)) ∼ F (y) : coercepred(φ)q

85

January 2, 2019

DRAFT

We can now eliminate the second wand and update modality in the de�nition of weakest

precondition for ei. We obtain S(σ′), • ex(F (y))
γ
, and the weakest precondition for e′i. More-

over, the extended trace χ, ρ, (Tl ++ [e′i] ++ Tr ++ T ′, σ′) terminates in at most n− 1 steps under

ϕ. We can thus apply the induction hypothesis to this extended trace, and the result follows.

Using this, the main coupling result follows straightforwardly:

Proof of �eorem 5.1. Using �eorem 4.3, it su�ces to show

True ` |V.Vn+2
> presStep

n
ϕ(([e1], σ1)) ∼ I : coercepred(φ)q

By assumption, we have:

True ` |V>∃S. ∀γ. S(σ) ∗ (Probγ(I) −∗ wpS> e1 {x. ∃x′. Probγ(ret x′) ∗ pφ(x, x′)q}) (5.5)

So from transitivity of entailment, we just have to show that

|V>∃S. ∀γ. S(σ) ∗ (Probγ(I) −∗ wpS> e1 {x. ∃x′. Probγ(ret x′) ∗ pφ(x, x′)q}
` |V.Vn+2

> presStep
n
ϕ(([e1], σ1)) ∼ I : coercepred(φ)q

We use prob-res-init to obtain • ex(I)
γ ∗ ◦ ex(I)

γ
for some γ. From ◦ ex(I)

γ
we get

Probγ(I). We eliminate the modality and existential on the le� side of the entailment. Instan-

tiating the universal quanti�er on the le� side with γ, we then have S(σ) for some S and

Probγ(I) −∗ wpS> e1 {x. ∃x′. Probγ(ret x′) ∗ pφ(x, x′)q}

A�er giving up Probγ(I) to eliminate this implication, we have what is needed to apply �eo-

rem 5.4, from which the conclusion follows.

In light of the de�nition of wp, the justi�cation of wp-lift-couple-step is straightforward,

because it is essentially the right disjunct of the weakest precondition. Unfolding the de�nition

of Prob and using prob-res-validity, ownership of Prob lets us conclude that the authoritative

copy of the monadic resource must be greater than or equal to the x← I ; g(x) in the statement

of the rule.

How do we show that wp-lift-step still holds, as claimed above? Recall that this rule is:

expr to val(e1) = None

∀σ1. S(σ1) −∗ |VE ∅
(

red(e1, σ1) ∗

.∀e2, σ2, T. (e1, σ1 → e2, σ2, T) −∗ |V∅ E
(
S(σ2) ∗ wpSE e2 {x. P} ∗∗ef∈Twp

S ef { . True}
))

` wpSE e1 {x. P}

So, the assumptions here let us discharge the non-probabilistic parts of the right disjunct of

wp, but not the new parts that require us to exhibit a coupling. Fortunately, when we have

86

January 2, 2019

DRAFT

• ex(I)
γ

in the course of proving wp, we can always rewrite this as • ex(x← ret () ; I)
γ
,

and then use Trivial to exhibit a coupling between the concrete reduction and ret ().

Finally, we have the following analogue of �eorem 4.5, which lets us more easily use the

probabilistic adequacy theorems above for the instantiation of the framework with the ML-like

language:

Lemma 5.5. If for all γh and γp, Prob
γp(I) ` wpS

γh
h e {x. P} then for all σ,

True ` |V>∃S. ∀γ. S(σ) ∗ (Probγ(I) −∗ wpS> e {x. P})

As before, the statement requires quantifying over the ghost names γh and γp. In the next

chapter we will suppress these annotations from our assertions, with the convention that they

are implicitly quanti�ed over.

Note that Corollary 5.2 gives us bounds on expected values of results returned by programs.

However, recall from §1.2.1 that we can always instrument a program in order to record the

number of steps taken by the program as a return value. In this way, we can use Corollary 5.2

to reason about complexity properties as well.

87

January 2, 2019

DRAFT

88

January 2, 2019

DRAFT

Chapter 6

Examples

In this chapter, we apply the program logic from the previous chapter to two of the introductory

examples described in §1.1: approximate counters and concurrent skip lists. Besides demon-

strating that Polaris can be used to verify interesting concurrent randomized algorithms, these

examples show how the program logic is used with the equational and quantitative rules for

the monad described in Chapter 2. In each example, we follow the same pa�ern. First, we for-

mulate a monadic model of the data structure’s behavior. Next, we use the program logic to

derive rules for establishing weakest preconditions for concrete programs that use these data

structures. We call these the “speci�cations”. Although the two algorithms are quite di�erent,

the proofs of these speci�cations follow a similar overall structure, which will become appar-

ent when the skip list example is described. Finally, by applying Corollary 5.2, the resulting

derivations reduce the analysis of the probabilistic behavior of a concrete program to that of

the monadic model.

6.1 Approximate Counter
We start by establishing results about weakest preconditions that relate the unbiased approxi-

mate counter algorithm from Figure 1.1c to the monadic computation approxN from Figure 2.2.

�e concrete code and monadic version are reproduced in Figure 6.1.

6.1.1 Speci�cation and Example Client
�e speci�cation rules we have proved about this data structure are given in Figure 6.2. �e

rules use a predicate ACounterγl,γp,γc(l, q, n), which can be treated by a user as an abstract predi-

cate representing the permission to perform n increments to the counter at l. �e parameter q is

a fractional permission [25] that we use to track how many threads can access the counter. (Ig-

nore the names γl, γp, and γc – we will describe how they are used when we give the de�nition

of ACounter later). �e rule ACounterNew says that we can create a new counter by allocating

a reference cell containing 0. It takes the monadic speci�cation Prob(approxN n 0) as a precon-

dition, and returns the full ACounter permission for n increments. �e rule ACounterSep lets

us split or join this ACounter permission into pieces. If we have permission to perform at least

89

January 2, 2019

DRAFT

incr l ,

let k = min(!l,MAX) in

let b = flip(1/(k + 1)) in

if b then (FAA(l, k + 1); ())

else ()

read l , !l

approxIncr ,

k ← ret 0 ∪ · · · ∪ ret MAX ;

ret (k + 1)⊕ 1
k+1

ret 0

approxN 0 z , ret z

approxN (n+ 1) z ,

k ← approxIncr ;

approxN n (z + k)

Figure 6.1: Approximate counter code and monadic model.

ACounterNew

Prob(approxN n 0) ` wp ref 0
{
l.∃γl, γp, γc,ACounterγl,γp,γc(l, 1, n)

}
ACounterSep

ACounterγl,γp,γc(l, q + q′, n+ n′) a` ACounterγl,γp,γc(l, q, n) ∗ ACounterγl,γp,γc(l, q
′, n′)

ACounterIncr

ACounterγl,γp,γc(l, q, n+ 1) ` wp incr l
{
ACounterγl,γp,γc(l, q, n)

}
ACounterRead

ACounterγl,γp,γc(l, 1, 0) ` wp read l {v.∃n.Prob(ret n) ∧ v = n}

Figure 6.2: Speci�cation for approximate counters.

90

January 2, 2019

DRAFT

countTrue c lb , foldLe� (λ b. if b then (incr c) else ()) lb ()

{Prob(approxN (|lb1|t + |lb2|t) 0)}
let c = ref 0 in

{ACounterγl,γp,γc(c, 1, |lb1|t + |lb2|t)}
{ACounterγl,γp,γc(c, 1/2, |lb1|t)}

countTrue c lb1

{ACounterγl,γp,γc(c, 1/2, 0)}

{ACounterγl,γp,γc(c, 1/2, |lb2|t)}
countTrue c lb2

{ACounterγl,γp,γc(c, 1/2, 0)}

{ACounterγl,γp,γc(c, 1, 0)}
read c

{v.∃n.Prob(ret n) ∧ v = n}

Figure 6.3: Example client using approximate counters.

one increment, we can use ACounterIncr, which gives us back ACounter with permission to

do one fewer increment. Finally, if we have ACounter with the full fractional permission 1, and

there are 0 pending increments, we can use ACounterRead. In the post condition we get back

Prob(ret n) for some n which is equal to the value v that the call to read returns. Note that

when we write something like v = n, we are omi�ing the implicit conversion from numbers to

the type Val.

At �rst this speci�cation seems weak, but this is exactly what we will need in order to use

Corollary 5.2. To see how we can use these rules to reason about a client program that uses

the approximate counter, consider the example client in Figure 6.3, which is annotated with a

Hoare-triple proof outline (recall that Hoare triples can be encoded as weakest preconditions).

We start with a helper function countTrue, which takes an approximate counter c and a list

of booleans lb, and counts the number of times true occurs in lb using the counter. �e client

begins by creating a new counter c. It then runs two threads in parallel that run countTrue on

two lists lb1 and lb2, using the shared counter c – we denote this parallel composition using ‖.
�e parent blocks until both threads �nish

1
and then reads from the counter

2
.

Refer to this client code as e. If we write |lb|t for the function giving the number of times

True occurs in lb, then we would like to show that in expectation, e returns |lb1|t + |lb2|t. �e

1
�is parallel composition operator is implemented in terms of the primitive fork{e} operation. Pre-existing

derived rules for parallel composition were already formalized in the Iris Coq development, and the same proofs

work unchanged with Polaris.

2
Of course, here the threads may as well maintain their own exact counters and combine them at the end. But

in a real application such as [121], there are tens of millions of counters and hundreds of threads, so having each

thread maintain its own set of counters would be expensive.

91

January 2, 2019

DRAFT

CountGeq

•n γ ∗ ◦ (q, n′)
γ ` pn ≥ n′q

CountEq

•n γ ∗ ◦ (1, n′)
γ ` pn = n′q

CountPerm

◦ (q, n)
γ ∗ ◦ (q′, n′)

γ ` pq + q′ ≤ 1q
CountSep

◦ (q, n)
γ ∗ ◦ (q′, n′)

γ a` ◦ (q + q′, n+ n′)
γ

CountAlloc

True ` |VE∃γ. •n
γ ∗ ◦ (1, n)

γ
CountUpd

• (n+ k)
γ ∗ ◦ (q, n)

γ ` |VE • (n′ + k)
γ ∗ ◦ (q, n′)

γ

Figure 6.4: Counter resource rules.

outlined derivation in Figure 6.2 shows that

Prob(approxN (|lb1|t + |lb2|t) 0) ` wp e {v.∃n.Prob(ret n) ∧ v = n}

holds. Let f : Val→ R be de�ned by:

f(v) =

z v is equal to the integer z

0 v is a non-integer value

�at is, it coerces integer values to the corresponding real number, and sends all other values

to 0. �en the above implies:

Prob(approxN (|lb1|t + |lb2|t) 0) ` wp e {v.∃n.Prob(ret n) ∧ f(v) = n}

In addition, it is not hard to show that for each k, there is an upper bound on the value returned

by approxN k 0, so by Corollary 5.2 and Lemma 5.5 we have:

Emin
id [approxN (|lb1|t+|lb2|t) 0] ≤ Ecoercefun(f,0)[resStepnϕ([e], σ)] ≤ Emax

id [approxN (|lb1|t+|lb2|t) 0]

And, we have shown that Emin
id [approxN (|lb1|t + |lb2|t) 0] = |lb1|t + |lb2|t in Example 2.3 from

§2.3, so it follows that

Ecoercefun(f,0)[resStepnϕ([e], σ)] = |lb1|t + |lb2|t

Of course, it is possible to derive rules about reading from the counter when we have less

than the full fractional permission, but in that case, because there can be pending concurrent

increments, it is harder to make guarantees about the probabilistic behavior. We will return to

this issue in Chapter 7.

