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Automated game abstraction

[Gilpin & Sandholm, EC-06/J. of the ACM 2007, AAAI-06...]
Now used basically by all competitive Texas Hold’em programs

Original game

Abstracted game

Abstraction algorithm i E

Equilibrium-finding
algorithm

Reverse model

Nash equilibrium Nash equilibrium

Foreshadowed by Shi & Littman 01 and Billings et al., IJCAI-03



_ossless game abstraction

[Gilpin & Sandholm, EC-06, J. of the ACM 2007]



Information filters

» Observation: We can make games smaller by
filtering the information a player receives

» Instead of observing a specific signal exactly, a
player instead observes a of signals

— E.g., receiving signal {As, A% A¥ Ae} instead of Av



Signal tree

» Each edge corresponds to the revelation of some
signal by nature to at least one player

 Our abstraction algorithm operates on It

— Doesn’t load full game into memory



Isomorphic relation

 Captures the notion of strategic symmetry between nodes

« Defined recursively:

— Two leaves in signal tree are isomorphic if for each action
history in the game, the payoff vectors (one payoff per player)
are the same

— Two Internal nodes in signal tree are isomorphic if their
children are isomorphic
« Challenge: permutations of children

« Solution: custom perfect matching algorithm between children of the two
nodes such that only isomorphic children are matched



Abstraction transformation

« Merges two isomorphic nodes that are siblings

« Theorem. If a strategy profile is a Nash equilibrium
In the abstracted (smaller) game, then its interpretation
In the original game is a Nash equilibrium



GameShrink algorithm

» Bottom-up pass: Run DP to mark isomorphic pairs of
nodes in signal tree

» Top-down pass: Starting from top of signal tree, perform
the transformation for siblings where applicable

* Theorem. Conducts all these transformations
— O(n?), where n is #nodes in signal tree
— Usually highly sublinear in game tree size



Solved Rhode Island Hold’em poker

Al challenge problem [Shi & Littman 01]
— 3.1 billion nodes in game tree

Without abstraction, LP has 91,224,226 rows and
columns => unsolvable

GameShrink runs 1n one second

After that, LP has 1,237,238 rows and columns
(50,428,638 non-zeros)

Solved the LP
— CPLEX barrier method took 8 days & 25 GB RAM

Exact Nash equilibrium

Largest incomplete-info game solved
by then by over 4 orders of magnitude




_ossy game abstraction



Example game for the rest of this lecture:
Texas hold’em poker

Nature deals 2 cards to each player  ® 2-p|ayer Limit has

~1018
Round of betting 10 nodes
Nature deals 3 shared cards C 2_p|ayer No-Limit
Round of betting has ~10%%> nodes
Nature deals 1 shared card a LOSSlGSSly abstracted
Round of betting game too blg to solve
Nature deals 1 shared card => abstract more

=> |ossy

Round of betting



First abstraction algorithm applied to
Texas hold’em [Gilpin & Sandholm, AAAI-06]

« GameShrink can be made to abstract more by not
requiring a perfect matching => lossy

— for speed of the matching we used a faster matching heuristic:
WINS, ,4e1"WINS; o gen| + [10SSES,04e1-10SSES ogen] < K

node2 nodel node2

— Greedy => lopsided abstractions



Better and more scalable approach for lossy
abstraction than GameShrink:
[Gllpin & Sandholm, AAMAS-07]

« Operates in signal tree of one player’s signals & common signals
at a time (1.e., no longer 1n signal tree of both player’s signals)
— This’ll be the case also in the state-of-the-art algorithm described later

e “Clustering + IP”:

— For every betting round i, tell the algorithm how many buckets K; it is
allowed to generate

« This determines the size of the abstraction, and should be set based on the available
computational resources for the equilibrium computation

— For the first betting round, run k;-means clustering to bucket the nodes

— In each later round i, run an IP to determine how many children each
parent should be allowed to have so the total number of children doesn’t
exceed K;

» The value of allowing a parent to have k children is done by running k-means clustering
for different values of k under each parent before running the IP



Potential-aware abstraction

 All prior abstraction algorithms had probability of winning
(assuming no more betting) as the similarity metric
— Doesn’t capture potential

» Potential not only positive or negative, but “multidimensional”

 We developed an abstraction algorithm that captures potential ...
[Gilpin, Sandholm & Sgrensen, AAAI-07; Gilpin & Sandholm,
AAAI-08]



Bottom-up pass to determine
abstraction for round 1

Round r-1 @a @a @a ;@5 ;@5 @5

Round r i) i) i) i)

