
15-503/859P: Cryptography Lecturer: Manuel Blum
Topic: Hard Problems and Apps Date: 15 Mar 2006
Scribe: Yinmeng Zhang

15.1 Administrivia

MIDTERM EXAM Wednesday after Spring Break (Mar 22)

15.2 Generators

When does Z∗n have a generator? We have claimed in class that Z∗p has a generator for any prime
p. As it turns out, Z∗pe also has a generator if p is an odd prime. For example,

Z∗
32 = {1, 2, 4, 5, 7, 8}

is generated by 2. Z2pe has a generator for odd p, but Z2e has generator only for e = 1, 2. For
example,

Z∗8 = {1, 3, 5, 7}

has no generator! (check by cases). We will come back to this.

15.3 Hard Problems

15.3.1 Discrete Log Problem

INPUT: prime p, generator g of Z∗p, a ∈ Z∗p
OUTPUT: x s.t. gx ≡ a (mod p)

15.3.2 Principal Square Root Problem

Recall Z∗p = g, g2, . . . , g(p−1)/2, g(p−1)/2+1 . . . up to (p-1)/2+1 (the lower half) are the principal
square roots; the remainder are nonprinciple.

INPUT: prime p, generator g of Z∗p, a square a2 (mod p)

OUTPUT: YES iff a is the principal square root of a2

We could even include a and −a in the input and the problem would still be hard (we can’t
determine which one is the smaller power of g).

Notce the principal square root problem depends on the generator given in the input; you can
check that Z∗11 is generated by both 2 and 7. For generator 2, all the principal square roots are
2, 4, 8, 5, 10, while for 7, the principal square roots are 7, 5, 2, 3, 10.

1

15.3.3 Equivalence

Recall that the two problems are polynomial time equivalent. Intuitively, this means that if you
can solve one in polynomial time, then you can solve the other in polynomial time. This is not quite
correct, since if you can’t solve the one, it implies nothing about the other. The correct statement
is

Given a blackbox solver for the first problem, you can construct a polynomial time
solver for the second problem.

Notice this does not reference whether or not the blackbox solver exists.

Last time we showed how to solve the discrete log problem given an oracle for the principal square
root problem; the other direction also holds.

15.4 Coin Tossing Into a Well

Suppose Alice and Bob have just divorced, and they want to decide who gets the house. They have
agreed to “flip a coin” for it, but since they are not willing to be in each others’ physical presence,
they would like to run some protocol which names Alice the winner half the time and to Bob half
the time. Also, since Alice and Bob are not in very trusting moods right now, they would like the
protocol to allow them to check that the other party is not cheating.

To help Alice and Bob out, we will construct a tossing a coin into the well protocol based on the
principal square root problem. Where do wells come in? Notice that tossing a coin into the well is
just like commiting to a random bit - since the coin is down the well, the value can no longer be
changed, but it can still be viewed.

Basically, Alice constructs an instance of the principal square root problem, and Bob guesses the
answer - Bob wins iff he guesses correctly.

1. Alice chooses a prime p and picks e at random from [(p− 1)/2].

2. Alice sends over p, the factors of p − 1 (call them q1 through qn), a generator g of Z∗p, the
square a2 = g2e, and the roots {a = ge,−a = −ge} in sorted order.

3. Bob checks that Alice really sent over a valid instance. That is, he checks

(a) p and the qi are really primes using the primality testing algorithm of his choice

(b) Πqi = p − 1 and for each factor q, g(p−1)/q 6= 1, which proves g really is a generator for
Z∗p.

(c) the supposed roots Alice sent over really give g2e when squared.

4. Bob selects a, −a at random and sends it to Alice

5. If Bob sent the principal square root, then he wins, else he loses. Notice at this point only
Alice knows the outcome of the coin flip.

2

6. Alice sends Bob e so that he can check if he won or not.

At the end of this protocol, Alice and Bob will have agreed on a bit - is this bit random?

Alice cannot cheat since we have included checks on everything she sends over in the protocol.

Bob cannot cheat because of the hardness of the principal square root problem. Suppose for
contradiction Bob had an advantage, i.e. for given p, g, the probability over e of guessing correctly
is at least

1
2

+
1

poly(n)

(where n is the length of the prime p)

We wish to show that he can amplify this probability to solve the principal square root problem,
which we assumed is hard.