6.1.2 Counter Resources
In order to carry out the proofs of the rules from Figure 6.2, we will need a suitable notion of

resource that will represent the state of the counter. Fortunately, the Iris Coq library already

92

January 2, 2019

DRAFT

LocInvγl(l) , ∃n. l 7→ n ∗ •n γl

ProbInvγp,γc , ∃n1, n2. •n1
γp ∗ •n2

γc ∗ (Prob(approxN n1 n2) ∨ ◦ (1, n1)
γp

)

ACounterγl,γp,γc(l, q, n) , ∃ι1, ι2, n′. LocInvγl(l)
ι1 ∗ ProbInvγp,γc

ι2 ∗ ◦ (q, n′)
γl ∗ ◦ (q, n)

γp

∗ ◦ (q, n′)
γc

Figure 6.5: Invariants and de�nitions for proof.

contains a “counter resource” that does what we need. �ere are two kinds of these counter

resources, represented by the following assertions:

•n γ
and ◦ (q, n′)

γ

where n and n′ are natural numbers, and 0 < q ≤ 1 is a rational. �e construction here is much

like the authoritative RA, except that the fragments ◦ (q, n) are annotated with a fractional

permission q that tracks how many fragments there are. If we think of the counter as being

composed of n “units”, then the resource ◦ (q, n′) represents a “stake” or ownership of n′ of the

units in the global counter. When q = 1, this represents full ownership, so no other threads

have a stake
3
.

Rules for using these assertions are given in Figure 6.4. �e rules CountGeq and CountEq let

us conclude that the global counter value must be at least as big as any stake’s value; and when a

stake’s q value is 1, we furthermore know that the counter and the stake value are the same. �e

rule CountSep lets us join (or conversely, split) two stakes by summing their permissions and

their count values, subject to the (implicit) constraint that q, q′, and q + q′ all lie in the interval

(0, 1]. �e CountAlloc rule lets us create a new counter with some existentially quanti�ed

name. Finally, CountUpd lets us modify a counter: if we own the global value and a stake, we

can update the value and the stake, so long as we preserve the part of the counter value owned

by other stakes (represented by k in the rule).

6.1.3 Proofs of Speci�cation
�e de�nition of ACounter and the invariants used in the proof are given in Figure 6.5. �e

proof uses three counter resources to track (1) the number of increments le� to perform in

the monadic speci�cation, (2) the accumulated count in the monadic speci�cation, and (3) the

actual count currently stored in the concrete program. We use two invariants to connect the

counter resources to these intended interpretations. First, we have LocInvγl(l) which says that

the counter resource named γl stores some value n and the physical location l points to that

same value n. �en, assertion ProbInvγp,γc says that there are two counter resources contain-

ing some n1 and n2, and the invariant either contains (a) the monadic speci�cation resource

3
Note that the q is not the fraction

n′

n of the global counter value represented by the stake’s value.

93

January 2, 2019

DRAFT

Prob(approxN n1 n2) (i.e., there are n1 further increments to perform, and the monadic counter

has accumulated a value of n2), or (b) it contains the complete stake for one of the counter

resources. �en ACounter says that these two invariants have been set up with some names,

and we own a stake in the γp permission corresponding to the number of increments this per-

mission allows. Further, for some n′ there is a stake in the γl and γc counters both equal to n′,
which represents the total amount that this permission has been used to add to the counter.

We will only describe the proofs of ACounterIncr and ACounterRead, because ACoun-

terNew is straight-forward.

Proof of ACounterIncr. Eliminating the existentials in the de�nition of ACounter, we get

that the appropriate invariants have been set up and there is some n′-stake in γl and γc, along

with the n + 1 stake in γp. �e �rst step of incr l reads the value of l; to perform this read the

thread needs to own l 7→ v for some v. To get this resource, it opens the LocInvγl(l) invariant;

a�er completing the read, the l 7→ v resource is returned to close the invariant. �e code then

takes the minimum of the value read and MAX, and binds this value to k.

It then performs flip(1, k + 1). We want to use flip-couple to couple this �ip with the

monadic code. To do so, we �rst open the invariant ProbInvγp,γc . We know this will con-

tain •n′1
γp

and •n′2
γc

for some n′1 and n′2, and either Prob(approxN n′1 n
′
2) or a full stake

◦ (1, n′1)
γp

. However, the la�er is impossible because the ACounterγl,γp,γc(l, q, n+ 1) resource

entails ownership of ◦ (q, n+ 1)
γp

, but q + 1 > 1, contradicting CountPerm. So, we obtain

Prob(approxN n′1 n
′
2). Now, by CountGeq we know that n′1 ≥ n + 1, hence we can unfold

approxN n′1 n
′
2 to obtain Prob(k ← approxIncr ; approxN (n′1 − 1) n′2).

We can now use flip-couple so long as we can exhibit a coupling between the concrete

program’s coin �ip and approxIncr. First, because 0 ≤ k ≤ MAX, we can show that:

(ret k + 1)⊕ 1
k+1

(ret 0)

⊆ (x← ret 0 ∪ · · · ∪ ret MAX ; (ret x+ 1⊕ 1
x+1

ret 0))

≡ approxIncr

hence by Eqiv, it su�ces to exhibit a coupling between (ret True⊕ 1
k+1

ret False) and (ret k +

1⊕ 1
k+1

ret 0). Taking R(x, y) to be (x = True∧ y = k+ 1)∨ (x = False∧ y = 0), then we can

use P-Choice and Ret to prove the existence of an R-coupling.

Applying flip-couple with this coupling, we then have Prob(approxN (n′1 − 1) (n′2 + v′))
where v′ and the return value v of the flip(1, k) are related by R. We use CountUpd to update

the thread’s stake in the γp resource to n, and the global value to n′1 − 1 (to record that a

simulated increment has performed), similarly, we update the thread’s stake in the γc counter

to n′+v′ and the global value to n′2 +v′ (to record the new total) and then close the ProbInvγp,γc
invariant.

�e code then cases on the value v returned by the �ip. If it is false, then v′ is 0, the code

returns, and the post condition holds. If v is true, then v′ = k + 1, the amount that the code

adds using a fetch-and-add. We therefore open the LocInvγl(l) invariant again to get access to

l, perform the increment, and update the γl counter and stake using CountUpd to record the

fact that we are adding k + 1.

94

January 2, 2019

DRAFT

Proof of ACounterRead �e precondition ACounterγl,γp,γc(l, 1, 0) represents the full stake in

each counter, and the 0 argument means there are no pending increments to perform. �us,

when we open the LocInvγl(l) and ProbInvγp,γc invariants we know that for some n′, l 7→ n′

and we have Prob(ret n′). So, we can read from l, knowing the returned value will be n′. A�er

reading, we must close the invariant. �is time we will keep the Prob(ret n′) resource so that

we can put it in the post condition, instead we give up ◦ (1, 0)
γp

to satisfy the disjunction in

ProbInvγp,γc .

6.1.4 Variations

In the mechanized proofs, I have veri�ed two additional variations on this approximate counter

example.

Non-deterministic Number of Increments

�e �rst variation addresses a limitation of the speci�cation we have described so far. Notice

that to use the rules in Figure 6.2 and obtain a suitable derivation to use with �eorem 5.5, the

total number of calls to incr must be a deterministic function of the program: we have to pick

some n when we initialize the counter using ACounterNew. In the case of our example client,

we chose n to be the number of times that true occurred in the two lists. But what if the number

of calls to increment is itself probabilistic or non-deterministic? In this case we still would like

to know that the expected value returned by the approximate counter is equal to the expected

number of times the counter was incremented. However, if the number of times the counter

is incremented is completely arbitrary, this expected value may not exist! To guarantee that

the expected value will exist, our speci�cation imposes an upper bound on the total number of

increments that can be performed, and then allows us to establish a coupling with the following

monadic computation:

approxN′ 0 t z , ret (t, z)

approxN′ (n+ 1) t z , (ret (t, z)) ∪ (k ← approxIncr ; approxN′ n (t+ 1) (z + k))

�e �rst argument of approxN′ gives an upper bound on the remaining number of increments

that can be performed, the second argument t tracks the total number of increments that have

been done so far, and z again tracks the current value in the counter. When there are no re-

maining increments, it returns the pair (t, z). Otherwise, in contrast to the original approxN,

when there is a possibility to perform an increment, there is a non-deterministic choice between

simply returning (t, z) and actually doing the increment. Let f be the function λ(x, y). x − y.

We prove that

Emin
f [approxN′ n 0 0] = Emax

f [approxN′ n 0 0] = 0

i.e., the expected value of the di�erence between the total number of increments done and the

value in the counter is 0. �e mechanization includes more �exible versions of the rules in

Figure 6.2 that use this approxN′ instead.

95

January 2, 2019

DRAFT

Variance and Deviation Bounds

For the second variation, we consider a version of incr which directly uses the current value it

reads from the counter, rather than taking the minimum of this value and MAX. �is variation,

and the updated monadic model are shown in Figure 6.6. �e expected value for approxN n 0 is

again n. In addition, the same rules from Figure 6.2 hold with these modi�cations. �e proofs

of the rules from Figure 6.2 are similar, so they are omi�ed
4
.

�e interesting aspect of this example is in bounding the variance of the count. �is lets us

use Chebyshev’s inequality (2.6) to bound the probability that the count di�ers from n by more

than a given amount.

To begin, we set B(n, z) = 3
2
n2 − 1

2
n+ 3nz + z2

. We will see that

Emax
λx. x2 [approxN n z] ≤ B(n, z) (6.1)

First, let us see how one might guess that such a bound would work. In the case of just the

expected value of the count, it did not ma�er how the non-determinism in approxIncr was re-

solved – each call to approxIncr would add 1 in expectation. When we are considering the value

of the count squared, the non-determinism does ma�er. It is somewhat intuitive that we can

maximize the expected value squared by always resolving the non-determinism in approxIncr
to choose the biggest possible value. If we write down the expected value for the version in

which the non-determinism is always resolved this way, we get a recurrence relation that can

be solved exactly
5

to yield the right hand side of (6.1).

