11.1 Overview

1. Multiplication, Division and Exponentiation mod m
2. Fermat's Little Theorem and Primality Testing

11.2 Counting Steps

11.2.1 Multiplication

Let us define $M(n)$ as the number of steps it takes to multiply $2 n$-bit numbers. This will be useful as a unit operation, when we consider other arithmetic operations.
In grade school, we learn an algorithm which gives $M(n)=O\left(n^{2}\right)$.
In grad school, we learn an algorithm which gives $M(n)=O\left(n^{1+\epsilon}\right)$ for arbitrary ϵ. Stephen Cook presented such an algorithm in his PhD Thesis (cf. http://cr.yp.to/bib/1966/cook.html.) In the same work, Cook also showed that $O(n)$ time cannot be achieved on a certain restricted computational model. Later, Schoenhage and Strassen found an $O(n \log n \log \log n)$ algorithm.
It is an open question as to whether there exists an algorithm (in an unrestricted model) which gives $M(n)=O(n)$.

11.2.2 Division

Note that division of two n-bit numbers also takes $M(n)$ steps - any multiplication algorithm has a corresponding division algorithm.

11.2.3 Exponentiation

Exponentiation, perhaps unsurprisingly, takes longer.

11.2.3.1 First Illuminating example

Imagine you are asked to compute the m th power of 2 , where m is an n-bit number. Of course, the answer is very simple:

$$
1 \underbrace{0 \ldots 0}_{m \text { zeroes }}
$$

But that could be $2^{n} 0$ s! It would take an exponential time in the size of the input (which is $n=\log m)$ just to write out the answer.

A nice way around this unfortunate observation to do exponentiation mod an n-bit number - now the input and output are the same size.

Claim: Given n-bit numbers a, b, m, we can compute $a^{b}(\bmod m)$ efficiently, i.e. in $p(n)$ time for some polynomial p. In fact, we will show exponentiation is $O(n M(n))$.

11.2.3.2 Second Illuminating Example

Let $b=13$. In binary, $b={ }_{2} 1101$.
To compute $a^{1101}(\bmod m)$, we start with a raised to the power 1 (our input) and calculate a to higher exponents by perform repeated multiplications, reducing $\bmod m$ after each operation.

$$
a^{1} \rightarrow a^{2} \rightarrow a^{3} \rightarrow a^{6} \rightarrow a^{12} \rightarrow a^{13}
$$

In binary, the exponents are

$$
1 \rightarrow 10 \rightarrow 11 \rightarrow 110 \rightarrow 1100 \rightarrow 1101
$$

11.2.3.3 General Algorithm

Set $X=a^{1}$. For i from 0 to $n-1$:

1. Square X. $\left[X=X^{2}(\bmod m)\right]$
2. If the i th bit of the binary expansion of b is a 1
(a) Multiply by $a \cdot[X=a X(\bmod m)]$

Since we are working mod m, X is always an n-bit number. Thus, each multiplication takes $M(n)$ steps. The loop is iterated n times, and there are at most two multiplications per iteration, so the runtime is $O(n M(n))$, as claimed above.

11.3 Fermat

Fermat thought about this. He came up with some cool beans. Now we will rediscover them. Fermat noticed:

	3	5	7	9	11	13	15	17	19	21
$2^{n}(\bmod n)$	2	2	2	8	2	2	8	2	2	8

The table seems to suggest, given natural numbers a, n,

$$
a^{n} \quad(\bmod n)=a \quad \Leftrightarrow \quad n \text { is prime }
$$

This would be a wonderful theorem to have, since it gives a polynomial time test for primality: given n, return PRIME iff $2^{n}=2(\bmod n)$. Unfortunately, only one direction is true.

11.3.1 \Leftarrow

Fermat showed the left implication with a clever application of the Binomial Theorem. Given prime p,

$$
2^{p} \quad \equiv_{p} \quad(1+1)^{p} \quad \equiv_{p} \quad \sum_{k=0}^{p}\binom{p}{k}
$$

Notice that for positive $i<p,\binom{p}{i}=\frac{p!}{i!(p-i)!}$ has no factor of p in the denominator, but it has one in the numerator. We know that $\binom{p}{i}$ is an integer, so its prime factorization will contain a p in it. That is, $p \left\lvert\,\binom{ p}{i}\right.$, which gives

$$
\binom{p}{i} \equiv\left\{\begin{array}{lll}
1 & (\bmod p) & i=1 \\
0 & (\bmod p) & 0<i<p \\
1 & (\bmod p) & i=p
\end{array}\right.
$$

