Game Abstraction Lecture 2

Tuomas Sandholm

ACTION ABSTRACTION

Action abstraction

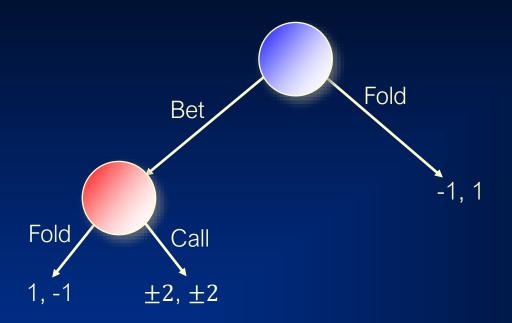
- Typically done manually
- Prior action abstraction algorithms for extensive games (even for just poker) had no guarantees on solution quality [Hawkin et al. AAAI-11, 12]
- For stochastic games there is an action abstraction algorithm with bounds (based on discrete optimization)
 [Sandholm & Singh EC-12]
- We present the first algorithm for parameter optimization for one player (in 2-player 0-sum games)
 - We use it for action size abstraction
 - Leverage regret matching (or CFR) warm starting by regret transfer

"Regret Transfer and Parameter Optimization with Application to Optimal Action Abstraction"

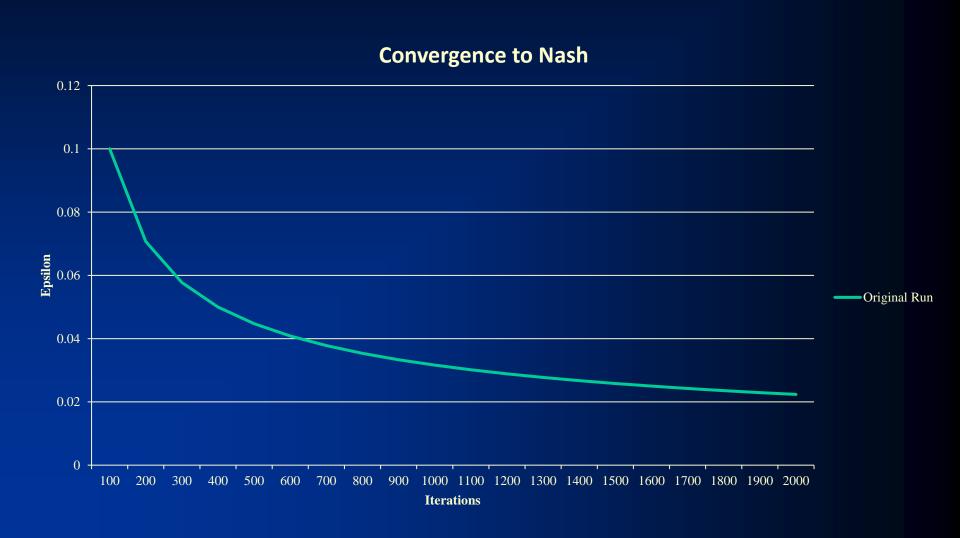
[Brown & Sandholm, AAAI-14]

Setting: game payoffs change as we change the actions (e.g., bet sizes in poker or bid sizes in auctions), but the game topology doesn't change