Clustering using L, norm
— Predetermined number of clusters, depending on size of abstraction we are shooting for

In the last (4th) round, there is no more potential => we use probability of winning
(assuming rollout) as similarity metric



Determining abstraction for round 2

e For each 1st-round bucket I:

— Make a bottom-up pass to determine 3"-round buckets,
considering only hands compatible with |

— Fork;=1, 2, ..., max

« Cluster the 2"-round hands into k; clusters
— based on each hand’s histogram over 3'-round buckets

 |P to decide how many children each 15t-round bucket
may have, subject to 2, ki< K,
— Error metric for each bucket is the sum of L, distances of the
hands from the bucket’s centroid

— Total error to minimize 1s the sum of the buckets’ errors
 weighted by the probability of reaching the bucket



Determining abstraction for round 3

 Done analogously to how we did round 2



Determining abstraction for round 4

* Done analogously, except that now there Is no
potential left, so clustering is done based on
probability of winning (assuming rollout)

* Now the potential-aware abstraction has been
computed!



Important ideas for practical
lossy abstraction 2007-13

* Integer programming [Gilpin & Sandholm, AAMAS-07]

* Potential-aware [Gilpin, Sandholm & Sgrensen, AAAI-07;
Gilpin & Sandholm, AAAI-08]

 |Imperfect recall [waugh et al., SARA-09. Johanson et al.,
AAMAS-13]



STATE OF THE ART:

Potential-Aware Imperfect-Recall Abstraction
with Earth Mover's Distance in Imperfect-Information Games

[Ganzfried & Sandholm, AAAI-14]



Expected Hand Strength (EHS)

« EHS (aka equity) is the probability of winning (plus ¥z x probability of tying)
— against a uniform random draw of private cards for the opponent,
— assuming a uniform random rollout of the remaining public cards

« Early poker abstraction approaches used EHS (or EHS exponentiated to some
power) to cluster hands [e.g., Billings et al., IJCAI-03; Gilpin & Sandholm,
AAAI-06; Zinkevich et al., NIPS-07; Waugh et al., SARA-09]

« EHS fails to account for the distribution of hand strength

— 4s4h and TsJs have very similar EHS (0.575 and 0.570), but 44 frequently has EHS in
[0.4,0.6] and rarely in [0.7,0.9], while the reverse is true for TsJs




Distribution-aware abstraction

« Takes into account the full distribution of hand strength. Uses
earth-mover’s distance (EMD) as distance metric between
histograms

— EMD: “minimum cost of turning one pile into the other, where cost is
amount of dirt moved times the distance by which it is moved”

 EMD can be computed in linear time for 1D setting, but more
challenging in higher dimensions

Prior best approach used distribution-aware abstraction with imperfect recall for flop and turn rounds. The histograms were over
equities after all public cards are dealt (assuming uniform random hand for opponent) [Johanson et al., AAMAS-13]



Potential-aware abstraction

. Hands can have very similar distributions over strength at the end, but realize the equity at different ways/rates
. Potential-aware abstraction [Gilpin, Sandholm & Soerensen, AAAI-07] considers all future rounds, not just final round
. In distribution-aware abstraction, histograms are over cardinal equities

. In potential-aware abstraction, histograms are over non-ordinal next-round states
=> must compute EMD in higher-dimensional space

Private signal x; Private signal x,

® ©

Prob. 1/2 Prob. 1/2

Proh. 1/2 Proh. 1/2

© ©

X, and x, have the same histogram assuming game proceeds to the end
Histogram for private signal x, at round 1 over non-ordinal information states at round 2
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Algorithm for potential-aware imperfect-
recall abstraction with EMD

» Perform bottom-up pass of the tree, using histograms
over distributions of clusters at next round

— EMD is now in multi-dimensional space, where the ground
distance Is assumed to be the (next-round) EMD between the
corresponding cluster means

» Best implementation of EMD is far too slow for Texas
Hold’em. We developed a fast custom heuristic for
approximating It in this setting

 Using our algorithm to compute the abstraction for the
flop round, we beat best prior abstraction algorithm

* Notes:

— No need to perform multiple bottom up passes like in potential-aware abstraction before, due to imperfect recall
—  No need for IP, due to imperfect recall



Conclusions

Domain-independent techniques

Automated lossless information abstraction: exactly solved
3-billion-node game

Lossy information abstraction Is key to tackling large games like
Texas Hold’em. Main progress 2007-2013: integer programming,
potential-aware, imperfect recall

State of the art from our 2014 paper:

— First information abstraction algorithm that combines potential aware and
Imperfect recall

Future research

— Applying these techniques to other domains
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