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1 Basic Notation

We will quickly review the basic notation we will be using. We denote the set
of integers by Z and let Z™ be the positive integers and Z; be the nonnegative
integers. The set of integers modulo m is denoted Z,,, and we will go into
more detail about some of the properties of this set a little later on. The
greatest common divisor of a pair of integers, gcd(a,b) will be written as
(a,b) according to the standard shorthand.

Given a continued fraction (CF) representation, the partial quotients are

denoted qg, q1, ... and the ith approximation is written
P, N 1 1 1
_ = qo _— e —,
Qi Gt @+ g

When we write that an approximation £t is equal to some fraction 7, we

actually mean that P, = a and Q); = b. In this respect we abuse the usual
notion of equivalence of fractions but it is worthwhile so that we can reason
specifically about the numerator and denominator of the successive approx-

1imadtions.

2 Continued Fractions Revisited

2.1 CF for Rational Numbers

Let’s take a look at what happens when we do our continued fraction repre-
sentation of a rational number.
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In the notation we have been using in this class we can write this CF as

1 1 1 11

1 2+ 1+ 14 2

Notice that unlike previous examples of using continued fractions for approx-
imating 7 and the golden ratio, this list of fractions is finite. As we will show,
it turns out that this will always be the case when we start with a rational
number. Of course, this is exactly what we would hope for when we think
about continued fractions as giving better and better rational approxima-
tions of a number; the best rational approximation of a rational number is
simply that number itself.

Claim 1. The continued fraction approrimation for a rational number ¢ will

converge to g = ¢ 1n a finite number of steps.

Proof. The proof is a straightforward induction on the remainder a mod b.
O

3 Modular Arithmetic

3.1 Notation

For integers, a,b € Z, and m € Z", we say “a is congruent to b mod m” if
and only if m divides the difference a — b with no remainder. The standard
notation for congruence (also called equivalence mod m) is as follows.

a=b (modm).

At times it will be useful to use mod as a binary operation that gives the
remainder when a is divided by b. That is, we will define

a mod m = the unique integer b € {0,...,m — 1} such that a =0 (mod m).

There is a slight difference in the way mathematicians and computer
scientists understand the meaning of modular arithmetic. For example, to
the mathematician, a mod m is denoted [a],, and represents the equivalence
class of all integers in the arithmetic progression {a + kml|k € Z}. To the
computer scientist, a mod m represents the smallest non-negative integer of
the form a+km where k € Z. These two definitions are very similar and make
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very little difference syntactically, but semantically, one is an integer while
the other is an infinite class of integers. To reconcile these two different
views, we need only observe that the computer scientist view is to simply
designate one special element from equivalence class [a],,, specifically the
smallest nonnegative one, and use this represent the whole class. In number
theory, this set of designated elements, one from each equivalence class, is
called a reduced residue system mod m. We let Z,, denote the set {0,...,m—
1} (the reduced residue system mod m).

3.2 Inverses mod m

Recall the following interesting fact about the relationship between the nu-

merators and denominators of consecutive approximations %, g:ll for a con-
tinued fraction of a rational number # with (a,b) = 1.
HQ@'JA - PiJrlQi = =1 for all 4. (5)

What is the significance of this relationship? Recalling the connection be-
tween continued fractions and the Extended Euclidean Algorithm, we will
see that a will have an inverse modm exactly when (a,m) = 1.

Theorem 2. [fa,m € Z* and (a,m) =1 then a has an inverse a=' in Z,,.

Proof. Let g be the ith approximation in the continued fraction for . We

have seen that for some n, the nth approximation is exact, % = . Recalling
the relationship in 5, we get

Pn—lQn - PnQn—l - mPn—l - aQn—l = *1.

Thus,
a@Q,-1 ==+1 (mod m)

3.3 Other facts to know about Z,,

More formally, we note that Z,, is a ring. That is, it is a group under the
addition operation with identity 0, and it is a semigroup under multiplica-
tion with identity 1. So, what keeps Z,, from being a full-fledged field? The
problem lies in the fact that not all elements in Z,, will have multiplicative
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inverses. The preceding section proves that some element a € Z,, has an
inverse if and only if (a,m) = 1; that is, if and only if a and m are rela-
tively prime. So, in order for all elements to have inverses, all elements of
{0,...,m — 1} are relatively prime to m. This is the case if and only if m is
prime.

Theorem 3. For all primes p, Z, = GF(p), where GF(p) is the unique
finite field with p elements.

You may recall from Field Theory that all finite fields are of order (size)
p™ for some prime p and positive integer m. The finite field GF(p™) can be
viewed as a vector space over GF'(p). Because, there exists exactly one finite
field of size p™ for each choice of p and m, the preceding theorem states that
the unique finite field of prime order p is isomorphic to the integers mod p.

As we have seen in the preceding example, the ring Z,, is not a field for
all m.

4 The Chinese Remainder Theorem

The Chinese Remainder Theorem is a neat application of the preceding the-
orems of modular arithmetic.

Theorem 4. Let myq,...,my be pairwise relatively prime integers and let
M be their product [[,_, km;. For all a € Zy, there is a unique Chinese
Remainder Representation {(ai,...,ax) of a for the given moduli my, ..., myg.

Furthermore, for all a,b € Zy;, it is true that

a’+b:<a1+b1a"'7ak+bk> (6)
a—b= (a1 —by,...,ap —by) (7)
axb:<a1><bl,...,ak><bk> (8)

Before proceeding to the proof, we pause a moment to go through an
example.

Example 1. Let m; = 3, my = 4, m3 = 5.

Proof of Theorem 4. O]
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Now that we have proved the theorem, we can be sure as mathematicians
that every a € Z,, has a unique CRR for a given set of moduli. However,
as computer scientists, we want algorithms to go back and forth between
the CRR representation to the integer representation. In one direction, this
task is quite simple. If we want to compute the CRR given the number a,
we simply divide a by each modulus and list the remainders. However, the
reverse direction needs a tad more cleverness.

The main idea is that we want a kind of basis of CRR representations
that we can sum together to get a as a linear sum with coefficients a;. That
is to say, we want

I = (1,0,0,...,0)
I, =(0,1,0,...,0)

I, = {0,0,...,0,1),

so that we can write

k
a={(ay,...,a5) = <Z aiIZ-) mod m.
i=1

We can get close to such a list by observing that the CRR for 7% will have
0’s for every modulus other than m;. For example, we can compute these
values for the preceding example.

M
— =20= <2,0,0>
my
M
— =15= <0,3,0>
mgy
M
—=12= <0,0,2>
ms

Now, we’d like a way to reduce these nonzero entries to 1’s and we’ll have
exactly the basis we wanted. For example we’d like to write the following.

1M +1M +1M (mod m)
a=—-—2aqa ——Q ——Q mod m
2m1 ! 3m2 2 2m3 3

However, % and % aren’t actually elements of the ring Z,,. Yet, all is not
lost. As we have seen, 2 and 3 do have multiplicative inverses modm when
(2,m) =1 and (3,m) = 1. So, we can use the extended Euclidean algorithm

to compute the inverses and complete the computation.
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