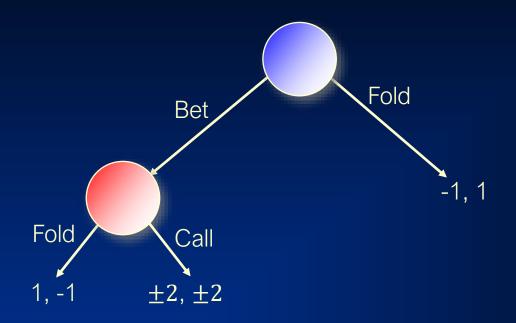
Motivation: A Simple Game



We solve with No-Regret Learning

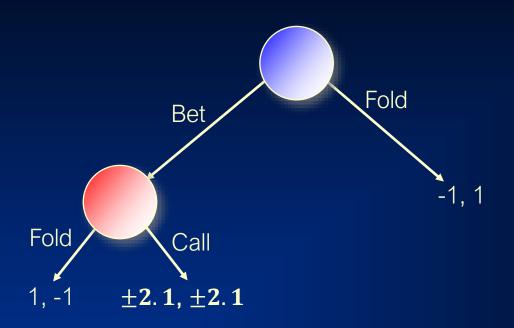


Motivation: A Simple Game

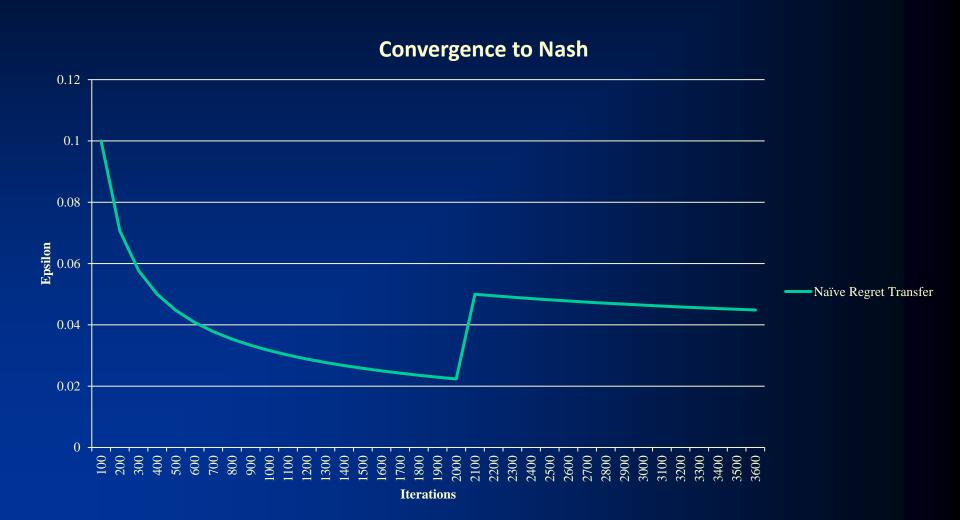


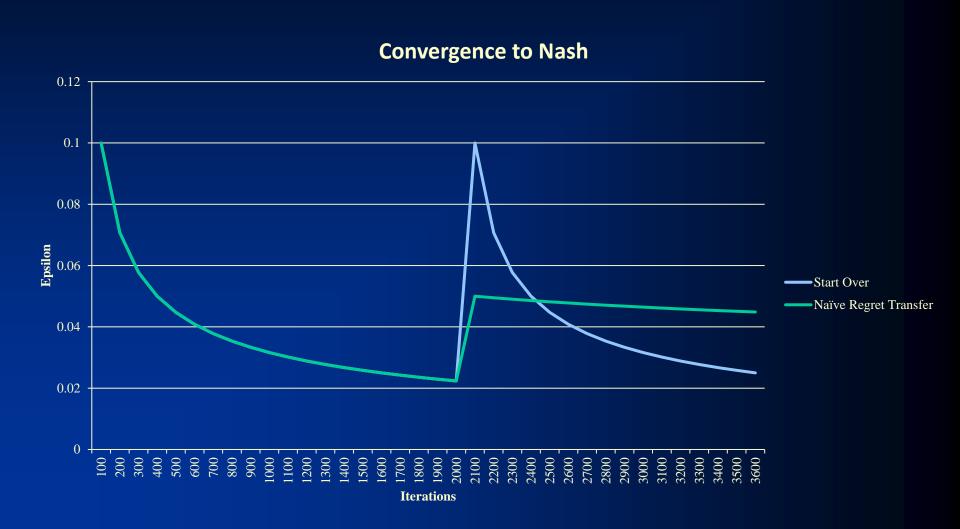
Suppose we change the Bet-Call payoff part-way through our run

