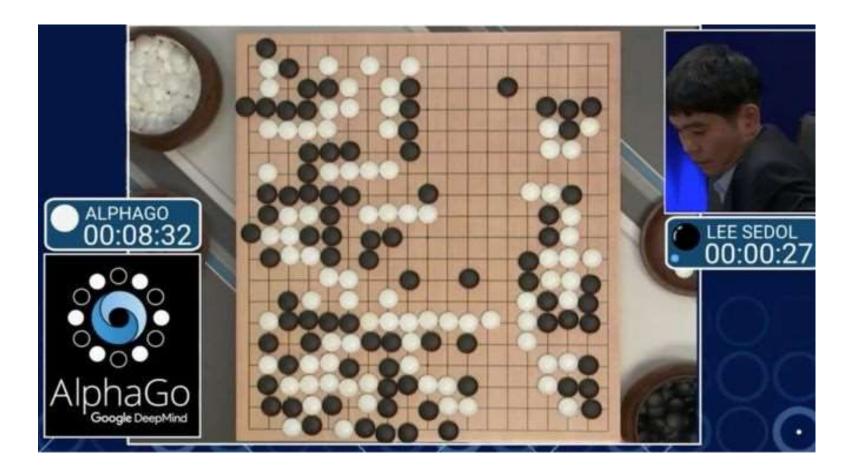
Endgame solving, and *Libratus,* the first superhuman AI for 2-player no-limit Texas hold'em

Tuomas Sandholm

Imperfect-information games

AlphaGo



In principle, AlphaGo techniques extend to other **perfect-information** games

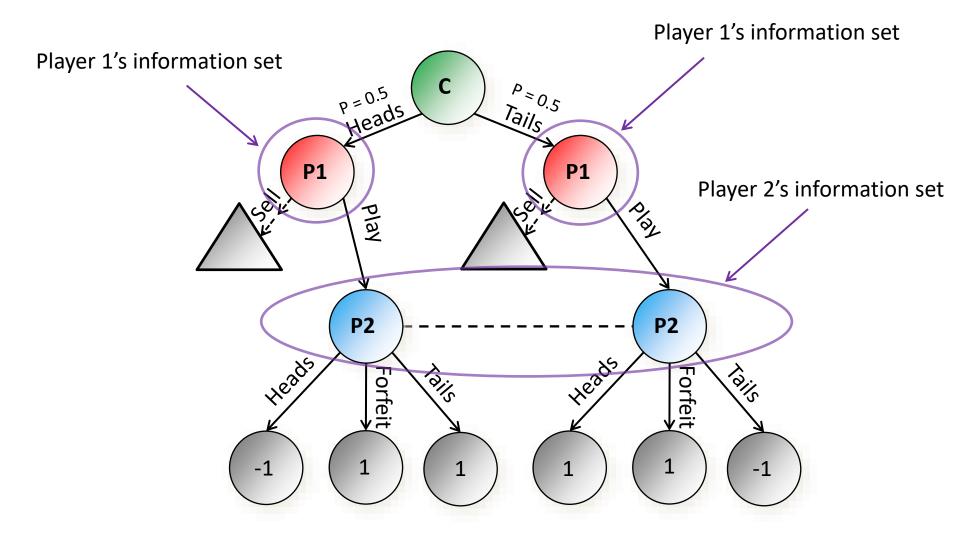
Perfect-information games

Sicilian Defense Image: Sicilian Defense

Queen's Gambit

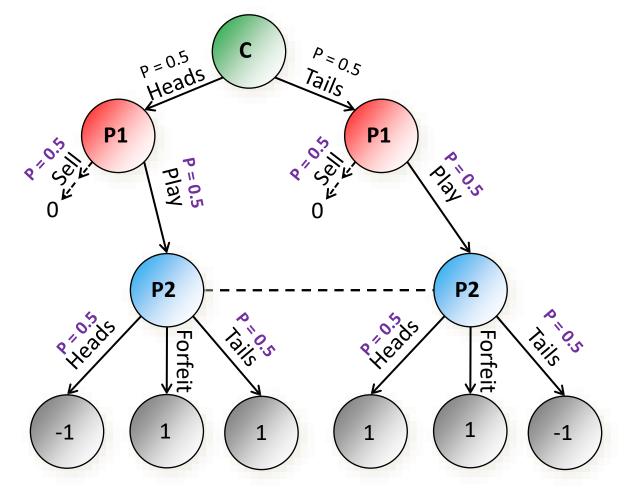
- Subgames can be solved with information from the subgame only
- This is not true in imperfect-information games