So, the only challenge is to formally establish that this is indeed a maximum no ma�er how

the non-determinism is resolved. �e proof is by induction on n. �e base case is trivial. For

the inductive case, it su�ces to show for all k satisfying 0 ≤ k ≤ z that

Emax
λx. x2 [x← ret (k + 1)⊕ 1

k+1
ret 0 ; approxN (n− 1) (z + x)]

≤ B(n, z)

Simplifying the le� hand side and applying the induction hypothesis we get:

Emax
λx. x2 [x← ret (k + 1)⊕ 1

k+1
ret 0 ; approxN (n− 1) (z + x)]

=
1

k + 1

(
Emax
λx. x2 [approxN (n− 1) (z + k + 1)]

)
+

k

k + 1

(
Emax
λx. x2 [approxN (n− 1) z]

)
≤ 1

k + 1
B(n− 1, z + k + 1) +

k

k + 1
B(n− 1, z)

�e last expression in this inequality is di�erentiable as a function of k on the interval [0, z].

4
�e only interesting di�erence is we have to strengthen the invariants and resources used slightly to be able

to ensure that the value of the counter never decreases.

5
�e resulting recurrence is essentially the same as one that arises in the analysis of variance for Morris’s

original counter algorithm.

96

January 2, 2019

DRAFT

�e derivative is positive in this interval, so the function is increasing. Hence, we have:

1

k + 1
B(n− 1, z + k + 1) +

k

k + 1
B(n− 1, z)

≤ 1

l + 1
B(n− 1, 2z + 1) +

l

l + 1
B(n− 1, z)

= B(n, z)

completing the inductive case.

Next, using Lemma 2.7, we have that:

Emax
λx. (x−n)2 [approxN n 0] ≤ Emax

λx. x2 [approxN n 0]− 2nEmin
λx. x[approxN n 0] + n2

≤ 3

2
n2 − 1

2
n− 2n2 + n2

=
1

2
(n2 − n)

And then applying �eorem 2.6 gives:

Prmax
λx. |x−n|>δ[approxN n 0] ≤ 1

2δ2
(n2 − n)

�is bound is not particularly strong simply because the variance is very large. For example,

if we take n = 100, k = 90, the right hand side is ≈ 0.61, which is not much of a guarantee

in practical terms. �is high variance also arises in Morris’s original counting algorithm. For

that reason, he also described a variant which has a parameter that one can tune to decrease

variance. Translated to the se�ing of the concurrent version above, rather than just directly

using the current value k read from the counter during an increment, one would �rst divide

k by some factor b. For b large enough, one can get much tighter bounds from Chebyshev’s

inequality. Because the language we are considering here does not have primitives for rational

arithmetic, and scaling the probabilities in this way does not really change the challenging part

of the veri�cation, we will not analyze this variant.

6.2 Concurrent Skip List
For our next example, we verify properties of a probabilistic 2-level concurrent skip list. �e

code and proofs for this example are more complex, so we will only brie�y recall the high-level

description of the algorithm from §1.1.3 and give an overview of the proof.

Recall that a 2-level skip list is composed of 2 sorted linked lists, where the set of elements

occurring in the “top” list is a subset of the bo�om list, and every node in the top list contains

a pointer to the node with the same value in the bo�om list. We require all keys to be inte-

gers between INTMIN and INTMAX, which are some arbitrarily chosen parameters. Dummy

sentinel nodes occur at the beginning and end of each list containing INTMIN and INTMAX
respectively. To �nd a key k, we start searching in the top list. If we encounter a key with a

value larger than the one sought, we descend to the bo�om list, following the pointer in the

top list node with the largest key less than k, and resume searching from there.

97

January 2, 2019

DRAFT

incr l ,

let k = !l in

let b = flip(1/(k + 1)) in

if b then (FAA(l, k + 1); ())

else ();

approxIncr c ,

k ← ret 0 ∪ · · · ∪ ret c ;

ret (k + 1)⊕ 1
k+1

ret 0

approxN 0 z , ret z

approxN (n+ 1) z ,

k ← approxIncr z ;

approxN n (z + k)

Figure 6.6: Counter variant without a maximum increment size.

Each node also contains a lock. When searching, no locks need to be acquired. However,

when inserting a new key k, we �rst �nd the nodes Nt and Nb that ought to be the new key’s

“predecessor” in the top and bo�om list respectively, acquiring their locks once we identify

them. (Once we get each predecessor’s lock, we check again that it is still a proper predecessor.)

We then insert a new node for k in both lists with probability p, and otherwise just insert k into

the bo�om list.

We will just consider the case where p = 1/2 here. �is means that on average, half of

the keys will be in the top list, so when searching in the top list we will only have to examine

roughly half as many keys as we would in a regular linked list. �en, if we do not �nd the key

in the top list, we will have a few additional keys to examine in the bo�om. We will formally

establish a bound on the expected number of comparisons.

6.2.1 Monadic Model
We follow the same pa�ern as in our veri�cation of the approximate counter example: we

�rst de�ne a monadic model of the data structure, bound appropriate expected values of the

monadic computation, and then develop rules that can be used to prove the existence of a

coupling between programs using the skip list and the monadic model.

Our monadic model is the following:

skiplist ε tl bl , ret (sort(tl), sort(bl))

skiplist (k :: l) tl bl , k′ ←
⋃
i∈k::l

ret i ;

tl′ ← (ret tl)⊕1/2 (ret k′ :: tl) ;

skiplist (remove k′ (k :: l)) tl′ (k′ :: bl)

�e computation skiplist l tl bl simulates adding keys from the list l to a skip list, where the

arguments tl and bl are lists represent the keys in the top and bo�om lists of the skip list,

respectively. If the �rst argument l is empty, it sorts tl and bl and returns the result. If l is non-

empty, it �rst non-deterministically selects a key k′ from l. �en, with probability 1/2 it adds

98

January 2, 2019

DRAFT

this key to tl. It then removes any copies of k′ from l, and recurses to process the remaining

elements with the updated top and bo�om lists. (�ere is no point in keeping the arguments tl
and bl sorted throughout the recursive calls in this monadic formulation.)

We de�ne a function skipcost(tl, bl, k) which gives the number of comparisons needed to

check if k is in the skip list when the elements in the top and bo�om lists are tl and bl, respec-

tively:

topcost(tl, k) = 1 + |{i ∈ tl | INTMIN < i < k}|
maxbelow(tl, k) = max({i ∈ tl |i < k} ∪ {INTMIN})
botcost(tl, bl, k) = 1 + |{i ∈ bl | maxbelow(tl, k) < i < k}|

skipcost(tl, bl, k) =

topcost(tl, k) if k ∈ tl

topcost(tl, k) + botcost(tl, bl, k) if k 6∈ tl

If the key k is in the top list, then the number of comparisons is 1 plus the number of elements

in the list less than k (topcost(tl, k)). If k is not in the top list, then we must �rst still perform

the same number of comparisons while searching through the top list. �en we search in the

bo�om list starting from the largest key less than k that was in tl (maxbelow(tl, k)). �e total

number of comparisons in the second list is the number of keys between maxbelow(tl, k) and

k (botcost(tl, bl, k)).

We then bound Emax
skipcost(−,−,k)[skiplist l ε ε] to obtain an upper bound on the expected value

of searching for a key k. �e �rst step in the proof is to consider an alternative version of the

monadic code in which the elements are inserted into the skip list in a deterministic order. �at

is, we de�ne:

skiplist′ ε tl bl , ret (sort(tl), sort(bl))

skiplist′ (k :: l) tl bl , hd← (ret ε)⊕1/2 (ret k :: ε) ;

skiplist′ l (hd++ tl) (k :: bl)

We will prove that if l has no duplicate elements, then skiplist l tl bl ≡ skiplist′ l tl bl. We �rst

need several auxiliary lemmas about skiplist′.

Lemma 6.1. If tl is a permutation of tl′ and bl is a permutation of bl′, then skiplist′ l tl bl ≡
skiplist′ l tl′ bl′.

Proof. �e proof is by induction on l, and follows from the fact that we sort both tl and bl at

the end of the recursive calls, so the intermediary order does not ma�er.

Lemma 6.2. If l is a permutation of l′, then for all tl and bl, skiplist′ l tl bl ≡ skiplist′ l′ tl bl.

Proof. In our formalization, the permutation relation perm(l, l′) is inductively generated by the

following rules:

perm(ε, ε)
perm(l, l′)

perm(x :: l, x :: l′)
perm(x :: y :: l, y :: x :: l)

perm(l, l′) perm(l′, l′′)

perm(l, l′′)

Hence, by induction on perm(l, l′), it su�ces to show the following cases

99

January 2, 2019

DRAFT

1. skiplist′ ε tl bl ≡ skiplist′ ε tl bl.

�is follows from re�exivity of ≡.

2. If skiplist′ l tl bl ≡ skiplist′ l′ tl bl, then skiplist′(x :: l) tl bl ≡ skiplist′(x :: l′) tl bl.

�is case follows from the fact that ≡ is a congruence relation on the monad operations.

3. skiplist′ (x :: y :: l) tl bl ≡ skiplist′ (y :: x :: l) tl bl.

For this case, we have

skiplist′ (x :: y :: l) tl bl

≡ h1 ← (ret ε)⊕1/2 (ret x :: ε) ;

h2 ← (ret ε)⊕1/2 (ret y :: ε) ;

skiplist′ l (h2 ++ h1 ++ tl) (y :: x :: bl)

(de�nition of skiplist′)

≡ h2 ← (ret ε)⊕1/2 (ret y :: ε) ;

h1 ← (ret ε)⊕1/2 (ret x :: ε) ;

skiplist′ l (h2 ++ h1 ++ tl) (y :: x :: bl)

(last rule of Figure 2.1)

≡ h2 ← (ret ε)⊕1/2 (ret y :: ε) ;

h1 ← (ret ε)⊕1/2 (ret x :: ε) ;

skiplist′ l (h1 ++ h2 ++ tl) (x :: y :: bl)

(Lemma 6.1)

≡ skiplist′ (y :: x :: l) tl bl

4. If skiplist′ l tl bl ≡ skiplist′ l′ tl bl and skiplist′ l′ tl bl ≡ skiplist′ l′′ tl bl, then skiplist′ l tl bl ≡
skiplist′ l′′ tl bl.

�is follows from transitivity of ≡.

Lemma 6.3. If l has no duplicate elements, then skiplist l tl bl ≡ skiplist′ l tl bl.

