
Theoretical Cryptography, Lectures 18-20

Instructor: Manuel Blum

Scribes: Ryan Williams and Yinmeng Zhang

March 29, 2006

1 Content of the Lectures

These lectures will cover how someone can prove in zero-knowledge that they know the factorization

of a number N .

2 Simulation - A Definition

A protocol is ZK if the Verifier gains no advantage from talking to the Prover.

We can describe any Verifier who talks to the Prover as AP , a Turing Machine A with access to

the oracle P . We want to say that the output of AP is something the Verifier could have come up

with for herself.

That is, for any efficient AP there is a corresponding efficient B such that the output of B has the

same distribution as the output of AP

Previously, we had defined simulation to be the ability to construct an efficient subroutine which

could be used in place of the Prover Oracle. That is, at every point A queried the oracle, our

subroutine could be used instead. This is a blackbox simulation, since we treat A as a black box

with sockets which can take either a Prover Oracle or the subroutine we constructed.

This definition is more general, in that it could be that B somehow uses the structure of A.

3 The number of roots of a quadratic

Let N = pe1

1
· · · pek

k be the prime factorization of N , where each pi is a distinct prime.

Consider the polynomial p(x) = (x2 − a) mod N , for a ∈ Z∗
N .

Question: How many roots does p(x) have, if N is prime?

• Answer: Either 0 or 2. GF (N) is a field, hence the degree-two polynomial x2 − a has at most

two roots, and if r is a root then so is −r.

1



If N is a prime power, the answer is still true. We won’t cover why this is the case, but we will

note that the argument is not the same. That is, Z
∗
pe is not a field for any prime p and integer

e > 1. There is a field of pe elements for any e > 1, but it is not Z
∗
pe . One quick way to see this is

that the number of elements in Z
∗
pe is not pe, but rather (p − 1) · pe−1.

What happens for more general N? Let N = p1 · p2 where p1 6= p2 are both odd.

Claim 3.1 The polynomial p(x) has either 0 or 4 roots.

Proof. By the Chinese Remainder Theorem,

a ≡ x2 mod N ⇐⇒ a ≡ x2 mod p1 and a ≡ x2 mod p2.

From the question and answer above, we know that the two equations on the right-hand side each

have either 0 or 2 solutions. Let x1,−x1 be roots of (x2−a) mod p1, if they exist, and let x2,−x2 be

roots of (x2−a) mod p2, if they exist. The LHS equation has a solution iff both equations on the RHS

have solutions, in which case a = 〈a1 mod p1, a2 mod p2〉 (in Chinese Remainder representation)

has square roots 〈x1, x2〉, 〈−x1, x2〉, 〈x1,−x2〉, 〈−x1,−x2〉 when written in Chinese remainder

representation. 2

The claim also holds for N = pe1

1
pe2

2
.

In general, we can say the following.

Claim 3.2 For N = pe1

1
· · · pek

k , the polynomial p(x) has either 0 roots or 2k roots.

The proof of this for N = p1 · · · pk, where the pi are distinct, is extremely similar to the proof of

the claim above, just generalized to the case for arbitrary k.

4 Knowing Roots = Knowing Factors

Let N = p1 ·p2, and let x = 〈x1, x2〉, y = 〈x1,−x2〉 be distinct roots of the polynomial x2−a mod N ,

as in the proof of Claim 3.1. (By “distinct”, we mean it is not the case that x = −y.)

It turns out that knowledge of the roots x and y is equivalent to knowledge of p1 and p2!

4.1 Knowing Factors ⇒ Knowing Roots

First, let’s consider the direction where p1 and p2 are known, and we have to compute x and y

as roots of x2 − a in polytime. Knowing p1 and p2 means that one can compute the two roots of

(x2 − a) mod p1, and the two roots of (x2 − a) mod p2, by standard field arithmetic. Let the first

pair of roots be r1,−r1 and the second pair be r2,−r2. Then x,−x and y,−y are equivalent to:

〈r1, r2〉, 〈−r1, r2〉, 〈r1,−r2〉, 〈−r1,−r2〉.

That is, the Chinese remainder representations of the four roots are given by r1 and r2. But

converting to and from Chinese remainder representation can be done in polytime, so we’re done

with this direction.

2



4.2 Knowing Roots ⇒ Knowing Factors

Perhaps the more interesting direction is that knowing the distinct roots of any polynomial of the

form (x2−a) mod N leads to knowledge of N ’s factors. This direction is established by the following

theorem.

Theorem 4.1 Let N = p1p2, and let x and y be distinct roots of the polynomial p(x) = (x2 −
a) mod N . Let A = {gcd(x + y, N), gcd(x − y, N)} and B = {p1, p2}. Then A = B.

Proof. By definition, a ≡ x2 ≡ y2 mod N , where x 6= y, x 6= −y. Therefore (x2 − y2) ≡ 0 mod N ,

so N divides (x2 − y2) = (x + y)(x − y).