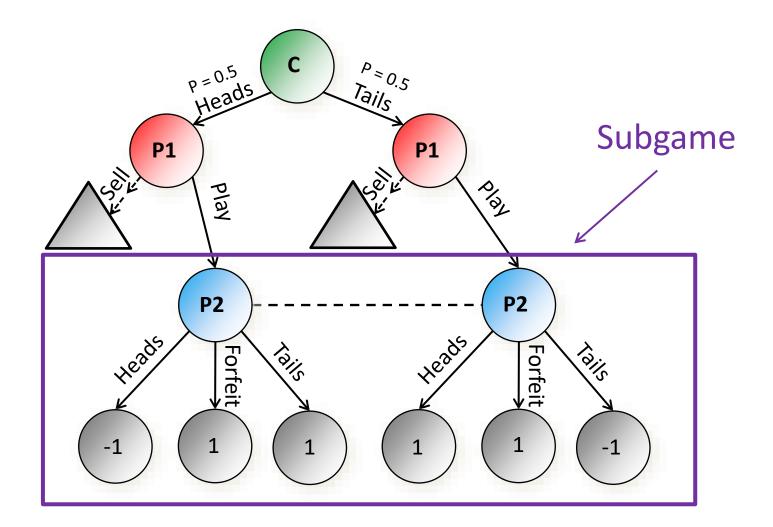
Imperfect-information games Example game: "Coin toss"

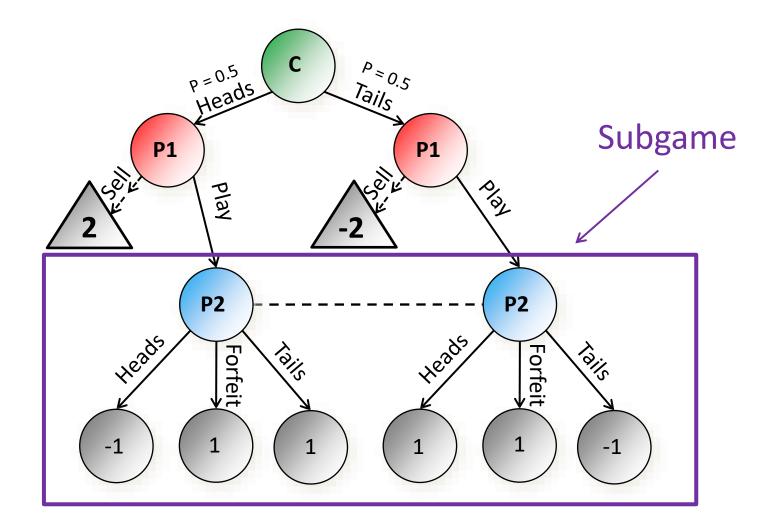


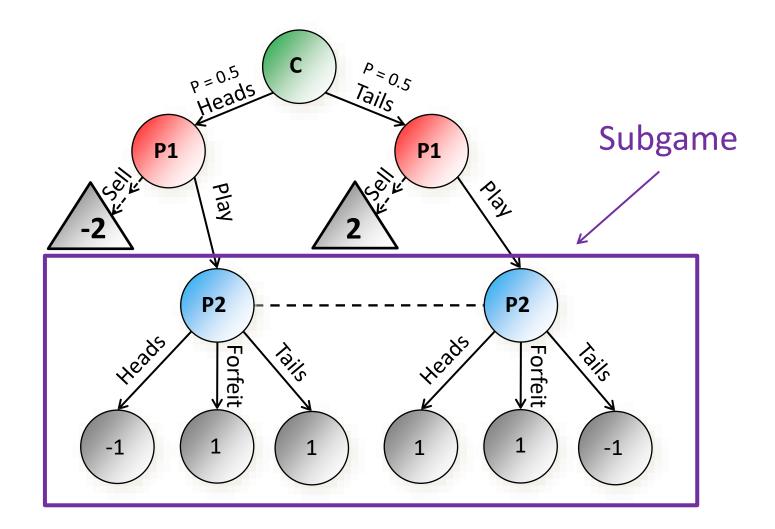
What is rational play?

Nash Equilibrium: a profile of strategies in which no player can improve by deviating (beliefs derived from strategies using Bayes rule). **Robust** ϵ -Nash Equilibrium: No player can improve by more than ϵ









Tackling imperfect-info games

• Application-independent techniques that algorithmically create the strategy

Techniques for perfect-info games don't apply

- Challenges
 - Uncertainty about what others and chance will do
 - Hidden state => need to interpret signals
 use game theory

Poker

- Recognized challenge problem in game theory and AI
 - [Nash 1950]
 - [Kuhn 1950]
 - [Newman 1959]
 - [Waterman 1970]
 - [Zadeh 1977]
 - [Caro 1984]
 - [Pfeffer & Koller 1995]
 - [Billings et al. 1998]
 - [Schaeffer *et al.* 1999]
 - [Shi & Littman 2001]
 - [Billings et al. 2003]
- Tremendous progress since 2005
 - Rhode Island Hold'em solved (10^9 nodes) [Gilpin & Sandholm 2005]
 - Annual Computer Poker Competition 2006-2018
 - Limit Texas Hold'em near-optimally solved (10¹³ decisions) [Bowling et al. 2015]

