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5.1 Homework

5.1.1 Caveat Discipulus

If on a homework or exam you are not sure about a solution, be sure to say so. If you claim
incorrectly you have a correct proof, you lose points. If you can point out the weaknesses in your
proof, that is worth something. Honesty above all!

5.1.2 Vertex Cover

Recall that an instance of the vertex cover consists of a graph G = (V,E) and a positive integer
Bound B. We ask if there exists a set S ⊆ V , |S| ≤ B such that all edges are incident to some
vertex in S. In Homework 1, we asked for a zero-knowledge protocol for Vertex Cover.

Aside: Notice that we require every edge of G to have an endpoint in S, but it is not necessary for
every vertex in S to be an endpoint of an edge of G. For example, if we have an independent set
(a graph with no edges), then it is vacuously true that any subset of its vertices is a vertex cover.

5.1.2.1 Solution from the Audience

Let m be the number of edges of G, and k be the security parameter. For k(m+2) rounds, in each
round :

1. Prover commits to

(a) A random permutation of the original graph
(b) A vertex cover on the permuted graph (by pointing arrows at the appropriate vertices)

2. The Verifier can then choose to see one of

(a) The graph and permutation [accept iff the graph is isomorphic to the original G]
(b) The arrows [accept iff there are B vertices]
(c) An edge [accept iff Prover can exhibit an arrow pointing to one of the endpoints]

Proof of Correctness:

Observe that an honest Prover can always produce an acceptable proof that can be verified in
polynomial time: thus we have completeness.

If a crooked Prover P̃ could produce a graph and permutation AND point arrows at B vertices
such that FOR ALL edges there is an arrow to one of the endpoints, then P̃ could reverse the
permutation on the B vertices and produce a vertex cover of the original graph G.

1



Thus, the contrapositive tells us that if a dishonest prover P̃ does not know a vertex cover, then
in each round, at least one of the private pieces must be unacceptable. There are m + 2 pieces
(m edges, the permutation, and the set of B arrows), so in each round a Verifier has at least a
1/(m + 2) probability of catching a dishonest Prover. Thus, after k(m + 2) rounds, a dishonest
Prover has passed with probability at most (1− 1/(m + 2))k(m+2). Thus, we have soundness.

Finally, notice that any single private piece can easily be simulated by the Verifier alone. In
particular, we can pick a random permutation of G, pick B random arrows on an unlabelled copy
of G, or pick a random endpoint v of a specific unlabelled edge and put an arrow on v. Therefore
the proof system is zero-knowledge.

5.1.2.2 More on the Soundness Guarantee

You may recall that
lim

n→∞(1− 1/n)n = 1/e

In fact, for all natural n > 1, (1 − 1/n)n ≤ 1/e, which allows us to give a nice upper bound of
(1/e)k on the probability a dishonest Prover can pass the protocol. This bound was quoted in the
Trevisan notes.

In general, on an instance x, a zero-knowledge protocol should catch a dishonest Prover with
probability 1/p(|x|) for some polynomial p. Thus, after kp(|x|) rounds, which is polynomial, there
probability a dishonest Prover can pass is (1− 1/p(|x|))kp(|x|) ≥ (1/e)k, which is exponential.

5.1.2.3 Solution from the Teacher

Let n be the number of vertices in the graph G, and k be the security parameter. For k rounds, in
each round :

1. Prover commits to a random permutation of the original graph

2. The Verifier can then choose to see one of

(a) The graph and permutation [accept iff the graph is isomorphic to the original G]

(b) All possible edges between the n − B vertices not in the cover [accept iff Prover can
exhibit n−B vertices with no edges between them]

Proof of Correctness:

Recall the “King’s Crown” picture of a vertex cover: the vertices not in the cover form the points
of the crown, and by definition there can be no edges between them. An honest Prover can easily
construct a random permutation and knows n−B vertices with no edges between them. Thus we
have completeness.