Motivation: A Simple Game



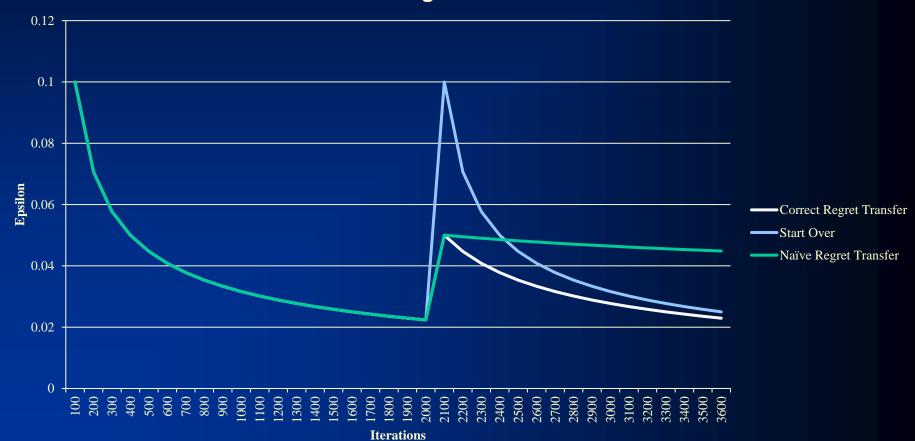
$$\delta = 2.1 - 2 = 0.1$$





Scale Amount:
$$0 \left(\frac{1}{\left(1 + \delta \sqrt{T} \right)^2} \right)$$

Convergence to Nash



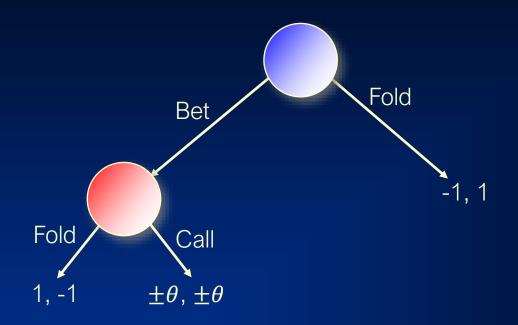
Optimal Parameter Selection

- Action abstraction: action size selection
 - Optimizing together with probabilities would be quadratic)

 Each abstraction has a Nash equilibrium value that isn't known until we solve it

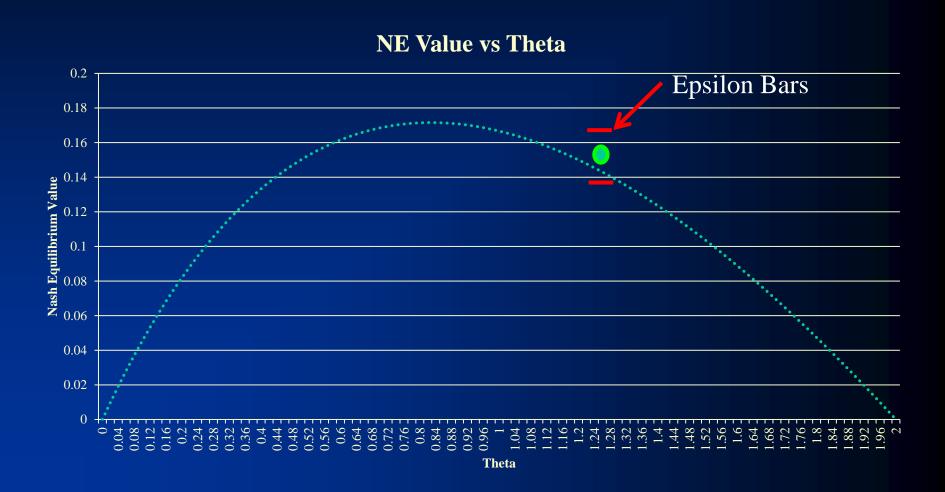
 We want to pick the optimal action abstraction (one with highest equilibrium value for us)