Heads-up no-limit Texas hold'em

- Was the main *benchmark and challenge problem* in AI for imperfect-information games
- 10¹⁶¹ situations
- Mostly played on the Internet
 - Also in World Series of Poker, NBC Heads-Up Championship, etc.
 - Featured in *Casino Royale* and *Rounders*
- "Purest form of poker"
- No prior AI has beaten top humans

Texas hold'em

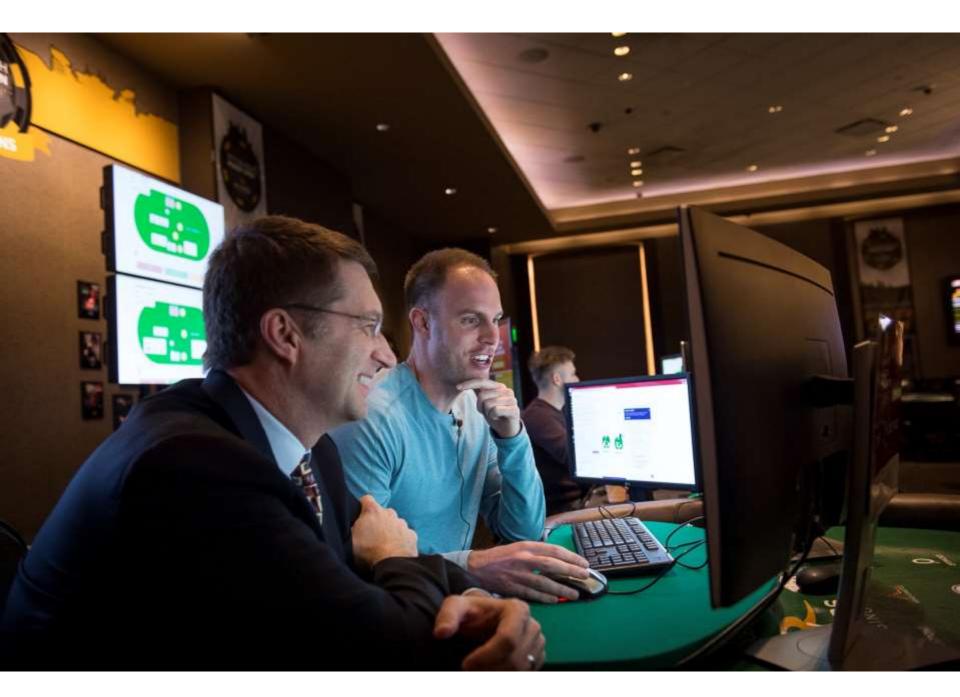
Brains vs Al Rematch

 Libratus (= our AI) against four of the *best* heads-up no-limit Texas Hold'em specialist pros

- 120,000 hands over 20 days in January 2017
- \$200,000 divided among the pros based on performance
- Conservative experiment design

Conservative experiment design to favor humans

- Large number of hands
- Humans got to choose:
 - #days, break days, times of day, breaks between sessions—even dynamically
 - Two tabling
 - 4-color deck
 - Hot keys, adjustable dynamically
 - Specific hi-res monitors, their own mice
 - Twitch chat on vs off
 - Play in public vs private within each pair
- 200 big blinds deep
- No use of timing tells
- Action history displayed
- Hand histories given to both sides every evening, including hands opponent folded
- Humans allowed to:
 - Use computers and any programs to analyze
 - Collaborate and coordinate actions (except within each hand)
 - Get outside help (e.g., Doug Polk)
- Humans allowed to think as long as they want
- Mis-click hands canceled
- Ginseng 😇



Final result

- Libratus beat the top humans in this game by a lot
 - 147 mbb/hand
 - Statistical significance 99.98%, i.e., 0.0002
 - Each human lost to Libratus

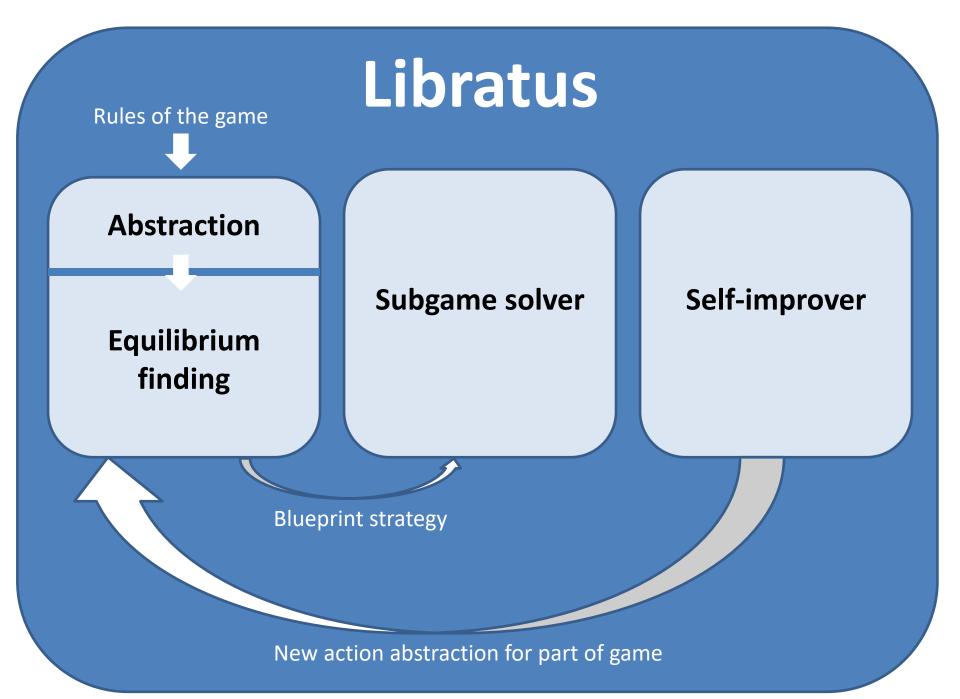
Why is game-theoretic AI better than machine learning for these problems?

