
Theoretical Cryptography, Lecture 9

Instructor: Manuel Blum

Scribe: Ryan Williams

Feb 15, 2006

1 Introduction

Today we will cover

• More on the Chinese Remainder Theorem

• The Prime Number Theorem

• A Communication Complexity Problem

2 More on the Chinese Remainder Theorem

Recall in the set-up of the Chinese Remainder Theorem, we have integers m1, . . . , mk which are

pairwise relatively prime (i.e. gcd(mi, mj) = 1 for i 6= j) and we let m =
∏k

i=1 mi.

For a ∈ Zm = {0, 1, . . . , m − 1}, consider the map

a 7→ 〈a mod m1, a mod m2, . . . , a mod mk〉 ∈ Zm1
× Zm2

× · · · × Zmk
,

where Zn1
× Zn2

× · · · × Znk
is the standard Cartesian product of sets. In what follows, we set

ai = a mod mi for notational brevity.

We claimed that the map above is an isomorphism, in the sense that it not only gives a 1-1

correspondence between Zm and Zm1
× Zm2

× · · · × Zmk
, but addition and multiplication are

preserved by it, as well. More precisely, for a, b ∈ Zm,

a + b 7→ 〈(a + b) mod m1, (a + b) mod m2, . . . , (a + b) mod mk〉

a · b 7→ 〈(a · b) mod m1, (a · b) mod m2, . . . , (a · b) mod mk〉.

It is easy to efficiently compute the map in one direction (from Zm to Zm1
× Zm2

× · · · × Zmk
),

by dividing a by the various moduli and determining remainders. How easily can one compute the

inverse of this map? Given 〈a1, . . . , ak〉, how does one recover a?

1

The high-level idea is to compute a basis for Zm1
× Zm2

× · · · × Zmk
, by determining the (unique)

integers I1, I2, . . . , Ik ∈ Zm such that

I1 7→ 〈1, 0, . . . , 0〉

I2 7→ 〈0, 1, . . . , 0〉

...
...

...

Ik 7→ 〈0, 0, . . . , 1〉.

Knowing these, one can determine a from 〈a1, . . . , ak〉 easily, since

a = a1I1 + a2I2 + · · · + akIk.

2.1 Example

We give an example of what we mean. Choose m1 = 5, m2 = 6, and m3 = 7, so m = 210.

Let’s see. m2 · m3 = 42 is the answer to life, the universe, and everything1, and

42 7→ 〈2, 0, 0〉.

Noting that (3 · 2) ≡ 1 mod 5, we conclude

I1 = 126 = (3 · 42) 7→ 〈1, 0, 0〉.

Similarly,

m1 · m3 = 35 7→ 〈0,−1, 0〉.

To get a 1 instead of −1 in that second component, we need to multiply 35 by −1 mod 6 ≡ 5 mod 6,

so

I2 = 175 = (5 · 35) 7→ 〈0, 1, 0〉.

Finally,

m1 · m2 = 30 7→ 〈0, 0, 2〉,

and

I3 = 120 = (4 · 30) 7→ 〈0, 0, 1〉.

As mentioned above, we can now use I1 = 126, I2 = 175, I3 = 120 as a basis for determining any

a, given 〈a1, a2, a3〉.

Now suppose we wish to find a such that a 7→ 〈1, 2, 3〉. This is

(126 + 2 · 175 + 3 · 120) mod 210 = 206.

We claim (without proof) that the above example can be easily generalized to an efficient procedure

for the general problem of inverting the map, which runs in polynomial (say, at most cubic) time.

1With apologies to the late Douglas Adams.

2

Question From The Crowd: Why is gcd(m/mj , mj) = 1?

The short answer: because gcd(mi, mj) = 1 for all i 6= j.

Perhaps a more enlightening answer can be obtained from the following perspective, which Ryan

has used in the past to clarify some issues for himself. Associate each number mi with the multiset

of its prime factors. So 1 = ∅, 5 = {5}, 6 = {3, 2}, 9 = {3, 3}, etc.

What is multiplication of two numbers in this representation? It is the union of the two multisets.

What the G.C.D. of two numbers? It is the intersection of the two multisets2 The statement “mi

and mj to be pairwise relatively prime” just means that the intersection of the two corresponding

sets is empty. Hence if all mi are pairwise relatively prime, then each mi is a set that is disjoint

from the other mj ’s. Therefore gcd(m/mj , mj) is clearly 1, since the intersection of two disjoint

sets is empty.

3 The Prime Number Theorem

Define π(N) to be the number of primes between 1 and N . (This is a standard definition; note

that this π has nothing to do with the numerical constant 3.141 · · · .)

Here is a table of some values for π:

N 1 2 3 4 5 6 7

π(N) 0 1 2 2 3 3 4

The Prime Number Theorem asymptotically bounds the number of primes in the interval [1, N], as

a function of N . It may sound like an esoteric number theoretic result, but it can be quite useful

in some computer science applications.

For two functions f(n), g(n), define f(n) ∼ g(n) iff limn→∞

f(n)
g(n) = 1. Intuitively, this means that

f is asymptotically close to g.