To guess which of ±a is the principal square root of a2 (mod p), Bob repeatedly picks random r̂,
and solves the new problem of deciding which of ±a ∗ ar̂ is the principal square root of a2a2r̂.

15.5 Euler’s Generalization of Fermat’s Little Theorem

The Euler-phi function (also known as the totient) is defined as φ(n) := |Z∗n|.
Theorem: If n ∈ Z+, then ∀a ∈ Z∗n

aφ(n) ≡ 1 (mod n)

To calculate the Euler-phi function, we use the fact if n =
∏

pei
i , then φ(n) =

∏
pei−1

i = n
∏

(1 −
1/pi). This shows that, given the factorization of n, we can find φ(n) efficiently. The converse also
holds.

Theorem: There is an efficient algorithm that, given composite N , φ(n), splits n, i.e. returns
nontrivial factors a, b, such that ab = n.

An interesting special case of the second theorem is when n = p1p2, the product of two unknown
primes. The theorem claims that we can efficiently find p1 and p2. By definition φ(n) = (p1 −
1)(p2 − 1), so factoring n boils down to solving a system of two equations in two unknowns.

One particularly cute way to approach the system is to notice φ(n) = (p1 − 1)(p2 − 1) = n− (p1 +
p2) + 1, so we can derive (x − p1)(x − p2) = x2 − (N − φ(n) + 1) + N . The roots of the equation
are exactly p1 and p2, so we simply solve the equation to extract the factors.

15.6 Carmichael’s lambda function

We know that aφ(n) ≡ 1 (mod n) for a in Z∗n - is φ(n) the smallest exponent for which this holds?
For primes, yes, in general, no. The smallest exponent is called Carmichael’s lambda function.
Given n and its factorization

∏
pei

i , we can calculate λ(n) using the formula

λ(n) = lcmi[pei−1
i (pi − 1)]

3

In cryptographic applications, the interesting case is usually n = p1p2, the product of two distinct
primes.

We construct pi by repeatedly picking qi until we find prime pi = 2qi + 1. This gives λ(n) =
lcm[2q1, 2q2] = 2q1q2 = φ(n)/2.

The upshot is that we can factor n given n and λ(n). In fact,

Theorem:(Miller) Given N and any integer multiple of λ[n] or φ(n) we can efficiently factor n.

15.6.1 Generators Again

Q: What is generator of Z∗n where n = p1p2, pi distinct odd primes?

A: It has none! This is because (1) every element a of Z∗n has order which divides λ(n), and (2)
λ(n) < φ(n).

(1) comes from the Chinese Remainder Representation. Given generators g1 for Z∗p1
and g2 for

Z∗p2
, we can express every number as 〈gi

1, g
j
2〉. The order of 〈gi

1, g
j
2〉 is the smallest k such that

〈gik
1 , gjk

2 〉 = 〈1, 1〉 = 1.

By Fermat’s little, every k(p1−1)th power of 〈gi
1, g

j
2〉 will have the form 〈1, y〉, and every k(p2−1th

power will have the form 〈x, 1〉. So, we want to find a number which is divisible by p1 − 1 and
p2− 1; lcm(p1− 1, p2− 1) springs to mind, which happens to be λ(n). Now, by Lagrange, the order
of the element must divide λ(n).

(2) follows from the definitions of λ(n) and φ(n). By construction both pi − 1 are even, so their
lcm is less than their product by at least a factor of 2. It so happens that their product is φ(n)
and their lcm is λ(n).

15.7 Collision-Resistant Hash Functions

Given a class of integers C with associated hard computation problem, for each N ∈ C we define a
collision-resistant hash function hN : Z+ → Z+

n to be a function with the property that from any
two distinct integers (messages) m1,m2 ∈ Z+ s.t. hN (m1) = hN (m2), one can efficiently solve the
hard problem associated with N .

Here, C consists of products of large odd primes, and the hard computational problem is factoring.

For N = p1p2, let g1 be a generator for Z∗p1
, g2 a generator for Z∗p2

. We construct a “pseudo-
generator” g = 〈g1, g2〉 for Z∗N , which we argued above has order λ[N]. Now, we define

hN (M) = gm (mod n)

This hash function is collision-resistant. Suppose we can find distinct M1 and M2 s.t. h(M1) =
h(M2), then gM1−M2 ≡ 1 (mod n). In other words, the order of g divides M1 − M2, so we would
have a multiple of λ(N)! Now that we have N and cλ(N), we can factor N .

4