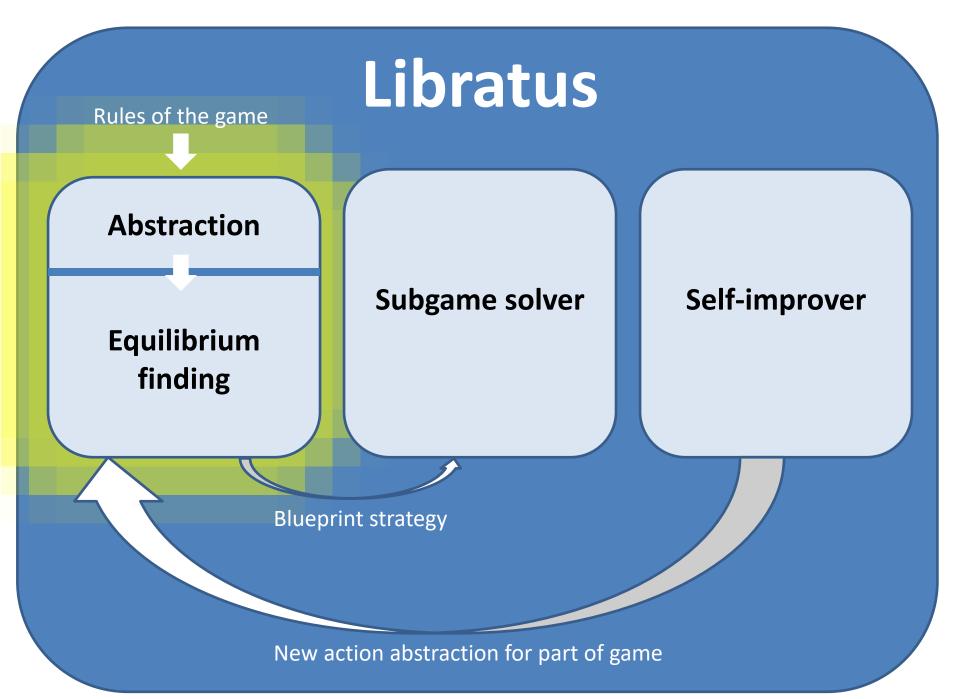
- 1. Requires no data
- 2. Doesn't assume opponent will continue to behave the same way as in the past
- 3. Not exploitable (even if opponent knows our strategy)
 - 36,000 hands against 6 Chinese poker players
 - WSOP bracelet winner
 - Expertise in computer science & ML
 - They studied Libratus's hand histories in advance
 - AI won by 220 mbb/hand
 - Won each of the 9 sessions
 - Also beat each human individually
 - Demonstrated that this approach is not frail
 - Minmax theorem proves this for exact Nash equilibrium. Our experiments showed it for computational approximations
 - Unlike what has been found with ML approaches (e.g., for Go, DOTA2, and Starcraft II)

How does *Libratus* work?

[Brown & Sandholm, Science 2018]