Optimizing A Simple Game

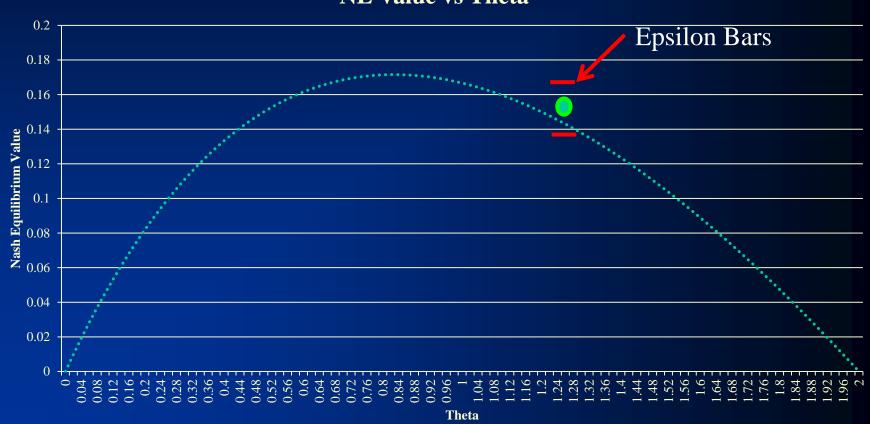


What is the optimal value of θ for P1?

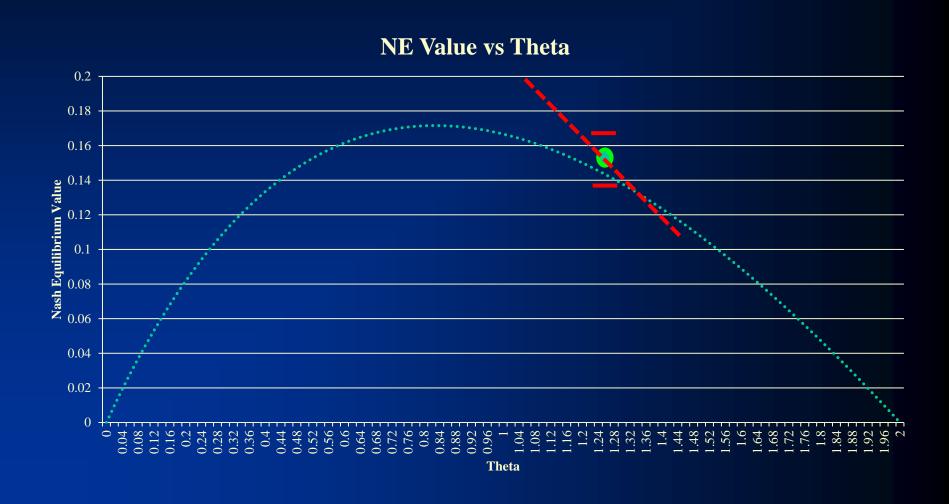
Step 1:Do K_1 iters of No-Regret Learning



