15-503/859P: Cryptography Lecturer: Manuel Blum
Topic: Another version of Lecture 22 Date: 13 April 2006
Scribe: Yinmeng Zhang

22.1 Overview
Last time we did PKE with
f(z) =2® (mod N)
where
\‘]\/7/ = Px@Q P,Q odd primes
Public Key Private Keys

Such that anyone knowing N could encrypt, but being able to decrypt was provably equivalent to
knowing P (or Q).

Today,
1. Signatures with f(z) = 2 (mod N)
2. Oblivious Transfer with f(z) = 22 (mod N)

3. Introducing All-or-Nothing Certified Mail

22.2 Signatures

Alice’s signature for a message m is something which she alone can easily compute, but everyone
else can verify. Thus, anyone reading a signed message from Alice can be sure that she was the one
who wrote it.

As usual, Alice’s public key is N4, and her private key are its two odd prime factors P4 and Q 4.
Our high-level idea is that everyone can compute f(z) = 22> mod N4, but only Alice can compute
the inverse f~!(z) = \/z mod Ny4.

Our first stab at an encryption scheme:

Signature ,(m) = (m,v/m mod Ny)

To verify the signature, the reader checks m = (y/m)? mod Na.
22.2.1 Note on Encryption

If Alice wants to send a signed, encrypted message to Bob, she sends S4(Ep(m)) - encrypted with
Bob’s public key, and signed under Alice’s public key. S4(F4(m)) would be rather disastrous, as
the signature scheme inverts the encryption.

22.2.2 Pluses and Minuses

Being able to take square roots is equivalent to being able to factor N4, which is a plus. Unfortu-
nately, there are a number of minuses.

1. Once you have signed a message, such as “Withdraw one billionty dollars from Alice’s bank
account”, an Eavesdropper could take the signed message and use it multiple times. The
standard solution to this is to time stamp all messages before signing them, so that they can
only be used once.

2. Multiple messages could have the same signature.

3. Suppose your Evil Secretary hands you a message to sign — which she constructed by squaring
a random number a! Once you sign it, there is a 50/50 chance you have revealed the other
square root, and your Evil Secretary will know your secret.

4. From signatures on messages m1, mg, anyone can compute the signature on their product —

S[mlmg] = S[ml]S[mQ]

5. If you send the same message multiple times, you had better send the same square root
each time, or you will be revealing your secret. An easy fix to this is to use a deterministic
algorithm to decide which root to send.

6. The scheme fails if m isn’t a quadratic residue.

22.2.3 Improved Scheme

Fix and publish a collision-free hash function A which maps to Z%,. Given message m,
we choose random r and send

Signature o(m,r) = (m,r,\/h(mor) mod N)

The quality of the signature now hinges on the quality of the hash function.

By definition of collision-free, it is hard to find pairs z,y such that h(x) = h(y). This implies the
new scheme is resistant to Evil Secretaries, since she can no longer predict what you will take the
square root of.

The scheme no longer commutes with multiplication, and the randomness makes it safe to send m
multiple times.

But can we can force h(m or) to have a square root? If h maps uniformly onto Z};, 1/4 of the
inputs will hash to something with a square root. Somehow, we would like to say that by choosing
random 7 we will quickly hit upon one such that hA(m o r) is a quadratic residue.

22.3 Oblivious Transfer using f(z) = 2% (mod N)

An oblivious transfer or OT protocol allows the sender to transfer information to the receiver while
remaining oblivious to what information was sent. Here, we describe a protocol where Bob receives
information half the time, and Alice cannot distinguish when this occurs.

Suppose Alice has Ny = P4 * Q4 as usual. Alice OTs the factors of N4 to B as follows:

1. B— A 2?2 mod N4

2. A — B aroot of 22

At this point B has a 50/50 shot of being able to factor N, and Alice is oblivious.

The “50/50 shot” guarantee leads to some nice applications. For example, by iterating the protocol,
Alice can share a secret key with Bob in expected polynomial time. Alternatively, this can be used
to implement a coin flip over the telephone, where Bob wins iff he can factor N4. But how can we
use the fact Alice doesn’t know what was sent over?

22.4 Certified Mail

All-or-nothing sequential certified mail (which we will abbreviate AoNSCM) is a protocol which
allows Alice and Bob to exchange a piece of mail and a receipt containing a description of the mail
sent. All-or-Nothing means Bob receives any information about the mail iff Bob receives the whole
mail iff Alice receives the whole receipt. Sequential means we will not use any nasty tricks which
require Alice and Bob to send mail simultaneously — Alice and Bob can talk one after the other,
as in all our previous protocols. Certified refers to the receipt.

The post office actually has something called “certified mail”, but it is vastly inferior to the protocol
described here. You can get proof that something was sent through the mail, but the receipt will
not contain information on what was sent, so your receiver cannot get verification you sent the
correct thing.

22.4.1 Impossible!

The interesting thing about AoNSCM is that it seems impossible. Since we require the protocol
to be sequential, consider the very last message sent, wlog let the message be sent by Bob. Just
before he sends the message, Bob knows he will receive no more information from Alice, so he
must already have the message. Alice is still waiting for a message. It seems that Bob could just
abort the protocol and leave Alice hanging. In fact, using this kind of argument we can show it is
impossible for Alice and Bob to exchange mail both ways (simultaneous key exchange). Somehow,
a receipt is still possible.

22.4.2 Yet Useful!
Suppose A is Alice and B is her Broker, and consider the following conversation:

1. A — B: Please buy stock for $1! signed, Alice

2. If stock goes to $.5, B — A “Sorry, you lost a lot of money”, and B can prove A wanted to
buy the stock because the message was signed.

If stock goes to $2, B — A “Sorry, I was on vacation.”, and keeps the money to himself. Alice
cannot prove she wanted to buy the stock... unless we can get her a receipt.

We will develop a protocol for AoNSCM next time.