Bridges supercomputer





Abstraction in Libratus

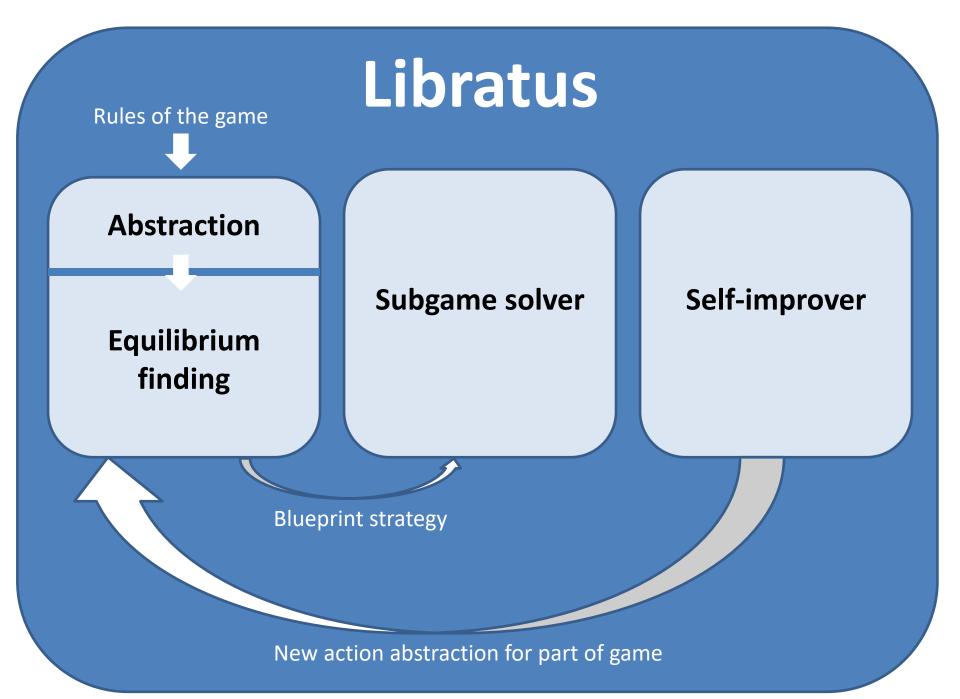
- Abstracting chance's actions (cards in poker)
 - Same algorithm that we used in *Tartanian8* [Brown, Ganzfried & Sandholm, AAMAS-15]
 - Like the state-of-the-art state-abstraction algorithm for centralized equilibrium finding presented in class, except distributed based on the public flop cards so that any one sample stays within one compute node (blade)
 - But much finer abstraction
 - 1st and 2nd betting round: no abstraction
 - 3rd betting round: 55M card histories -> 2.5M buckets
 - 4th betting round: 2.4B card histories -> 1.25M buckets
- Abstracting player's actions (bet sizes in poker)
 - Largely based on what top humans and AIs do
 - Added radical bet sizes
 - Optimized some of the bet sizes in the early parts of the tree [Brown & Sandholm, AAAI-14]

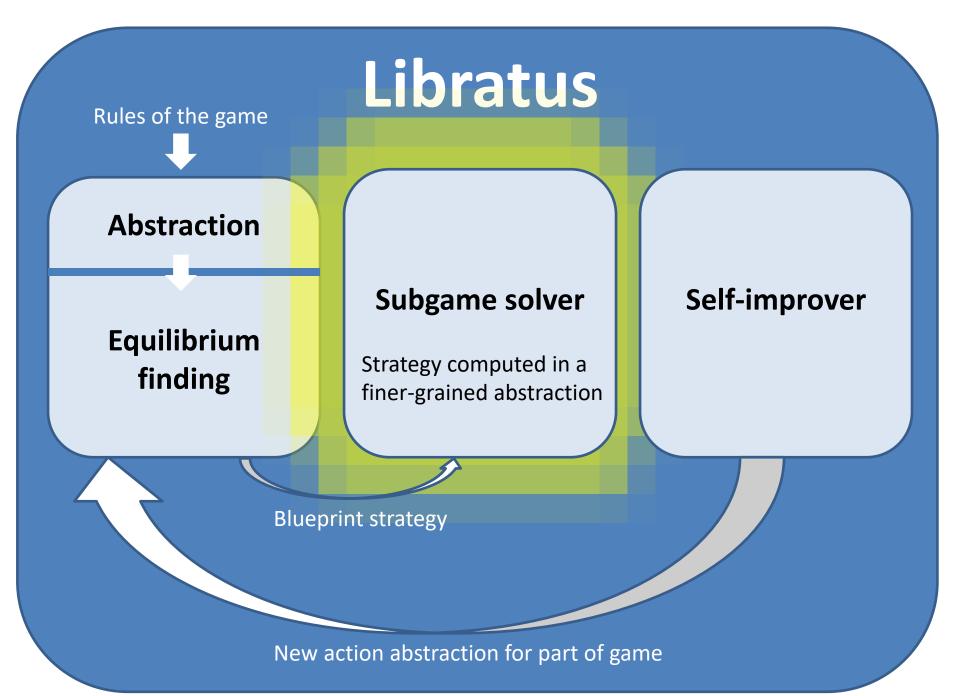
Our equilibrium-finding algorithm

- Improvement on Monte-Carlo Counterfactual Regret Minimization [Lanctot *et al. NIPS*-09]
- Starts visiting less often paths where our own actions don't look promising (similar to Brown & Sandholm NIPS-15 paper and AAAI-17 workshop paper)
 => Speedup => can solve larger abstractions
- Also, the imperfect-recall abstraction, in effect, becomes finer grained
 Better solution quality
- Distributed across 1 + 195 compute nodes
 - Distribution along game tree, not "embarrassingly parallel"