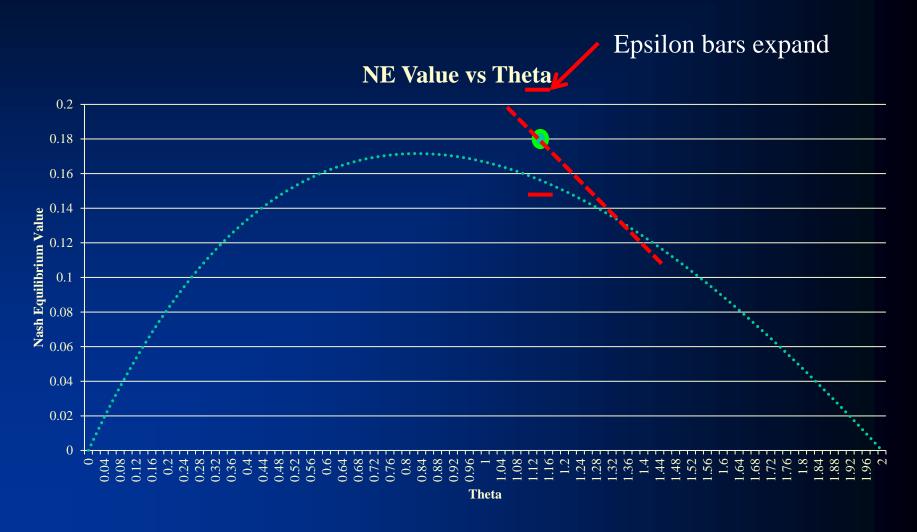
Step 2:Estimate Gradient



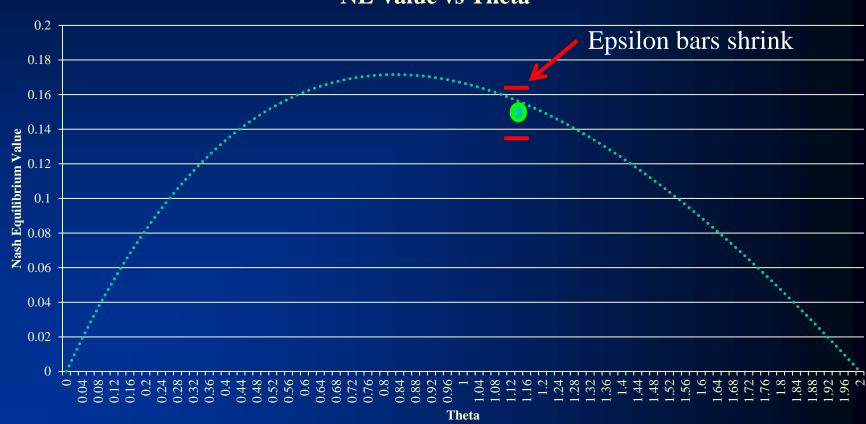
Step 3:Move Theta, Transfer Regret (deweight regrets and strategies for averaging)



Step 4: Do K_2 iters of No-Regret Learning



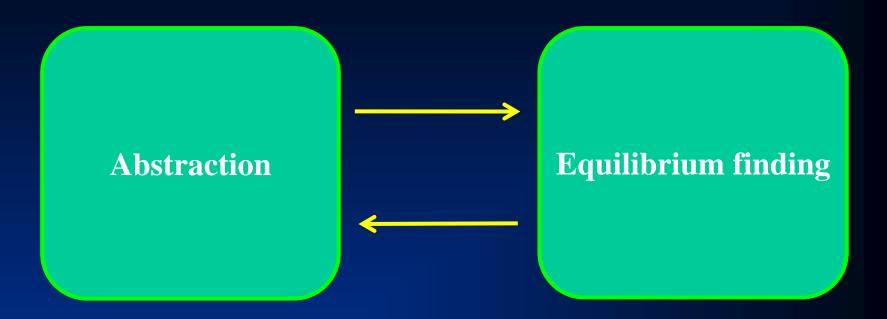
Repeat to convergence



- We have applied this to
 - No-Limit Texas Hold'em (1 bet being sized in that experiment), and
 - Leduc Hold'em (2 bet sizes being sized simultaneously in that experiment)