Theorem 3.1 (Prime Number Theorem)

π(N) ∼
N

ln N
.

We won’t prove the Prime Number Theorem here, but you may have a few homework problems on

proving a weak version of it.

One application of the Prime Number Theorem quickly estimates the value of the nth prime in

sequence. Let pk be the nth prime, so that p1 = 2, p2 = 3, p3 = 5, and so forth.

Corollary 3.1 The previous theorem implies pn ≈ n ln n, where Manuel does not define ≈.

More seriously, the nth prime pn is the smallest integer such that π(pn) = n, but π(pn−1) = n−1.

The Prime Number Theorem says that

π(x) = n =⇒
x

ln x
∼ π(x) = n.

2As one might expect, the intersection only takes the smallest multiplicity of each prime.

For example, gcd(24, 36) = {2, 2, 2, 3} ∩ {2, 2, 3, 3} = {2, 2, 3} = 12.

3

Setting x = n ln n, we have

x

ln x
=

n ln n

ln(n ln n)
=

n ln n

ln n + ln ln n
∼ n.

(To see the last step, consider the fraction ln n
ln n+ln ln n

and divide the top and bottom by ln n.)

Therefore pn = n ln n works as an approximate value for the nth prime.

The estimate pn = n(ln n + ln ln n − 1) is even better. Intuitively, this is because when x =

n(ln n + ln ln n − 1), we have

x

ln x
=

n(ln n + ln ln n − 1)

ln(n(ln n + ln ln n − 1))
=

n lnn + n ln ln n − n

ln(n ln n + n ln ln n − n)
∼

n ln n + n ln ln n − n

ln n + ln ln n
,

which converges to n a little bit faster than n ln n
ln n+ln ln n

does.

4 A Communication Complexity Problem

The rest of this lecture is devoted to describing one particularly nice application of the Prime

Number Theorem to a computer science problem.

The String Equality problem: Alice has an n-bit string A and Bob has an n-bit string B, given

to them by an adversary. Alice and Bob want a protocol to decide if A = B, using as few bits of

communication as possible. The protocol should work for every possible A and B.

For an application of String Equality, imagine that Alice is in New York and Bob is in Los

Angeles. Both are maintaining copies of some extremely large database, on the order of terabytes.

At the end of the day, they wish to check the consistency of their databases: whether or not their

copies are actually identical.3

If Alice and Bob require deterministic guarantees that their two strings are exactly the same, then

the best that they can possibly do is effectively send all of the n bits to each other.

What happens if we allow Alice to toss coins, and permit guarantees of equality that hold with

some probability of error? Intuitively, one might think that randomness wouldn’t do much good:

how could Alice ever send less than Ω(n) bits? We will show this intuition is false.

Theorem 4.1 Let k > 1 be an integer. There is a randomized protocol for String Equality

such that Alice and Bob transmit O(k log n) bits between each other, then conclude either equal or

not equal. The protocol has the guarantees:

• If A = B, then Alice and Bob always conclude equal.

• If A 6= B, then Alice and Bob conclude not equal with probability at least 1 − 1
2k .

Thus the protocol is correct with only a small probability of error, and only in the case where the

two strings are not equal.

3Of course in practice, this problem could be potentially much easier, since the databases are not (necessarily)

chosen by an adversary.

4

4.1 Protocol

We now give a protocol meeting the conditions of the theorem.

1. Alice chooses a prime p uniformly at random from the interval [1, 2n ln(2n)].

(Let us postpone how choosing a random prime from this interval is done.)

2. Alice sends 〈p, A mod p〉 to Bob.

(Note that p can be encoded in less than 3 log2 n bits, so at most O(log n) bits are sent.)

3. Bob computes B mod p.

If A mod p = B mod p, then B sends equal (“A = B”) to A.

Else, B sends not equal (“A 6= B”) to A.

We will analyze this protocol a little bit differently from the lecture.

First, if A = B, then clearly for any number p at all, A mod p = B mod p. Hence if A = B then

Bob always reports equal.

Consider the case where A 6= B. Let C = |A−B|, represented as an n-bit integer. Observe that C

has at most n prime factors, since C < 2n. Our crucial observation is that for any prime p,

A = B mod p ⇐⇒ C = 0 mod p ⇐⇒ p divides C.

However, the Prime Number Theorem says that in the interval [1, 2n ln(2n)], there are at least 2n

primes. Since at most n primes p are such that A = B mod p, a prime p randomly chosen from

[1, 2n ln(2n)] is such that A = B mod p with probability at most 1/2. Hence Bob reports equal with

at most this probability.

Finally, how can we choose a random prime from the interval? Again, we can use the Prime

Number Theorem. The Theorem tells us that a randomly chosen number from [1, 2n ln(2n)] is

a prime, with probability approximately 1/(log n). So, one way to choose a random prime is to

pick random numbers from the interval, and test if they are prime or not. (Note there are several

randomized and deterministic polynomial time algorithms for testing primality.) After O(log2 n)

draws of random numbers from the interval, one of the numbers drawn is a random prime, with

extremely high probability.

5