If a crooked Prover P̃ knew n−B vertices with no edges between them, then all edges in G must
have at least one endpoint in the other B vertices. That is, those B vertices form a vertex cover.
So, if P̃ knew both a permutation of G and n − B vertices in the permuted graph with no edges
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between them, then P̃ could reverse the permutation on the other B vertices to produce a vertex
cover of the original graph G. The contrapositive tells us that if a dishonest prover P̃ does not
know a vertex cover, then in each round, at least one of the private pieces must be unacceptable.
There are 2 pieces, so in each round a Verifier has at least a 1/2 probability of catching a dishonest
Prover. Thus, after k rounds, a dishonest Prover has passed with probability at most (1/2)k. Thus,
we have soundness.

In each round, the Verifier sees either a random permutation of G, or n − B vertices with no
edges between them. Clearly this can easily be simulated by the Verifier alone, so the proof is
zero-knowledge.

5.1.3 For More Information

See Professor Steven Rudich

• portable close-up magician

• 412-401-4019

• office hours before class, 2PM at Starbucks (Craig & Forbes)

5.2 Formal Definition

In class we have talked a lot about “gray paint”, known to scientific community as Ideal Envelopes
or Bit Commitments, which we now work into our formal definition.

5.2.1 Implementation: Trusted Third Party

One way to implement gray paint is to utilize a trusted third party, say the famously trustworthy
website www.bitcommitment.com. The website maintains the functionality of the bitcommitment:
the ability to COMMIT and to REVEAL. To COMMIT, the Prover sends a value x (privately) to
the website, and the website stores it. To REVEAL, the Prover sends a request to the website, and
the website forwards x to the Verifier. The website guarantees that the v the Prover commits to is
the same x that the Verifier sees.

This system requires that both the Prover and the Verifier trust the website, and that the Prover
does not mind having to show his private bits to the website. Someday we will talk about how to
port lottery tickets to the digital world more sensibly, but that day is not today.

5.3 IP with Bit Commitment

An IP proof system with bit commitment is a 9-tuple

(P, V, H, x, y, z, rp, rv, rh)

where P is the Prover, V is the Verifier, and
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• H is the mutually trusted function, which is usually some very simple machine, not a website.
The H stands for honest. For proof purposes, we get to assume that H is honest. Notice that
in all our proofs so far, we have implicitly assumed that the gray paint is honest.

• x is the common input. In our proofs so far, it is the instance of the problem we are consid-
ering. For example, in Vertex Cover, it would be the graph G and the security parameter.

• y is the Prover’s private input – no one else knows y! In our proofs so far, it has been the
solution that the Prover knows. For example, in Vertex Cover, it is the B vertices in the
cover.

• z is the Verifier’s private input. Why does the Verifier need a private input? We haven’t seen
a need in any of our proofs so far, but this is a formal definition; we might as well throw it in
just in case.

• rp, rv, and rh are the random bits of the Prover, Verifier, and Honest function respectively.

We introduce the notation (P ↔H V ), meaning a conversation between Prover P and Verifier V
with mutually accessible Honest function H.

The definition of interactive proof system with trusted party H is analogous to that of the previous
lecture. Let L be a language (such as Vertex Cover). An interactive proof system for language
L with trusted party H satisfies the following two conditions:

• Completeness: For every x ∈ L,

Pr[P ↔H V (x) = 1] ≥ 2/3

That is, for every instance for which there is a proof, the honest Prover can convince the
Verifier of it at least 2/3 of the time. In all our proofs so far, we have done even better: the
honest Prover is guaranteed to convince the Verifier, 100% of the time.

• Soundness: For every x 6∈ L and for every possible Prover P ∗,

Pr[P ∗ ↔H V ] ≤ 1/3

That is, for every instance for which there is no proof, no Prover, no matter how tricky and
dishonest, can falsely convince the Verifier more than 1/3 of the time.