Proof. �e proof is by induction on the length of l. �e base case is trivial. For the inductive

case, we have

100

January 2, 2019

DRAFT

skiplist (k :: l) tl bl

≡ k′ ←
⋃
i∈k::l

ret i ;

tl′ ← (ret tl)⊕1/2 (ret k′ :: tl) ;

skiplist (remove k′ (k :: l)) tl′ (k′ :: bl)

≡
⋃
i∈k::l

(
tl′ ← (ret tl)⊕1/2 (ret i :: tl) ;

skiplist (remove i (k :: l)) tl′ (i :: bl)

)

≡
⋃
i∈k::l

(
h← (ret ε)⊕1/2 (ret i :: ε) ;

skiplist (remove i (k :: l)) (h++ tl) (i :: bl)

)

≡
⋃
i∈k::l

(
h← (ret ε)⊕1/2 (ret i :: ε) ;

skiplist′ (remove i (k :: l)) (h++ tl) (i :: bl)

)
We want to show that this union is equivalent to skiplist′ (k :: l) tl bl. Recall from Figure 2.1

that for all I , I ∪ I ≡ I . Generalizing this principle, it su�ces to show that for each i ∈ k :: l,

h← (ret ε)⊕1/2 (ret i :: ε) ;

skiplist′ (remove i (k :: l)) (h++ tl) (i :: bl)

≡ skiplist′ (k :: l) tl bl (6.2)

Since k :: l has no duplicates by assumption, there exists l1, l2 such that i :: l1 ++ l2 is a

permutation of k :: l, and remove i (k :: l) is a permutation of l1 ++ l2. �en the le� hand side

of (6.2) is equivalent to skiplist′ (i :: l1 ++ l2) tl bl by de�nition, so that the result follows from

Lemma 6.2.

�is lemma means that it su�ces to bound the expected values of skiplist′ in order to ob-

tain bounds on skiplist. �e advantage of working with skiplist′ is that the de�nition is simpler,

structurally recursive, and has no adversarial non-determinism. �us, we can follow an argu-

ment similar to the usual pencil-and-paper analysis of skiplists (though somewhat simpli�ed,

since we are only considering a version with 2 lists). Assuming l has no duplicates, the key k
and all keys in l lie between INTMIN and INTMAX, and there are n keys less than k in l, one

has:

Emax
skipcost(−,−,k)[skiplist l ε ε] = Emax

skipcost(−,−,k)[skiplist
′ l ε ε] ≤ 1 +

n

2
+ 2

(
1− 1

2n+1

)
(6.3)

�e proof comes from bounding the expected values of topcost and botcost and then adding

them. �e former is essentially a binomial distribution, and the la�er is a (truncated) geomet-

ric distribution. �e bound means that on average we have to do about half the number of

comparisons that would be required to search for the key in a regular sorted linked list.

101

January 2, 2019

DRAFT

6.2.2 Weakest Precondition Speci�cations and Proof Overview
Figure 6.7 shows rules derived rules for the skip list. �e speci�cation de�nes an assertion

SkipPermΓ(q, v, S, St, Sb), which represents permission to access a skip list whose top le� sen-

tinel is v. �e argument Γ is just a set of resource names (like the γ’s in the counter example),

q is a fractional permission, S is the �nite set of keys which may be added to the list, and St
and Sb are a subset of the keys currently in the top and bo�om lists. Additional keys from S
may be in either St or Sb, but the owner of this permission assertion knows that they contain

at least these sets.

�e expression newSkipList creates a new skip list. �e precondition for the rule in SkipNew

requires us to own the monadic computation
6 Prob(skiplist S ε ε). �e post condition gives the

full permission (q = 1) to access the skip list, with empty top and bo�om lists. To use this

rule, all the keys in S must be between INTMIN and INTMAX. Notice here that the set of keys

S which will be added to the skiplist must be deterministic, so that it can be decided in this

precondition (much like our original speci�cation for the approximate counters required the

total number of increments to be deterministic). �is restriction is important: if the keys to be

added are non-deterministically selected, and a client can observe the state of the skip list, it

can insert a special sequence of keys in such a way so as to force a large number of comparisons

to �nd a particular target key.

We use addSkipList to insert a key k into the skip list. �e post condition in SkipAdd indi-

cates that we now know that the added key k is in the bo�om list. On the other hand, the client

does not know whether the key was added to the top list or not, so in the permission for the

post condition, the contents of the top list are given by some existentially quanti�ed S ′t.
�e function memSkipList checks whether a key is in the skip list. It returns a pair (b, z),

where b is a boolean indicating whether the key was in the set or not, and z is the number of

key comparisons performed. �e rule SkipMem says that if we have the full permission for the

skip list, then the boolean b indeed re�ects whether the key is in the set or not, and z is in fact

equal to the cost function skipcost(St, Sb, k) we de�ned above. (One can also prove triples for

when we have less than the full permission of the list, i.e., q < 1.)

�e rule SkipSep lets us split and join together the SkipPerm permission so that separate

threads can use the skip list. Finally, SkipShift lets us do an update to convert a full SkipPerm
permission in which we have added all the keys in S to the skip list back into a Prob permission

in which the monadic computation is �nished. �is lets us prove triples of the form required

for our probabilistic adequacy result.

In the mechanized proofs, I have used this speci�cation to verify a simple client in which

two threads concurrently add lists of integers to a skip list set, and then a�er they both �nish,

one looks up a key using memSkipList and returns the number of comparisons performed.

Corollary 5.2 is then used to get a bound on the expected value of this number.

How are the rules in Figure 6.7 proved? �e formal proof is more complex than for the

counter example, but it has a similar high level structure, which I will describe brie�y. �ere

are two invariants. One is used to establish the “functional” correctness of the skip list and

6
Here, S is a set, whereas the arguments to skiplist are lists. However, it is easy to show that if l′, tl′, and

bl′ are permutations of the lists l, tl, and bl, respectively, then skiplist l tl bl ≡ skiplist l′ tl′ bl′, so it makes no

di�erence if we treat the �rst argument instead as an unordered set.

102

January 2, 2019

DRAFT

SkipNew

∀k ∈ S. INTMIN < k < INTMAX

Prob(skiplist S ε ε) ` wp newSkipList {v.∃Γ. SkipPermΓ(1, v, S, ∅, ∅)}

SkipAdd

k ∈ S
SkipPermΓ(q, v, S, St, Sb) ` wp addSkipList v k {. ∃S ′t. SkipPermΓ(q, v, S, S ′t, Sb ∪ {k})}

SkipMem

INTMIN < k < INTMAX

SkipPermΓ(1, v, S, St, Sb)

` wp memSkipList v k

{
(b, z).

SkipPermΓ(1, v, S, St, Sb) ∗ (b = True⇒ k ∈ Sb)
∗ (b = False⇒ k /∈ St ∪ Sb) ∗ (z = skipcost(St, Sb, k))

}

SkipSep

SkipPermΓ(q + q′, v, S, St ∪ S ′t, Sb ∪ S ′b) a` SkipPermΓ(q, v, S, St, Sb) ∗ SkipPermΓ(q′, v, S, S ′t, S
′
b)

SkipShift

SkipPermΓ(1, v, S, St, S) ` |VEProb(ret (sort(St), sort(S)))

Figure 6.7: Speci�cation for skip list.

103

January 2, 2019

DRAFT

maintains all the properties of the physical representation of the data structure, i.e., that the

two lists in the skip list are sorted, that each node in the top list points to a node with the same

value in the bo�om list, that there are locks protecting each node, and so on. �is invariant is

what one would use in regular Iris to prove that the skip list implements the expected search

structure interface. It plays a role similar to that of LocInv in the counter example.

�e second invariant functions like ProbInv from the counter example and establishes a

connection between ghost resources and the status of the monadic computation. In place of the

counter resources from §6.1.2, the primary resource algebra used involves resources of the form

•S and ◦ (q, S), where q is again a fractional permission, but S is now a set of keys instead of

an integer. �e rules for these resources are similar to those for the counter resource shown in

Figure 6.4, except that in place of addition and the ≤ ordering on integers, we use union and

the subset ordering on sets. For example, we have the following two rules:

•S γ ∗ ◦ (q, S ′)
γ ` pS ⊇ S ′q ◦ (q, S)

γ ∗ ◦ (q′, S ′)
γ a` ◦ (q + q′, S ∪ S ′) γ

�e probabilistic invariant then has the following structure:

SkipProbInvγ1,γ2,γ3,γ4(S)

, ∃St, Sb. pSt ⊆ Sbq ∗ (ownership of resources parameterized by St and Sb . . .)

∗ (Prob(skiplist (S \ Sb) St Sb) ∨ ◦ (1, Sb)
γ3

)

�is says that there are two sets St and Sb, which represent the elements that have been inserted

into the top and bo�om lists in the monadic representation. �e connection between these two

sets and the eventual physical representation are enforced via authoritative versions of ghost

resources that appear in this invariant. Finally, the invariant either contains the monadic com-

putation resource or the full fragment of one of the ghost resources. We can see that this de�ni-

tion is similar to that of ProbInv. Recall that in that de�nition, we quanti�ed over two counts n1

and n2 which appeared as arguments in the monadic computation and in ghost resources, and

the invariant contained either the monadic computation or a full fragment of a ghost resource.

When proving SkipAdd, for the case where the element we are adding is not already in the

list, this invariant is opened to obtain the monadic computation a�er acquiring the locks for

the predecessor nodes. We argue that while we hold these locks, the element k we are adding

cannot yet have been inserted in the monadic computation. We then couple the probabilistic

choice of the concrete code to the probabilistic choice in the monadic code, resolving the non-

determinism in the la�er to insert k next. �e ghost resources are updated appropriately to

restore the invariant, and then we verify the code that actually does the insertions. However,

the la�er only involves interacting with the non-probabilistic invariant. �is is similar to the

steps used in verifying ACounterIncr, where we used ghost resources to argue that there was

at least one more pending increment to perform in the monadic computation a�er opening

ProbInv, and then a�er using the coupling rule, we subsequently used LocInv to reason about

the concrete step of modifying the physical counter value.

�e proof of SkipShift opens the SkipProbInv invariant, but takes out the Prob assertion and

restores the invariant by instead pu�ing back the right side of the disjunct, which is implied by

the precondition SkipPermΓ(1, v, S, St, S). Again, this is the same approach used in the proof

of ACounterRead.

104

January 2, 2019

DRAFT

Chapter 7

Conclusion

7.1 Summary
�is dissertation described a concurrent separation logic, Polaris, with support for probabilistic

relational reasoning. �e approach taken was to �rst adapt the notion of couplings to Varacca

and Winskel’s monadic model of probabilistic and non-deterministic choice. �en, the de�ni-

tion of weakest precondition in Iris was altered so as to require couplings between steps of a

concrete program and a monadic speci�cation. �e proof of the adequacy theorem inductively

assembled these per-step couplings into a complete coupling between the whole concrete pro-

gram and the monadic speci�cation. By constructing an appropriate coupling, the analysis of

the monadic speci�cation’s probabilistic behavior could then be translated into results about

concrete programs. Because of the way the extensions were added, all of Iris’s pre-existing

features for reasoning about complex concurrent programs continued to work without change.