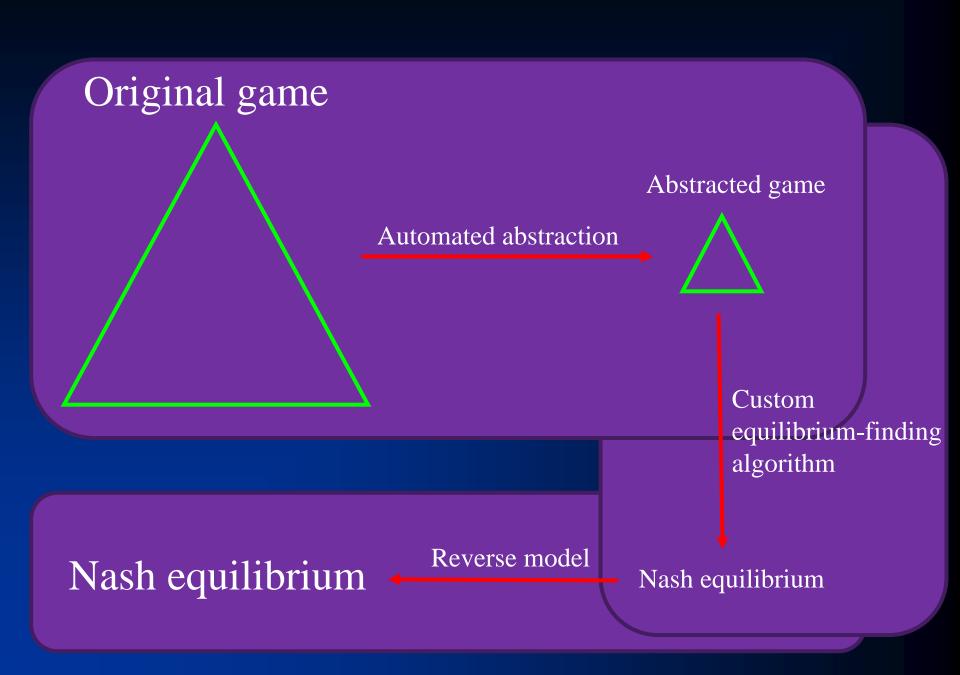
SIMULTANEOUS ABSTRACTION AND EQUILIBRIUM FINDING

Strategy-based abstraction

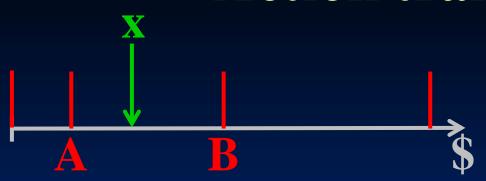


 So far, we have done this for adding actions into the abstraction (and warm starting via discounting)
 ["Simultaneous Abstraction and Equilibrium Finding in Games", Brown & Sandholm, IJCAI-15]

REVERSE MAPPING



Action translation



 $f(x) \equiv \text{probability we map } x \text{ to } A$

Desiderata about f

- 1. f(A) = 1, f(B) = 0
- 2. Monotonicity
- 3. Scale invariance
- 4. Small change in x doesn't lead to large change in f
- 5. Small change in A or B doesn't lead to large change in f

"Pseudo-harmonic mapping"

- f(x) = [(B-x)(1+A)] / [(B-A)(1+x)]
- Derived from Nash equilibrium of a simplified no-limit poker game
- Satisfies the desiderata
- Much less exploitable than prior mappings in simplified domains
- Performs well in practice in nolimit Texas Hold'em
 - Significantly outperforms best prior reverse mapping, randomized geometric

LOSSY ABSTRACTION WITH EXPLOITABILITY BOUNDS

Game abstraction is nonmonotonic

Defender

		Α	Between	В
Attacker	A	0, 2	1, 1	2, 0
Attacker	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0, 2		

In each equilibrium:

- Attacker randomizes 50-50 between A and B
- Defender plays A w.p. p, B w.p. p, and Between w.p. 1-2p
- There is an equilibrium for each $p \in [0, \frac{1}{2}]$

An abstraction:	A	Between	В
A	0, 2	1, 1	2, 0

Defender would choose A, but that is far from equilibrium in the original game where attacker would choose B

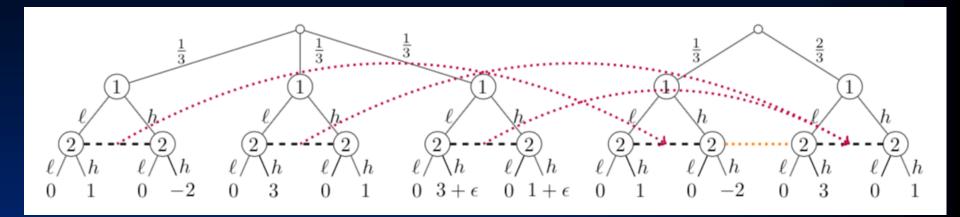
Defender would choose Between. That is an equilibrium in the original game

• Such "abstraction pathologies" also in small poker games [Waugh et al., AAMAS-09]

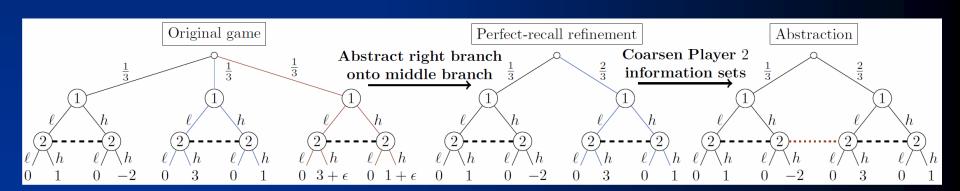
Can we get bounds on exploitability despite abstraction pathologies?