Suppose N divided x + y. Then x + y ≡ 0 mod N , so x ≡ −y mod N . But since x, y < N , this

implies x = −y, contradicting distinctness. Therefore, N does not divide x + y. Similar argument

shows that N does not divide x − y.

Thus, N divides x2 − y2, but does not divide the factors x− y and x + y of x2 − y2. It follows that

both gcd(N, x − y) and gcd(x + y) are non-trivial: one of them is p1, and the other is p2. 2

To obtain a more “set-theoretic” intuition for what is going on in the above proof, suppose we

represented integers as multisets of their prime factors, e.g. N = {p1, p2}. Then, gcd(A, B) is

taking the intersection of sets A and B, and divisibility is subsethood: “A divides B” is equivalent

to “the set for A is a subset of the set for B”. The number x2 − y2 is the union of the sets for x+ y

and x − y. Now, N is a subset of x2 − y2, but is not a subset of x + y, nor is it a subset of x − y.

Therefore, exactly one of p1, p2 is in the set for x + y, and the other one is in the set for x − y.

Hence the gcd of N and these numbers yields p1 and p2.

4.3 Aside: An application

Here’s a short, neat application of the above equivalence. Again, let N = p1p2. Suppose there is a

black box B such that, for any a ∈ Z
∗
N that is a square, B(a) is some x such that x2 ≡ a mod N .

That is, B is a black box for sqrt mod N .

Theorem 4.2 Given a black box B for sqrt mod N , one can factor N with high probability in

polynomial time, with only a constant number of queries to B.

Proof. The key idea is that B(a) outputs exactly one square root of a. If we somehow knew the

other square root as well, then we could factor. Here’s how we do that. Pick r ∈ Z
∗
N uniformly at

random. Compute a = r2 mod N . Now, look at s = B(a). With probability 1/2, s 6= −r and s 6= r!

That is, there are four roots of a, and with probability 1/2, we chose a root that is distinct from the

one that B outputs. Therefore, if we pick r1, . . . , rk ∈ Z
∗
N at random, and look at B(r1), . . . , B(rk),

with probability at least 1 − 1/2k, we have two distinct square roots of some a, and can therefore

factor N . 2

5 Zero-Knowledge Proof of Factorization Knowledge

We finally come to our original task, which is to find a zero-knowledge protocol for proving that one

knows the factorization of N . For simplicity, we’ll assume that N = pq, where p 6= q are primes.

3



At the top level, we shift the problem to getting the Prover to show he can compute square roots

mod N . Here’s a first stab at a zero-knowledge protocol, suggested by Barry Hon:

Verifier: Select x ∈ Z
∗
N uniformly at random. Compute a = x2 mod N .

V → P: a

Prover: Compute roots of (x2 − a) mod N , call them ±x,±y.

If there are no roots, then randomly make up two numbers x and y, and negate them.

P → V: (f(x), f(y)) where f is a one-way hash. (f is meant to look random)

Verifier: Compute z = f(x), accept iff z is found among the pair sent.

The main problem with this approach is that it requires a very random-looking f in order to be

zero-knowledge. (If f is truly “random”, then the Verifier can generate what the Prover sends by

picking a random number for f(y), and checking f(x).) Ideally, we’d like to catch the Verifier, if

she doesn’t actually know a square root of a. (The step where we randomly make up x and y is

suspect.)

5.1 A Formalization of ‘random-looking”

A random oracle is a function f : {0, 1}n → {0, 1}n chosen uniformly at random from all functions

with that domain and range. One way to picture it is a 2n × n array, where every entry is 0 or 1

based on a random coin flip. f(x), then, is just the xth row of the array read as an n-bit binary

number. Unfortunately, it takes exponential time to fill up such an array, and exponential space to

maintain it.

However, random oracles are really great for proofs. We can access f(x) quickly, while inverting

f(x) requires searching through the whole array. The random oracle is an “optimal 1-way function”,

and we can now polish up our previous proofs by substituting “random oracle” for “gray paint”.

Just as before, begin able to show security with access to a random oracle is interesting, even

though ideally we would like a protocol which does not need it.

5.2 The Better Solution

Here, we want the Verifier to really know the square root of the number she sends the Prover

– reaching into our Bag o’ Tricks, we require the Verifier to send a ZKP of that fact. The new

protocol is

4



Verifier: Select x ∈ Z
∗
N uniformly at random. Compute a = x2 mod N .

V → P: a

Verifier: Select y ∈ Z
∗
N uniformly at random. Compute b = y2 and c = a/b.

V→ P: b, c

P→ V : 0 or 1 uniformly at random

V→ P: If 0
√

b, else
√

c

Prover: If the square root is wrong, ABORT.

Prover Select y ∈ Z
∗
N uniformly at random. Compute b = y2 and c = a/b.

P→ V: b, c

V→ P : 0 or 1 uniformly at random

P→ V: If 0
√

b, else
√

c

Verifier: If the square root is wrong, REJECT.

Of course, we repeat the above for k times, as usual. If all iterations do not reject, then ACCEPT.

In order to fully show that the above works, recall that we would need to prove soundness, com-

pleteness, and zero-knowledge.

5