�e logic was used to analyze two of the three motivating examples mentioned in Chapter 1.

�e results about the monad of indexed valuations, the soundness of the program logic, as well

as the example proofs have all been veri�ed in the Coq theorem prover.

7.2 Comparison with Related Work
Now that Polaris has been described in detail, we return to some of the related program logics

discussed in §1.2 and compare them with Polaris. Besides Iris, whose relationship to Polaris

has been discussed at length, the most closely related are pRHL [10], �antitative Separation

Logic [19], and Probabilistic Rely-Guarantee [84].

pRHL As described previously, Polaris re-uses pRHL’s approach of basing relational reason-

ing about probabilistic programs on the concept of couplings. However, there are technical

di�erences in how relational reasoning is done in the two logics.

First, the logics support di�erent programming language features. pRHL is restricted to rea-

soning about sequential programs and does not support separating conjunction for reasoning

about pointer manipulating programs. On the other hand, the soundness theorem for pRHL

does not make the strong termination assumptions that Polaris requires.

105

January 2, 2019

DRAFT

Second, in Polaris, relational reasoning is done between a program in a given language and

a monadic computation, whereas in pRHL one establishes a coupling between two programs

expressed in the same language. In Polaris, the relationship established between the program

and the monadic model is used to translate quantitative bounds on the la�er to the former. Al-

though this same translation of bounds can also be done in pRHL, the developers of pRHL (and

its extensions) have used the logic to establish couplings that imply di�erent sorts of properties

as well. For example, by constructing a coupling between a program and the same program run

on slightly di�erent inputs, one can prove that an algorithm is di�erentially private [12] or that

a machine learning algorithm is stable [18].

It does not seem di�cult to adjust pRHL so that one could reason relationally about pro-

grams wri�en in two di�erent languages, or between a program and a monadic model. Con-

versely, Polaris could also be adapted to support relational reasoning about programs wri�en

in the same language. Rather than using ghost resources to model monadic computations, one

would instead use them to model expressions from the probabilistic language itself. �is ap-

proach has been previously used for relational reasoning about non-probabilistic programs in

Iris [43, 75, 115].

A more substantive di�erence is that pRHL uses a Hoare quadruple of the form

{P } e1 ∼ e2 {Q}

where the two programs being reasoned about both appear in the four-part judgment. In con-

trast, Polaris extends a unary logic by encoding the monadic computation as an assertion that

can appear in the pre and post-condition. As explained in §5.2, this representation is used in-

stead of quadruples because in the concurrent se�ing, it is not clear how to state the fork rule

with quadruples. Because multiple threads need to concurrently couple steps with the monadic

computation, it makes sense to view it as a shared ghost resource.

�antitative Separation Logic �e �antitative Separation Logic of Batz et al. [19] is a non-

concurrent separation logic for reasoning about sequential probabilistic programs. Instead of

using relational reasoning, it uses the quantitative style of Morgan et al. [86]. �at is, assertions

are functions from memory states to non-negative real numbers representing probabilities or

expected values. �e weakest precondition wp e {P} is a function such that if e is executed

in state σ, then the expected value of P on the state of the program a�er execution is equal to

wp e {P}(σ).

�e sequential language considered by Batz et al. [19] has while loops, memory that can

store integer values, and recursive procedure calls. In contrast, the example language we have

instantiated Polaris with in this dissertation has support for concurrency, higher-order func-

tions, and higher-order store. Although the examples veri�ed in Chapter 6 do not use higher-

order functions or higher-order store directly, the example client veri�ed using the approximate

counter speci�cation does use higher-order functions.

�e soundness theorem of �antitative Separation Logic applies to programs that do not

necessarily terminate, unlike Polaris. One of the examples considered by Batz et al. is a program

that probabilistically extends a list so that the �nal length is geometrically distributed. �ey

point out that this program does not terminate in a bounded number of steps, so that it lies

106

January 2, 2019

DRAFT

outside the scope of Polaris. However, when reasoning about programs with loops or recursive

procedure calls, the rules of �antitative Separation Logic discussed by Batz et al. only appear

to allow one to obtain upper bounds on expected values
1
. For example, the veri�cation of the

geometric list example just described only shows that the expected value of the length will

be ≤ 1. �e other examples considered by Batz et al. involving loops similarly only establish

bounds on expected values. In contrast, when reasoning about purely sequential programs with

Polaris, Emax
and Emin

of the corresponding monadic model will be identical, so that Polaris can

be used to obtain exact expected values of recursive programs when they terminate in a bounded

number of steps.

�antitative Separation Logic features the following version of the frame rule (with addi-

tional side conditions omi�ed):

wp e {P} ∗Q ≤ wp e {P ∗Q}

Batz et al. suggest that this is the natural re-formulation of the traditional frame rule, wp e {P}∗
Q ` wp e {P ∗Q}, since the inequality ordering ≤ is the quantitative analogue of `. As

they point out, one cannot expect this inequality to be an equality, because wp e {P ∗Q} 0
wp e {P} in traditional separation logic. However, the fact that the quantitative frame rule is

only an inequality appears problematic for modular reasoning. For instance, the veri�cation

of the geometric list example mentioned above gives an upper bound on length. If we now

try to re-use this result to reason about executing the list program as part of a larger program,

the frame rule gives an inequality in the opposite direction than the one required. Because Po-

laris uses relational reasoning to establish a connection to a monadic model whose quantitative

properties are analyzed separately, this issue does not arise. �us, clients of the data structures

veri�ed in Chapter 6 can use the speci�cations proved there to obtain the desired bounds.

Probabilistic Rely-Guarantee McIver et al. [84] develop a probabilistic version of rely-

guarantee logic. �ey model concurrent probabilistic programs using a probabilistic variant

of concurrent Kleene algebra [56]. McIver et al. do not �x a syntax for a concrete language,

but explain how iteration, conditional statements, and parallel composition are modeled using

the Kleene algebra operations and reasoned about using the logic. It is unclear whether this

formalism could be extended to handle higher-order functions, dynamically allocated state,

or fork-join concurrency, which are all supported by Polaris. Additionally, as previously de-

scribed in §1.2.3, one shortcoming of rely-guarantee logic is that it does not support state-local

reasoning, because the rely and guarantee conditions have to be checked against the program’s

global state. �e probabilistic extensions to rely-guarantee do not address this limitation. It is

not clear how one could modularly verify data structures like the concurrent skip list, where

clients ought to be able to use the speci�cation without having to be concerned about the in-

ternal representation of the data structure. Because Polaris builds on Iris, we are able to re-use

Iris’s features for modular reasoning about such data structures.

1
�antitative Separation Logic also has a weakest liberal precondition for partial correctness reasoning, in

which the loop-rules give lower bounds, but this can only be used to reason about probabilities of events, rather

than arbitrary expected values.

107

January 2, 2019

DRAFT

7.3 Future Work
Polaris is far from the de�nitive solution to the challenges of reasoning about probabilistic

concurrent programs. �ere are many interesting problems that could be explored by building

on the work presented here. In this section we survey some possibilities.

7.3.1 Instantiation with Other Languages
Polaris, like the original Iris, is parameterized by a fairly generic programming language. We

have instantiated it with a single simple ML-like language, which was su�cient to express our

examples. However, it would be interesting to consider other languages, particularly those

which have already been used with Iris. For example, Krogh-Jespersen et al. [76] use Iris to

reason about a programming language for distributed systems, and verify a centralized load-

balancing server program. �e focus of this veri�cation is about functional correctness, i.e.,
showing that the load balancer actually properly assigns tasks without a�ecting their results.

However, an important consideration for such systems is to ensure that the load is indeed well-

balanced. Some of the most important practical ways of e�ciently doing load balancing tasks

involve randomized algorithms [9, 111]. By adapting the work of Krogh-Jespersen et al. to use

our probabilistic extension of Iris, we would be able to reason about such algorithms. For non-

probabilistic operations of the language, the proof rules derived using wp-lift-step should work

automatically, and we would only have to derive new coupling rules for any added probabilistic

constructs. �ere are many other randomized algorithms used in distributed systems which

would be interesting to verify [81, 105].

�e language we have considered used sequentially consistent shared memory. However,

modern processors only o�er weaker consistency guarantees by default [1, 109], and special

synchronization instructions need to be used to restore sequential consistency. A number of

systems programming languages now have memory models that, like hardware, are weaker

than sequential consistency by default. �ese weak memory e�ects are di�cult to account for,

and several program logics have been developed to reason about programs wri�en in the se�ing

of these weaker memory models [36, 110, 112, 123, 125]. One of these, iGPS [67], is encoded as

a logic on top of Iris. If the encoding was instead done on top of our probabilistic extension to

Iris, it might be possible to also incorporate probabilistic reasoning in iGPS. �is could be used

to analyze weak memory versions of probabilistic data structures like hash tables [120].

7.3.2 Alternative Monads
�e probabilistic adequacy theorems in §5.3 do not rely in an essential way on speci�c prop-

erties of the monad MNI or non-deterministic couplings. Other than the monad laws, the main

facts used are Bind and Ret to construct couplings for whole programs from step-wise cou-

plings, and then �eorem 2.8 is used to actually make conclusions about expected values from

the existence of a coupling.

�is makes it possible to consider alternative monads for the combination of probabilistic

and non-deterministic choice, along with suitable notions of coupling for them. In §2.6 the

monad of Tix et al. [119] was mentioned. Using this monad instead might also allow us to

108

January 2, 2019

DRAFT

consider schedulers that can themselves make randomized choices, instead of the deterministic

schedulers described in §5.1.

On a simpler level, Iris and Polaris can of course always be used to reason about non-

concurrent programs. �is might be useful because only recently have Batz et al. [19] developed

a probabilistic separation logic, and the language considered in that work does not have features

like higher order state, which Polaris supports. To reason about sequential code, we would not

need to represent non-deterministic choice in our monad, and we could use the standard Giry

monad [48] for probabilistic choice, which would let us reason about programs that sample

from distributions that are not necessarily discrete. Prior work has already formalized analyses

of algorithms expressed using this monad (e.g., [37]). Alternatively, one could use the monad of

measures on the category of quasi-Borel spaces [54]. Sato et al. [104] have recently presented a

logic for reasoning about programs whose denotational semantics is given using this category.

7.3.3 Termination
�e probabilistic adequacy results, �eorem 5.1 and Corollary 5.2, only apply to programs with

schedulers under which they are guaranteed to terminate in a bounded number of steps. One

generalization would be to consider programs which merely terminate with probability 1, and

without an a priori bound on the number of steps taken. An approach to extending Corollary 5.2

to this case would be to consider for each n the �nite approximation of the program which

takes a maximum of n steps and returns some arbitrary default value if the program has not

terminated. Something like Corollary 5.2 would then apply to this. If as n goes to in�nity, the

probability of non-termination goes to 0, the expected value of these approximations would

converge to that of the full program
2
. Hence, bounds that hold for all approximations would

hold for the limit.