Systems structuring & our usage

- Bridges supercomputer
 - ~\$17 million (including running it for its lifetime)
 - Architected by Hewlett Packard Enterprise (HPE) & Pittsburgh Supercomputing Center
 - Heterogeneous architecture
 - We used the part that has 800 HPE Apollo 2000 servers, each with 28 cores and 128GB RAM
 - We officially used ~24 million core hours for Libratus (Jan 2016-Jan 2017)
 - But we used only 14 of the 28 cores on each node because that was fastest
 - We were the biggest user of Bridges in that timeframe (used about half)
- Blueprint runs typically used 1 + 195 nodes
 - Typically ~1-8 weeks per run
- Each endgame solver used 50 nodes
 - Typically 30-60 seconds per run
- Each self-improver run used 196-600 nodes
 - Typically for 8-30 hours per run
- C++, Open-MP for parallelism within each server, MPI for distributed computing
- 2.6 PB disk storage
 - Multiple strategies
 - Snapshots (balance in snapshotting)
 - Connections by Intel Omni-Path
 - Intel Lustre file system
- During the competition, we had three locations connected by Internet:
 - Front end running on a browser at Rivers casino
 - Poker server running on a Dell rack server at CMU
 - Al running on Bridges at Pittsburgh Supercomputing Center (in an industrial basement in Monroeville)



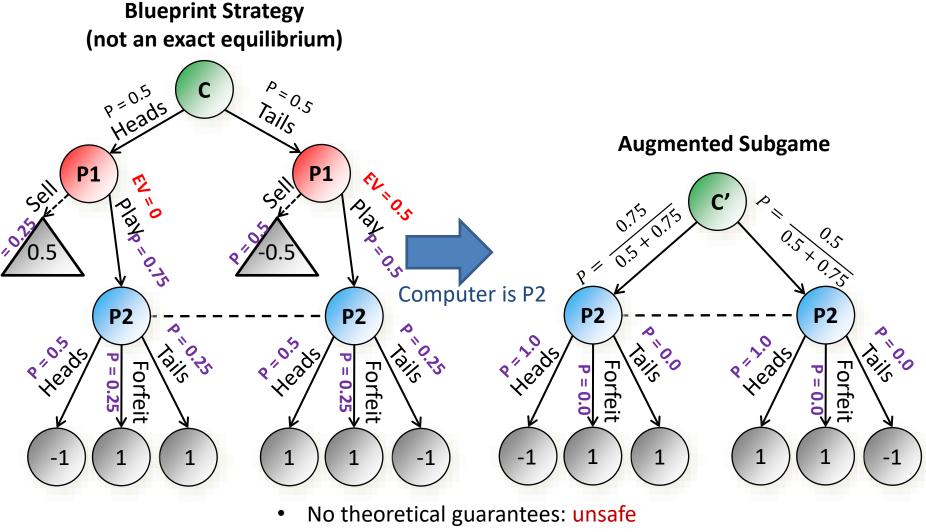


Subgame solving during game play

- Want to solve reached "subgames" in finer abstraction
- ...but in imperfect-information games, subgames can't be solved independently
- => Solve the whole game in a coarse abstraction for a "blueprint strategy" that gives context for solving the current subgame in a finer abstraction
- This is the most important technique in *Libratus*, 1st AI to beat top pros in 2-player no-limit Texas hold'em (10¹⁶¹ information sets) [Brown & Sandholm *Science* 2018]

Bayesian subgame solving

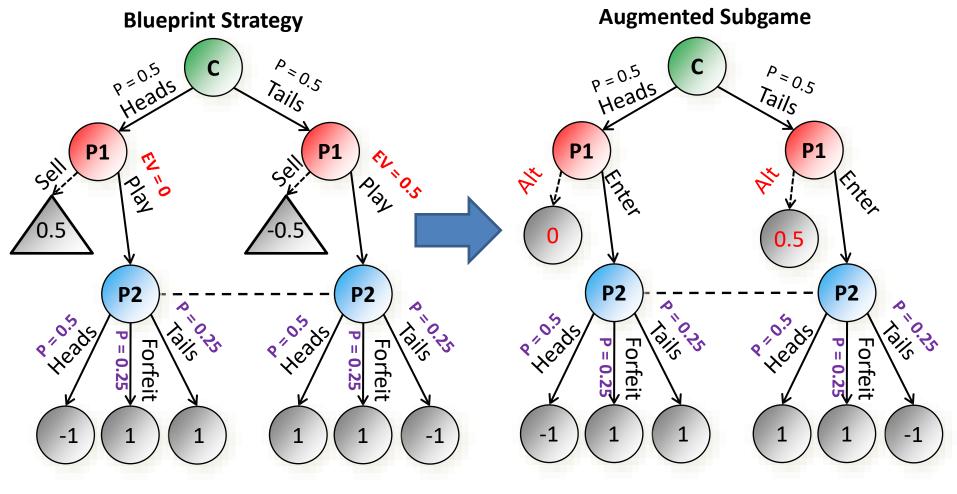
[Gilpin & Sandholm, AAAI-06, AAMAS-07; Ganzfried & Sandholm, AAMAS-15]