An Interactive Proof is Perfect Zero-Knowledge if it further satisfies the following condition:

• For any polytime Verifier V ∗ there exists a simulator M∗ s.t. (P ↔H V ∗)(x) ≡ M∗(x, z)

That is, a machine M , knowing only what the Verifier knows, should be able to model P and
V ∗’s conversation with the correct probability distribution. This means V ∗ is not getting any
information from P . Note that this holds for any V ∗ - even a crooked Verifier cannot trick
the Prover into revealing anything in the conversation the Verifier could not simulate alone.
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5.3.1 Note: The 2/3 Bound

There is no especial reason for using the numbers 2/3 and 1/3, except that they are nice round
numbers. What is necessary is that there is a gap between the completeness bound and the
soundness bound. 1/2 + ε and 1/2 − ε for any non-negligible (meaning at least 1/p(|x|) for some
polynomial p) epsilon will suffice.

5.3.2 Note: Simulator vs Prover

It may bother you that the simulator can model the conversation without knowing P ’s secret, yet a
dishonest Prover P̃ cannot model the conversation (thereby tricking the Verifier) without knowing
P ’s secret.

One way to resolve this seeming paradox is to observe that a dishonest Prover would not have
access to the verifier’s private random bits, which are part of the input to the simulator. In other
words, the trick is that the prover has to commit before knowing what the verifier wants to see,
while the simulator commits afterwards.

5.4 Case Study: 3 -SAT

Instance:

• an array of variables v1, . . . , vn and

• an array of clauses c1, . . . , cm, where each ci is a set of literals, where each literal is either a
variable or the complement of a variable

Question:

• Is there a truth assignment (f : variables → {T, F}) to the variables such that for every
clause there exists a literal set to true? (Recall that the complement of a variable is true iff
the variable is false.)

5.4.1 Protocol 1 - Wrong

1. The Prover randomly permutes the clauses and commits to the permutation and the permuted
clauses.

2. The Prover commits to a representative true literal in each permuted clause.

3. The Verifier chooses to either see the clauses[to check that the problem is correct] or randomly
chooses a clause to see that a representative true literal has been marked[to check that the
clause has a literal set to true]

It is not hard to see that Protocol 1 is zero knowledge, but unfortunately being able to randomly
permute the clauses and mark a true literal in each clause does not prove that the Prover knows a
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solution. In fact, a dishonest Prover could simply mark all the literals to be true, and thereby pass
this protocol.

We need to be able to check consistency - that a variable has been set to exactly one value.

5.4.2 Protocol 2 - Wrong

1. The Prover randomly permutes the clauses and commits to the permutation and the permuted
clauses.

2. The Prover commits to a representative true literal in each permuted clause.

3. The Prover to also commit to a table of literals and assignments.

4. The Verifier chooses to either see the clauses[to check that the problem is correct] or randomly
chooses a clause to see the representative true literal and its corresponding row in the table of
literal assignments[to check that the clause has a literal set to true and that the assignment
is consistent].

Unfortunately, while this protocol is not susceptible to dishonest provers, it is susceptible to dis-
honest verifiers. When we reveal the true literal, we also reveal whether it is a variable or its
complement. Over many rounds the verifier might get a good idea of how many clauses have
positive literals marked and how many clauses have negative literals marked.

5.4.3 Protocol 3 - Right!

We want to somehow permute the literals. One way to approach the problem is as follows:

The Prover randomly maps the literals v1,¬v1, . . . , vn,¬vn to the new names a1,¬a1, . . . , an,¬an

so that if vi maps to aj then ¬vi maps to ¬aj , and if vi maps to ¬aj , then ¬vi maps to aj . Thus, in
the new naming scheme, we have hidden whether the literals in the clauses were originally positive
or negative.

1. The Prover commits to the mapping, the mapped instance, and a table of truth values for
the mapped literals.

2. The Verifier can choose to see the mapping and mapped instance to check that the problem
instance has not been changed. Or, the Verifier can choose a clause, and the Prover will
reveal a literal in that clause and its entry in the table so that the Verifier can check that the
clause contains a literal set to true.
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