A more challenging task is to develop a logic to prove that concurrent randomized pro-

grams terminate with probability 1 when run under certain kinds of schedulers. Developing

concurrent separation logics for proving termination (and related liveness properties) for non-

probabilistic concurrent programs is already challenging and is the subject of much recent

work [29, 57, 79, 115]. A core idea behind the cited work in this area is to have a ghost re-

source that is forced to “shrink” each time the program takes a step. For example, one might

start with some �nite number of “tokens”, and then the de�nition of weakest precondition is

changed so that each time a reduction happens one must give up one of these tokens
3
. �en, if

we establish a weakest precondition starting with n tokens, the program must terminate in no

more than n steps. Tokens can be transferred between threads like any other resource in order

to account for the fact that actions by one thread may cause another to take additional steps.

Ngo et al. [92] have adapted this idea to reason about the expected resource usage of proba-

bilistic sequential programs. Instead of counting each step, there is a special expression tick(n)
which is thought of as costing n “resources” to execute, and it is the total of these costs that are

tracked by requiring n tokens to be given up when this expression is executed. If the program

2
�is argument hinges on the fact that the function f in the statement of Corollary 5.2 is bounded on the values

returned by the terminating program.

3
Much like how in Chapter 5 the de�nition of weakest precondition was changed to require the existence of

step-wise couplings

109

January 2, 2019

DRAFT

makes a probabilistic choice
4 flip(z1, z2), then there is a rule that lets us transform n tokens

in the precondition into nt and nf tokens in the postconditions for the cases where flip(z1, z2)
evaluates to true and false respectively, subject to the conditions

n =
z1

z2

nt + (1− z1

z2

)nf

and nt, nf ≥ 0. �us, the expected number of tokens (and hence, the pending number of tick
costs) is bounded by n. �is is useful to reason about situations where the pending resource

use varies based on the outcome of the randomized choice.

More generally, in place of a �nite number of tokens, the resources can be programs ex-

pressed in some language, and instead of giving up a token, we could require this ghost re-

source program to take a step each time the concrete program does. If the program used as the

ghost resource is guaranteed to terminate, then so too must the concrete program. To adapt this

idea to the probabilistic se�ing, we could again require step-wise couplings between the ghost

program and the concrete program. However, instead of the form of coupling that was used in

Chapter 5, which always permi�ed a “dummy” step in which no reduction actually happened

in the ghost monadic code, we could develop some stricter notion.

7.3.4 Stronger Speci�cations
Whenever one carries out proofs in a program logic, one must scrutinize exactly what has been

proved. �is is especially so when verifying a data structure, rather than a whole program,

because one has to consider whether the resulting speci�cation is su�cient to reason about a

client using the data structure. For this reason, we have used the speci�cations in Chapter 6

to verify some simple clients. Of course, it is almost certainly true that what we have proved

is not su�cient for all clients. Some stronger speci�cations could be proved, but others may

lie beyond the scope of what is expressable in Polaris. We now consider some limitations and

possible extensions.

First, the system presented in Chapter 5 only allows us to establish a single coupling at a

time. Naturally, if a client program used several probabilistic components (say, several distinct

approximate counters and a skip list), we might want to conclude properties for all of them at

once. It would be straightforward to index the Prob(I) assertion by an index i, and then allow

di�erent couplings to be established for each of the di�erent indices, separately.

However, a more challenging situation arises when one wants to reason about the com-

bination of two interdependent probabilistic data structures. For instance, suppose we had a

probabilistic skip list with approximate counters tracking the number of nodes in the top and

bo�om lists, and modi�ed the code so that if the counters ever reported that too many nodes

were in the top list, a thread would acquire a global lock and “re-balance” the skip list. We might

then want to bound the probability that a re-balance operation occurs. �is would require rea-

soning about both the probability that the skip list became too skewed, and the probability

that the counter estimation is o�, triggering a spurious re-balancing. We would want to reason

4
�e primitive in the language considered by Ngo et al. [92] is a probabilistic if-statement, but the idea is the

same.

110

January 2, 2019

DRAFT

about these two probabilities separately as much as possible, not unnecessarily re-doing parts

of the analysis of these two data structures. Unfortunately, this does not seem possible with the

logic we have presented, even if we make the extension described in the previous paragraph.

Part of the problem seems to be that many probabilistic properties and analyses are inherently

non-compositional. For instance, even something as simple as the expected value of a product

of two random variables is not equal to the product of their expectations, unless they are inde-

pendent. For this reason, it is not so common to see the analysis of “whole systems” composed

of many interacting probabilistic algorithms.

�e reader may �nd the previous paragraph disappointing. A�er all, isn’t the point of sep-

aration logic to achieve composable proofs and local reasoning? If probabilistic reasoning is

not so compositional to begin with, why do we need separation logic? To answer those ques-

tions, I would argue that even if compositional reasoning about the probabilistic behaviors of

interacting randomized data structures is not so common or very feasible, separation logic still

provides bene�ts. For example, it enables us to give speci�cations like the ones in Chapter 6,

so that veri�cation of a client using a skip list does not need to consider the internal represen-

tations of the two sublists. Moreover, the implementations of randomized data structures may

themselves use several simpler concurrent data structures like queues as subcomponents, and

we would therefore want to re-use proofs of these components.

An additional limitation of the speci�cations proved in Chapter 6 is that they essentially

only apply to “stable” states of the data structure: we can only make conclusions about ex-

pected values of the counter when we can guarantee there are no on-going concurrent writes;

similarly, bounds on the number of comparisons when searching in the skip list can only be

obtained when we can prove there are no concurrent insertions. �ese results could be strength-

ened somewhat, e.g., by proving that the number of comparisons to �nd a key kwhich is already

in the list is non-decreasing as other keys are added. However, informally, one would like the

variable n appearing in the bound on the expected number of comparisons in (6.3) to be the

number of keys less than k at the time the search was done. But the number of keys in the list

during the search is not entirely well de�ned if there are concurrent insertions. Instead, we

might try to consider the number of keys a�er the current “batch” of insertions is done and

there is some gap before additional insertions begin. �e idea of considering groups of oper-

ations separated by gaps of time occurs in the analysis of non-probabilistic concurrent data

structures, and there is a weaker condition than linearizability known as quiescent consistency
whose de�nition is given in terms of such gaps. Sergey et al. [108] have developed ways of rea-

soning about quiescent consistent data structures in a separation logic, and it might be possible

to adapt their approach to the probabilistic se�ing.

Di�erent results from the theory of couplings and variants of couplings have been used to

extend pRHL [14, 15, 16, 59]. It would be interesting to see to what extent these di�erent kinds

of couplings can be de�ned in the presence of non-deterministic choice and used in Polaris.

Aguirre et al. [3] have shown that a kind of step-indexed model can be used to reason about

more general kinds of couplings (so-called “shi� couplings”). Because Polaris is step-indexed,

it might be possible to adapt these ideas to reason about shi�-couplings in Polaris.

Stronger bounds on probabilistic behavior could be obtained by taking more advanced re-

sults from probability theory and seeing how they can be applied to non-deterministic proba-

bilistic computations, as was done in §2.4. Of course, to keep everything machine checked, such

111

January 2, 2019

DRAFT

results would have to be mechanized, but by now a number of important results in probability

theory have been formalized in various theorem provers [2, 8, 58, 60].

112

January 2, 2019

DRAFT

Bibliography

[1] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial. Computer,
29(12):66–76, 1996. (cited on p. 108).

[2] Reynald A�eldt and Manabu Hagiwara. Formalization of Shannon’s theorems in

SSRe�ect-Coq. In ITP, pages 233–249, 2012. (cited on p. 112).

[3] Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak, Marco Gaboardi, and Deepak

Garg. Relational reasoning for markov chains in a probabilistic guarded lambda calculus.

In ESOP, pages 214–241, 2018. (cited on p. 111).

[4] Andrew Appel and David McAllester. An indexed model of recursive types for founda-

tional proof-carrying code. TOPLAS, 23(5):657–683, 2001. (cited on p. 47).

[5] Maya Arbel and Hagit A�iya. Concurrent updates with RCU: search tree as an example.

In PODC, pages 196–205, 2014. (cited on p. 3).

[6] James Aspnes and Eric Ruppert. Depth of a random binary search tree with concurrent

insertions. In DISC, pages 371–384, 2016. (cited on pp. 3, 4, 6, and 7).

[7] Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized algorithms in

Coq. Sci. Comput. Program., 74(8):568–589, 2009. (cited on p. 25).

[8] Jeremy Avigad, Johannes Hölzl, and Luke Sera�n. A formally veri�ed proof of the central

limit theorem. J. Autom. Reasoning, 59(4):389–423, 2017. (cited on p. 112).

[9] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM
J. Comput., 29(1):180–200, 1999. (cited on p. 108).

[10] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Probabilistic relational

Hoare logics for computer-aided security proofs. In Mathematics of Program Construction
(MPC), pages 1–6, 2012. (cited on pp. 2, 16, and 105).

[11] Gilles Barthe, �omas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and

Pierre-Yves Strub. Relational reasoning via probabilistic coupling. In Logic for Program-
ming, Arti�cial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015,
Suva, Fiji, November 24-28, 2015, Proceedings, pages 387–401, 2015. (cited on pp. 37, 38,

and 79).

113

January 2, 2019

DRAFT

[12] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-

Yves Strub. Advanced probabilistic couplings for di�erential privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 55–67, 2016. (cited on p. 106).

[13] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. A

program logic for union bounds. In ICALP, pages 107:1–107:15, 2016. (cited on pp. 2, 15,

and 21).

[14] Gilles Barthe, �omas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.

Proving uniformity and independence by self-composition and coupling. In LPAR, 2017.

(cited on pp. 16, 37, and 111).

[15] Gilles Barthe, �omas Espitau, Justin Hsu, Tetsuya Sato, and Pierre-Yves Strub. *-li�ings

for di�erential privacy. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 102:1–102:12, 2017.

(cited on p. 111).

[16] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Coupling proofs

are probabilistic product programs. In POPL, pages 161–174, 2017. (cited on pp. 16, 37,

and 111).

[17] Gilles Barthe, �omas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and

Pierre-Yves Strub. An assertion-based program logic for probabilistic programs. In ESOP,

pages 117–144, 2018. (cited on pp. 15 and 21).

[18] Gilles Barthe, �omas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.

Proving expected sensitivity of probabilistic programs. PACMPL, 2(POPL):57:1–57:29,

2018. (cited on p. 106).

[19] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and

�omas Noll. �antitative separation logic. CoRR, abs/1802.10467, 2018. URL http:

//arxiv.org/abs/1802.10467. (cited on pp. 17, 105, 106, 107, and 109).

[20] Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical
Homology �eory, pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

ISBN 978-3-540-36091-9. (cited on p. 27).