- First answer: Yes, in stochastic games [Sandholm & Singh, EC-12]
- I'll present a unified abstraction framework for extensive-form games [Kroer & Sandholm, *NeurIPS*-18]
 - n-player, general-sum game
 - Generalizes and improves over prior work [Lanctot et al., ICML-12; Kroer & Sandholm, EC-14, EC-16]
- Applies to modeling also

Abstraction example



We think of this as two steps, which can be analyzed separately:



Lifted strategies

- Given a strategy profile σ' for the abstraction, a lifted strategy is a profile σ s.t. for each abstract I' and corresponding I:
 - Probability mass on abstract action is spread any way across the set of actions that map to it
 - Formally, $\sigma'(I', a') = \sum_{a \in g^{-1}(a')} \overline{\sigma(I, a)}$

Abstraction theorem

[Kroer & Sandholm, NeurIPS-18]

- Given:
 - a perfect-recall game,
 - an acyclic abstract game,
 - a mapping between them that satisfies our mild, natural assumptions, and
 - an ϵ -Nash equilibrium in the abstract game
- Then: Any lifted strategy is an ϵ' -Nash equilibrium in the original game, where $\epsilon' = \max_i \epsilon_i'$ and

$$\epsilon_{i}' = \epsilon + mapping errori + refinement errori$$

Error from mapping real game onto perfect-recall refinement of abstract game

Error between perfect-recall refinement of abstract game and abstract game

- Advantages over prior work:
 - Exact decomposition of error
 - Equilibrium in abstract game doesn't have to be exact
 - Doesn't make restrictive assumption of prior work
 - Exponentially better bound than Lanctot *et al.* [*ICML*-12]
 - We also derive a similar result for solution to abstract game with bounded counterfactual regret (gain at most ϵ_a by switching to any action a)

Mapping error_i

Sum of

- Payoff error:
 - Expectation over leaf nodes in real game
 of utility difference between real leaf and the node it maps
 onto
- Distribution error:
 - Sum over leaf nodes in abstraction
 of difference in probability of reaching abstract leaf and sum of reach probabilities on real leaves that map to it

Refinement error_i

• Sum over infosets I_p in the perfect-recall refinement of the abstraction (let I' be the corresponding abstract infoset):

Sum of:

- Payoff error:
 - Expectation over leaves under I' of utility difference compared to corresponding leaf under I_p
- Distribution error:
 - Sum over leaves under I_p of difference in probability of reaching refinement leaf from I_p versus sum of reach probabilities on abstract leaves from I'

Future research on lossy abstraction with exploitability bounds

- The distribution error terms in our decomposition are in general not computable *ex ante* (i.e., before running a solver on the abstract game)
 - Because they can depend on players' strategies
 - Prior approaches required that for pairs of leaves mapped to each other, the leaves have the same sequence of information-set-action pairs leading to them in the abstraction
 - Under that assumption, we can compute ex ante bounds (take max's)
- Idea: Find other specialized but practical game classes where game structure can be leveraged to give computable *ex ante* bounds
 - One approach:
 Our decomposition relies on utility differences (not absolute value thereof as prior approaches did), so structured game classes could potentially even cancel out error terms

Conclusions on this lecture

- Domain-independent techniques
- First action abstraction algorithm with optimality guarantees: iterative action size vector changing
- Simultaneous abstraction and equilibrium finding
- Reverse mapping: "pseudoharmonic"
- Lossy abstraction with exploitability bounds
- Future research
 - Applying these techniques to other domains
 - Better algorithms within our lossy-abstraction-with-bounds framework
 (or different such framework to be developed in the future)