Therefore $2^{p} \equiv 2(\bmod p)$ for p prime.
More generally, $(a+1)^{p}=\sum_{k=0}^{p} a^{k}\binom{p}{k}$. By the same factoring argument, $\binom{p}{k}$ is divisible by p for $0<k<p$, so $a^{k}\binom{p}{k} \equiv 0(\bmod p)$, and all those terms drop out of the sum. So

$$
(a+1)^{p} \equiv a^{p}+1 \quad(\bmod p)
$$

To complete the proof, we need $a^{p}+1 \equiv a+1(\bmod p)$, or equivalently $a^{p} \equiv a(\bmod p)$. We seem to be back where we started, but instead of trying to prove the theorem for $a+1$, we have a smaller number a. So, we can fix the proof by inducting on a.
Equivalently, assume for contradiction that $a^{p} \not \equiv a(\bmod p)$ for some natural a. Then there is some smallest counterexample $x . x>1$, since $0^{p} \equiv 0(\bmod p)$ and $1^{p} \equiv 1(\bmod p)$. Thus $(x-1)^{p} \equiv x$ $(\bmod p)$. However, above we showed $(x-1)^{p} \equiv x(\bmod p) \Rightarrow x^{p} \equiv x(\bmod p)$. Contradiction. Thus $a^{p} \equiv a(\bmod p)$ for all natural a.

$11.3 .2 \nRightarrow$

There is a very nice counterexample which happens to break lots of primality testing algorithms: 1729.

11.3.2.1 Historical Aside

Srinivasa Ramanujan was an Indian mathematical savant at the turn of the 20 th century. His friend Hardy, also a famous mathematician, had this anecdote to relate:
"I remember once going to see [Ramanujan] when he was lying ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. 'No,' he replied, 'it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."
In fact, $1729=12^{3}+1^{3}=10^{3}+9^{3}$.

11.3.3 Primality Testing

$$
\begin{gathered}
1729=7 * 13 * 19 \\
\text { but } \\
2^{1729} \equiv 2 \quad(\bmod 1729)
\end{gathered}
$$

Thus, 1729 breaks our naive primality test. However, perhaps we were unlucky in our choice of 2 . Is it the case that for composite n there exists some a such that $a^{n} \neq a(\bmod n) ?$
Unfortunately, no. It turns out that for all integer a,

$$
a^{1729} \equiv a \quad(\bmod 1729)
$$

Numbers n for which $a^{n} \equiv a(\bmod n)$ for any a are called pseudoprimes, or Carmichael numbers. 1729 happens to be the third smallest Carmichael number.

11.3.4 Beyond Fermat

We can consider variations on the exponentiation theme.

11.3.4.1

Notice that $a^{p-1} \equiv 1(\bmod p)$ for p prime and a coprime with p. In fact, this is an equivalent form of Fermat's Little Theorem.
Given $a^{p} \equiv a(\bmod p)$, if a is coprime with p then a^{-1} exists and we can multiply on both sides by a^{-1} to get $a^{p} \equiv a(\bmod p)$.
Given $a^{p-1} \equiv 1(\bmod p)$ for a is coprime with p, then we can multiply on both sides by a to get $a^{p} \equiv a(\bmod p)$ for a coprime with p. For a not coprime with p, a must be a multiple of p, so that $a^{n} \equiv 0 \equiv a(\bmod p)$.
So, again, all primes will pass this test, but not all numbers which pass this test are primes. Particularly, $n=1729$ gives $2^{1728} \equiv 1(\bmod 1729)$

11.3.4.2

If n is odd, then $(n-1) / 2$ is an integer. Let's look at $2^{(n-1) / 2}(\bmod n)$. If n is prime, then we know that $\left(2^{(n-1) / 2}\right)^{2} \equiv 1(\bmod n)$, so $2^{(n-1) / 2}$ is either 1 or -1 modulo n.

But, once again,

$$
2^{1728 / 2}=1 \quad(\bmod 1729)
$$

However, notice that 1728 is not just divisible by 2 , it is in fact divisible by 2^{6}. Can we do something with $2^{1728 / 64}(\bmod 1729) ?$ Our very own Gary Miller pursued this line of thought and eventually came up with the famous Miller-Rabin probabilistic primality test, which we will talk about next time.