[21] Nick Benton. Simple relational correctness proofs for static analyses and program trans-

formations. In POPL, 2004. (cited on pp. 10, 38, and 79).

[22] Lars Birkedal and Aleš Bizjak. Lecture notes on iris: Higher-order concurrent sepa-

ration logic. https://iris-project.org/tutorial-pdfs/iris-lecture-notes.

pdf, 2018. (cited on pp. 41 and 64).

[23] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly

library of real analysis for Coq. Mathematics in Computer Science, 9(1):41–62, 2015. (cited

on p. 32).

114

http://arxiv.org/abs/1802.10467
http://arxiv.org/abs/1802.10467
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf

January 2, 2019

DRAFT

[24] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Ma�hew J. Parkinson. Per-

mission accounting in separation logic. In POPL, pages 259–270, 2005. (cited on p. 59).

[25] John Boyland. Checking interference with fractional permissions. In Static Analysis, 10th
International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings,
pages 55–72, 2003. (cited on pp. 59 and 89).

[26] Stephen D. Brookes. Variables as resource for shared-memory programs: Semantics and

soundness. Electr. Notes �eor. Comput. Sci., 158:123–150, 2006. (cited on pp. 2 and 13).

[27] Adam Chlipala. Certi�ed Programming with Dependent Types - A Pragmatic Introduction
to the Coq Proof Assistant. MIT Press, 2013. ISBN 978-0-262-02665-9. URL http://

mitpress.mit.edu/books/certified-programming-dependent-types. (cited on p.

25).

[28] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,

2001. ISBN 978-0-262-03270-4. (cited on p. 18).

[29] Pedro da Rocha Pinto, �omas Dinsdale-Young, Philippa Gardner, and Julian Sutherland.

Modular termination veri�cation for non-blocking concurrency. In ESOP, pages 176–201,

2016. (cited on p. 109).

[30] Jerry den Hartog and Erik P. de Vink. Verifying probabilistic programs using a Hoare

like logic. Int. J. Found. Comput. Sci., 13(3):315–340, 2002. (cited on p. 15).

[31] Luc Devroye. A limit theory for random skip lists. �e Annals of Applied Probability, 2

(3):597–609, 1992. (cited on p. 8).

[32] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In SPAA, pages 43–52,

2013. (cited on pp. 5 and 6).

[33] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-

grams. Commun. ACM, 18(8):453–457, 1975. (cited on pp. 10 and 51).

[34] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Concurrent

abstract predicates. In ECOOP, pages 504–528, 2010. (cited on p. 14).

[35] �omas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Ma�hew J. Parkinson, and

Hongseok Yang. Views: Compositional reasoning for concurrent programs. In POPL,

2013. (cited on p. 14).

[36] Marko Doko and Viktor Vafeiadis. Tackling real-life relaxed concurrency with FSL++. In

Programming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on �eory and Practice of So�ware,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 448–475, 2017. (cited

on p. 108).

115

http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types

January 2, 2019

DRAFT

[37] Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. Veri�ed analysis of random trees.

In ITP, 2018. (cited on p. 109).

[38] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking

binary search trees. In PODC, pages 131–140, 2010. (cited on p. 3).

[39] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between concurrent

separation logic and assume-guarantee reasoning. In ESOP, pages 173–188, 2007. (cited

on p. 14).

[40] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for

concurrent objects. �eor. Comput. Sci., 411(51-52):4379–4398, 2010. (cited on p. 19).

[41] Philippe Flajolet. Approximate counting: A detailed analysis. BIT, 25(1):113–134, 1985.

(cited on p. 4).

[42] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University

Press, 2009. ISBN 978-0-521-89806-5. (cited on p. 4).

[43] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Reloc: A mechanised relational logic

for �ne-grained concurrency. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 442–451, 2018.

(cited on p. 106).

[44] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. Reasoning about optimistic

concurrency using a program logic for history. In CONCUR, pages 388–402, 2010. (cited

on p. 14).

[45] N. D. Gautam. �e validity of equations of complex algebras. Archiv für mathematische
Logik und Grundlagenforschung, 3(3):117–124, Sep 1957. (cited on p. 27).

[46] Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning. In ICFP,

pages 2–14, 2011. (cited on pp. 25 and 40).

[47] Jean-Yves Girard. Linear logic. �eor. Comput. Sci., 50:1–102, 1987. (cited on p. 50).

[48] Michèle Giry. A categorical approach to probability theory. In B. Banaschewski, editor,

Categorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathematics,
pages 68–85, 1982. (cited on p. 109).

[49] Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations

do not su�ce for randomized distributed computation. In Proceedings of the 43rd ACM
Symposium on �eory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages

373–382, 2011. (cited on p. 19).

[50] Jean Goubault-Larrecq. Continuous previsions. In Computer Science Logic, 21st Interna-
tional Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland,
September 11-15, 2007, Proceedings, pages 542–557, 2007. (cited on p. 39).

116

January 2, 2019

DRAFT

[51] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Asp. Comput., 6(5):512–535, 1994. (cited on p. 18).

[52] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A provably correct scalable

concurrent skip list (brief announcement). In OPODIS, 2006. (cited on p. 8).

[53] Maurice P. Herlihy and Jeanne�e M. Wing. Linearizability: a correctness condition for

concurrent objects. TOPLAS, 12(3):463–492, 1990. (cited on p. 18).

[54] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category

for higher-order probability theory. In LICS, pages 1–12, 2017. (cited on p. 109).

[55] C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Communications of the
ACM, 12:576–580, 1969. (cited on p. 10).

[56] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent kleene alge-

bra and its foundations. J. Log. Algebr. Program., 80(6):266–296, 2011. (cited on p. 107).

[57] Jan Ho�mann, Michael Marmar, and Zhong Shao. �antitative reasoning for proving

lock-freedom. In LICS, pages 124–133, 2013. (cited on p. 109).

[58] Johannes Hölzl and Armin Heller. �ree chapters of measure theory in Isabelle/HOL. In

ITP, pages 135–151, 2011. (cited on p. 112).

[59] J. Hsu. Probabilistic Couplings for Probabilistic Reasoning. ArXiv e-prints, October 2017.

(cited on p. 111).

[60] Joe Hurd. Formal Veri�cation of Probabilistic Algorithms. PhD thesis, Cambridge Univer-

sity, May 2003. (cited on p. 112).

[61] Jonas Braband Jensen and Lars Birkedal. Fictional separation logic. In ESOP, 2012. (cited

on p. 14).

[62] Arne T. Jonassen and Donald E. Knuth. A trivial algorithm whose analysis isn’t. J.
Comput. Syst. Sci., 16(3):301–322, 1978. (cited on p. 3).

[63] C. B. Jones. Tentative steps toward a development method for interfering programs.

TOPLAS, 5(4):596–619, 1983. (cited on pp. 14 and 17).

[64] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars

Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for

concurrent reasoning. In POPL, pages 637–650, 2015. (cited on pp. 2, 14, 20, 41, 59,

and 67).

[65] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state.

In ICFP, 2016. (cited on pp. 14, 41, and 67).

117

January 2, 2019

DRAFT

[66] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and

Derek Dreyer. Iris from the ground up: A modular foundation for higher-order con-

current separation logic. Accepted for publication in JFP, 2018. (cited on pp. 41, 42, 46, 47,

48, 55, 67, and 72).

[67] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis.

Strong logic for weak memory: Reasoning about release-acquire consistency in Iris. In

ECOOP, volume 74 of LIPIcs, pages 17:1–17:29, 2017. (cited on p. 108).

[68] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico

Olmedo. Weakest precondition reasoning for expected run-times of probabilistic pro-

grams. In ESOP, pages 364–389, 2016. (cited on p. 15).

[69] Gary D. Kno�. Deletion in Binary Storage Trees. PhD thesis, Stanford University, May

1975. (cited on p. 3).

[70] Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350,

1981. (cited on p. 77).

[71] Dexter Kozen. A probabilistic PDL. In Proceedings of the 15th Annual ACM Symposium on
�eory of Computing, 25-27 April, 1983, Boston, Massachuse�s, USA, pages 291–297, 1983.

(cited on pp. 2 and 15).

[72] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars

Birkedal. �e essence of higher-order concurrent separation logic. In ESOP, pages 696–

723, 2017. (cited on pp. 14, 41, and 67).

[73] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order

concurrent separation logic. In POPL, pages 205–217, 2017. (cited on p. 65).

[74] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassaro�i, Jan-Oliver Kaiser,

Amin Timany, Arthur Charguraud, and Derek Dreyer. MoSeL: A general, extensible

modal framework for interactive proofs in separation logic. In ICFP, 2018. (cited on p.

65).

[75] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. A relational model of

types-and-e�ects in higher-order concurrent separation logic. In POPL, pages 218–231,

2017. (cited on pp. 14, 79, and 106).

[76] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, and Lars Birkedal.

Aneris: A logic for node-local, modular reasoning of distributed systems, 2018. (cited

on p. 108).

[77] Leslie Lamport. Composition: A way to make proofs harder. In Compositionality: �e Sig-
ni�cant Di�erence, International Symposium, COMPOS’97, Bad Malente, Germany, Septem-
ber 8-12, 1997. Revised Lectures, pages 402–423, 1997. (cited on p. 18).

118

January 2, 2019

DRAFT

[78] Leslie Lamport. Specifying Systems, �e TLA+ Language and Tools for Hardware and So�-
ware Engineers. Addison-Wesley, 2002. ISBN 0-3211-4306-X. (cited on p. 18).

[79] Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional veri�cation of termination-

preserving re�nement of concurrent programs. In CSL-LICS, pages 65:1–65:10, 2014.

(cited on p. 109).

[80] T. Lindvall. Lectures on the Coupling Method. Dover Books on Mathematics Series. Dover

Publications, Incorporated, 2002. ISBN 9780486421452. (cited on pp. 16 and 37).

[81] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN 1-55860-348-4.

(cited on pp. 17 and 108).

[82] Zohar Manna and Amir Pnueli. �e temporal logic of reactive and concurrent systems -
speci�cation. Springer, 1992. ISBN 978-3-540-97664-6. (cited on p. 18).

[83] Zohar Manna and Amir Pnueli. Temporal veri�cation of reactive systems - safety. Springer,

1995. ISBN 978-0-387-94459-3. (cited on p. 18).

[84] Annabelle McIver, Tahiry M. Rabehaja, and Georg Struth. Probabilistic rely-guarantee

calculus. �eor. Comput. Sci., 655:120–134, 2016. (cited on pp. 17, 20, 105, and 107).

[85] Michael W. Mislove. Nondeterminism and probabilistic choice: Obeying the laws. In

CONCUR 2000 - Concurrency �eory, 11th International Conference, University Park, PA,
USA, August 22-25, 2000, Proceedings, pages 350–364, 2000. (cited on pp. 39 and 40).