• Does well in practice for some domains

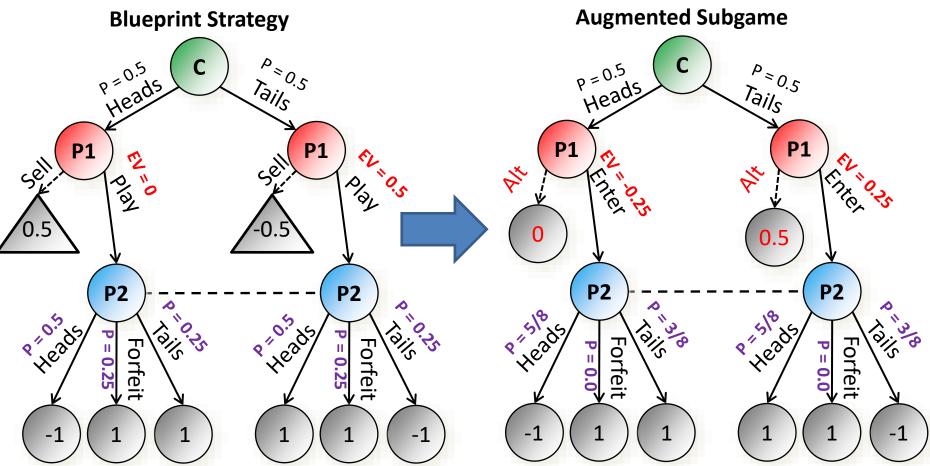
Re-solve refinement [Burch et al. AAAI-14]

- P1 can choose between entering the subgame or taking the EV (according to the blueprint) of the subgame
- Makes sure opponent's EV for entering the subgame is no higher than in the blueprint strategy
 - => Safety theorem. Strategy is no more exploitable than blueprint strategy
- But may miss obvious opportunities for improvement (e.g., not forfeiting)



Maxmargin refinement [Moravcik et al., AAAI-16]

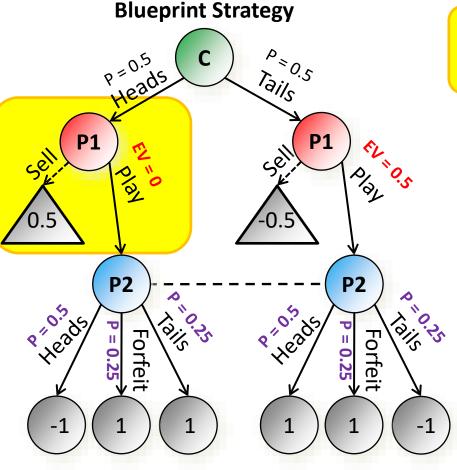
Similar to Re-solve, but punishes P1 as much as possible for choosing Enter rather than Alt $Margin_{Heads} = EV[Alt_{Heads}] - EV[Enter_{Heads}]$ Maximizes the minimum margin (Re-solve simply attempts to make all margins nonnegative)



Problem: While we focus on reducing P1's EV for Heads in the subgame to -0.25, P1 can just Sell for 0.5 in Heads

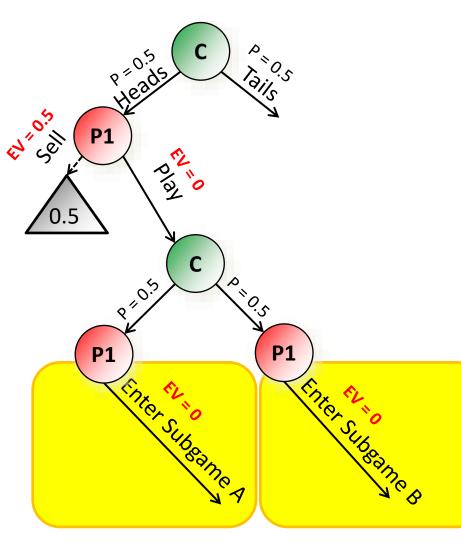
Reach-maxmargin refinement

[Brown & Sandholm, AAAI-17 workshop, NeurIPS-17, Science-18]