[86] Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate transform-

ers. ACM Trans. Program. Lang. Syst., 18(3):325–353, 1996. (cited on pp. 2, 15, and 106).

[87] Robert Morris. Counting large numbers of events in small registers. Commun. ACM, 21

(10):840–842, 1978. (cited on p. 4).

[88] Hiroshi Nakano. A modality for recursion. In LICS, 2000. (cited on p. 49).

[89] Aleksandar Nanevski, J. Gregory Morrise�, and Lars Birkedal. Hoare type theory, poly-

morphism and separation. J. Funct. Program., 18(5-6):865–911, 2008. (cited on p. 25).

[90] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Com-

municating state transition systems for �ne-grained concurrent resources. In ESOP, pages

290–310, 2014. (cited on p. 14).

[91] Aravind Natarajan and Neeraj Mi�al. Fast concurrent lock-free binary search trees. In

PPoPP, pages 317–328, 2014. (cited on p. 3).

[92] Van Chan Ngo, �entin Carbonneaux, and Jan Ho�mann. Bounded expectations: re-

source analysis for probabilistic programs. In PLDI, pages 496–512, 2018. (cited on pp.

109 and 110).

119

January 2, 2019

DRAFT

[93] Peter W. O’Hearn and David J. Pym. �e logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 1999. (cited on p. 12).

[94] P.W. O’Hearn. Resources, concurrency, and local reasoning. TCS, 375(1):271–307, 2007.

(cited on pp. 2, 13, and 53).

[95] �omas Papadakis, J. Ian Munro, and Patricio V. Poblete. Analysis of the expected search

cost in skip lists. In SWAT 90, 2nd Scandinavian Workshop on Algorithm �eory, Bergen,
Norway, July 11-14, 1990, Proceedings, pages 160–172, 1990. (cited on p. 8).

[96] Ma�hew J. Parkinson. �e next 700 separation logics - (invited paper). In VSTTE, pages

169–182, 2010. (cited on pp. 2, 14, and 21).

[97] Christine Paulin-Mohring. Dé�nitions Inductives en �éorie des Types. (Inductive
De�nitions in Type �eory). 1996. URL https://tel.archives-ouvertes.fr/

tel-00431817. (cited on p. 22).

[98] Adam Petcher and Greg Morrise�. �e foundational cryptography framework. In POST,

pages 53–72, 2015. (cited on p. 25).

[99] A. M. Pi�s. Operationally-based theories of program equivalence. In P. Dybjer and A. M.

Pi�s, editors, Semantics and Logics of Computation, Publications of the Newton Institute,

pages 241–298. Cambridge University Press, 1997. (cited on p. 19).

[100] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,

33(6):668–676, 1990. (cited on p. 7).

[101] Lyle Harold Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis, Stanford

University, 1979. (cited on p. 15).

[102] Robert Rand and Steve Zdancewic. VPHL: A veri�ed partial-correctness logic for proba-

bilistic programs. Electr. Notes �eor. Comput. Sci., 319:351–367, 2015. (cited on p. 15).

[103] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,

2002. (cited on pp. 1 and 12).

[104] Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin

Hsu. Formal veri�cation of higher-order probabilistic programs. CoRR, abs/1807.06091,

2018. URL http://arxiv.org/abs/1807.06091. (cited on p. 109).

[105] Roberto Segala. Modeling and veri�cation of randomized distributed real-time systems.
PhD thesis, Massachuse�s Institute of Technology, Cambridge, MA, USA, 1995. URL

http://hdl.handle.net/1721.1/36560. (cited on pp. 17, 18, and 108).

[106] Roberto Segala. �e essence of coin lemmas. Electr. Notes �eor. Comput. Sci., 22:188–207,

1999. (cited on pp. 17 and 18).

[107] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.

Nord. J. Comput., 2(2):250–273, 1995. (cited on p. 17).

120

https://tel.archives-ouvertes.fr/tel-00431817
https://tel.archives-ouvertes.fr/tel-00431817
http://arxiv.org/abs/1807.06091
http://hdl.handle.net/1721.1/36560

January 2, 2019

DRAFT

[108] Ilya Sergey, Aleksandar Nanevski, Anindya Banerjee, and Germán Andrés Delbianco.

Hoare-style speci�cations as correctness conditions for non-linearizable concurrent ob-

jects. In OOPSLA, pages 92–110, 2016. (cited on p. 111).

[109] Peter Sewell, Susmit Sarkar, Sco� Owens, Francesco Zappa Nardelli, and Magnus O.

Myreen. X86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors.

Commun. ACM, 53(7):89–97, July 2010. (cited on p. 108).

[110] Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. A sepa-

ration logic for �ctional sequential consistency. In ESOP, pages 736–761, 2015. (cited on

p. 108).

[111] Ion Stoica, Robert Tappan Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup

protocol for internet applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003. (cited on p.

108).

[112] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis.

A separation logic for a promising semantics. In ESOP, pages 357–384, 2018. (cited on p.

108).

[113] Wouter Swierstra. A Hoare logic for the state monad. In TPHOLs, pages 440–451, 2009.

(cited on p. 25).

[114] Joseph Tassaro�i and Robert Harper. A separation logic for concurrent randomized pro-

grams. CoRR, abs/1802.02951, 2018. URL http://arxiv.org/abs/1802.02951. (cited

on p. xi).

[115] Joseph Tassaro�i, Ralf Jung, and Robert Harper. A higher-order logic for concurrent

termination-preserving re�nement. In ESOP, pages 909–936, 2017. (cited on pp. 14, 79,

106, and 109).

[116] Iris Team. Iris 3.0 documentation, 2017. URL http://plv.mpi-sws.org/iris/

appendix-3.0.pdf. (cited on pp. xi, 41, and 67).

[117] �e Coq Development Team. �e Coq proof assistant, version 8.7.2, February 2018. URL

https://doi.org/10.5281/zenodo.1174360. (cited on p. 22).

[118] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. A logical

relation for monadic encapsulation of state: proving contextual equivalences in the pres-

ence of runst. PACMPL, 2(POPL):64:1–64:28, 2018. (cited on p. 72).

[119] Regina Tix, Klaus Keimel, and Gordon D. Plotkin. Semantic domains for combining prob-

ability and non-determinism. Electr. Notes �eor. Comput. Sci., 222:3–99, 2009. (cited on

pp. 39, 40, and 108).

121

http://arxiv.org/abs/1802.02951
http://plv.mpi-sws.org/iris/appendix-3.0.pdf
http://plv.mpi-sws.org/iris/appendix-3.0.pdf
https://doi.org/10.5281/zenodo.1174360

January 2, 2019

DRAFT

[120] Josh Triple�, Paul E. McKenney, and Jonathan Walpole. Resizable, scalable, concurrent

hash tables via relativistic programming. In 2011 USENIX Annual Technical Conference,
Portland, OR, USA, June 15-17, 2011, 2011. (cited on p. 108).

[121] Jean-Baptiste Tristan, Joseph Tassaro�i, and Guy L. Steele Jr. E�cient training of LDA on

a GPU by mean-for-mode estimation. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 59–68, 2015. (cited

on p. 91).

[122] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying re�nement and Hoare-style

reasoning in a logic for higher-order concurrency. In ICFP, pages 377–390, 2013. (cited

on pp. 14 and 79).

[123] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak memory with

ghosts, protocols, and separation. In OOPSLA, pages 691–707, 2014. doi: 10.1145/2660193.

2660243. URL http://doi.acm.org/10.1145/2660193.2660243. (cited on p. 108).

[124] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. In

CONCUR, pages 256–271, 2007. (cited on p. 14).

[125] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: a program logic for

C11 concurrency. In OOPSLA, 2013. (cited on p. 108).

[126] Eelis van der Weegen and James McKinna. A machine-checked proof of the average-case

complexity of quicksort in Coq. In TYPES, pages 256–271, 2008. (cited on p. 25).

[127] Daniele Varacca. �e powerdomain of indexed valuations. In 17th IEEE Symposium on
Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings,
page 299, 2002. (cited on p. 39).

[128] Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism.

Mathematical Structures in Computer Science, 16(1):87–113, 2006. (cited on pp. 21, 25, 27,

28, 30, 39, 40, and 105).

[129] Hongseok Yang. Relational separation logic. TCS, 375(1–3):308–334, 2007. (cited on p. 2).

122

http://doi.acm.org/10.1145/2660193.2660243

	Abstract
	Acknowledgments
	Note
	1 Introduction
	1.1 Concurrent Randomized Algorithms
	1.1.1 Binary Search Trees
	1.1.2 Approximate Counters
	1.1.3 Skiplists

	1.2 Related Work on Program Logics
	1.2.1 Hoare Logic
	1.2.2 Separation Logic
	1.2.3 Concurrency Logics
	1.2.4 Probabilistic Logics
	1.2.5 Combinations
	1.2.6 Alternatives

	1.3 Design Choices and Outline
	1.4 Verification and Foundations

	2 Monadic Representation
	2.1 Background
	2.1.1 Non-deterministic Choice
	2.1.2 Probabilistic Choice
	2.1.3 Obstructions to Combination

	2.2 Indexed Valuations
	2.3 Expected Values
	2.4 Analogues of Classical Inequalities
	2.4.1 Markov's Inequality
	2.4.2 Chebyshev's Inequality

	2.5 Couplings
	2.6 Alternatives

	3 Iris: A Brief Tutorial
	3.1 Concurrent ML-like Language
	3.2 Resource Algebras
	3.3 Basic Propositions and Semantic Entailment
	3.4 Weakest Preconditions
	3.5 Invariants and Updates for Concurrency
	3.6 Style of Written Proofs

	4 Iris: Generic Framework and Soundness
	4.1 Generic Program Logic
	4.1.1 Program Semantics
	4.1.2 Weakest Precondition
	4.1.3 Lifting Lemmas

	4.2 Adequacy
	4.3 Instantiation

	5 Polaris: Extending Iris with Probabilistic Relational Reasoning
	5.1 Program Semantics
	5.1.1 Probabilistic Transitions
	5.1.2 Indexed Valuation Semantics
	5.1.3 Randomization for the ML-Like Language

	5.2 Probabilistic Rules
	5.2.1 Rules for the ML-Like Language
	5.2.2 Lifting Lemmas

	5.3 Adequacy

	6 Examples
	6.1 Approximate Counter
	6.1.1 Specification and Example Client
	6.1.2 Counter Resources
	6.1.3 Proofs of Specification
	6.1.4 Variations

	6.2 Concurrent Skip List
	6.2.1 Monadic Model
	6.2.2 Weakest Precondition Specifications and Proof Overview

	7 Conclusion
	7.1 Summary
	7.2 Comparison with Related Work
	7.3 Future Work
	7.3.1 Instantiation with Other Languages
	7.3.2 Alternative Monads
	7.3.3 Termination
	7.3.4 Stronger Specifications

	Bibliography