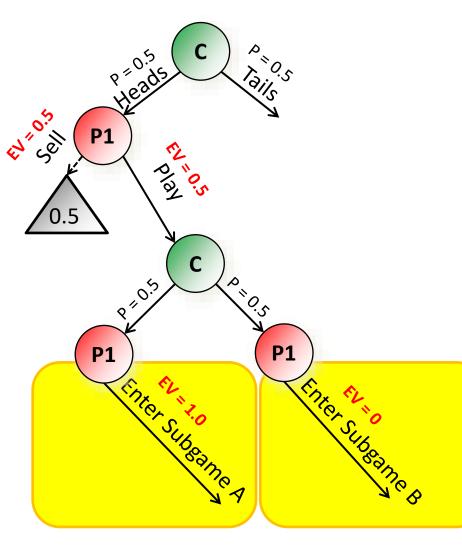
- If P1 chooses Play following Heads, P1 is **gifting** us 0.5
- So, in Augmented Subgame, we can increase the alternative payoff following Heads by 0.5, because choosing Play would still be a mistake for P1 there
- Thus the Gadget Game solver focuses on reducing P1's EV for other types she may have

Reach-maxmargin refinement: multiple subgames



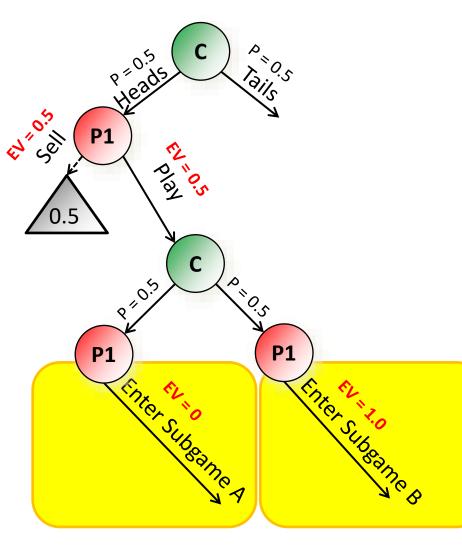
- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached

Reach-maxmargin refinement: multiple subgames

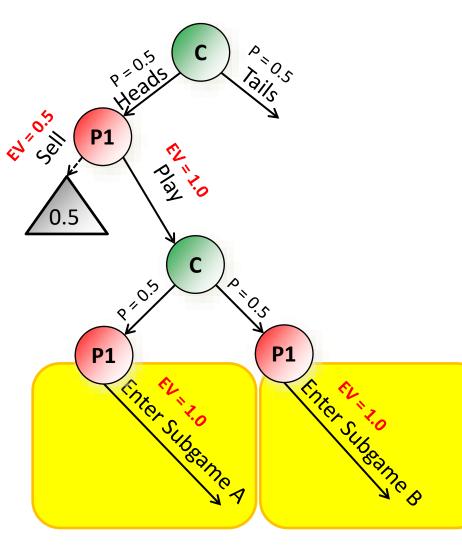


- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached

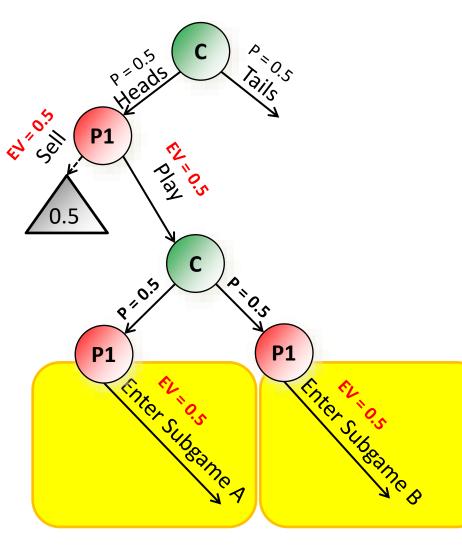
Reach-maxmargin refinement: multiple subgames



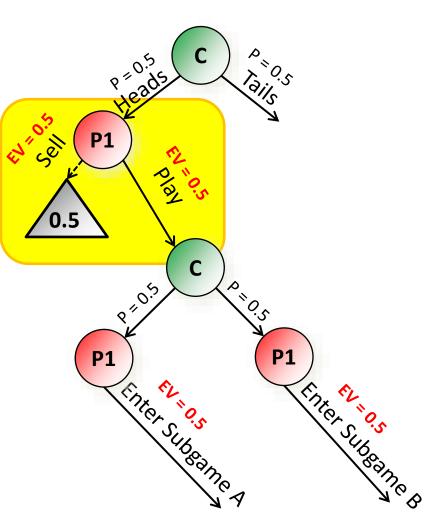
- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached



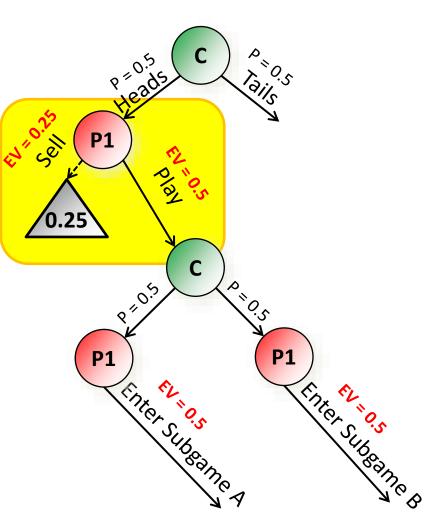
- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached



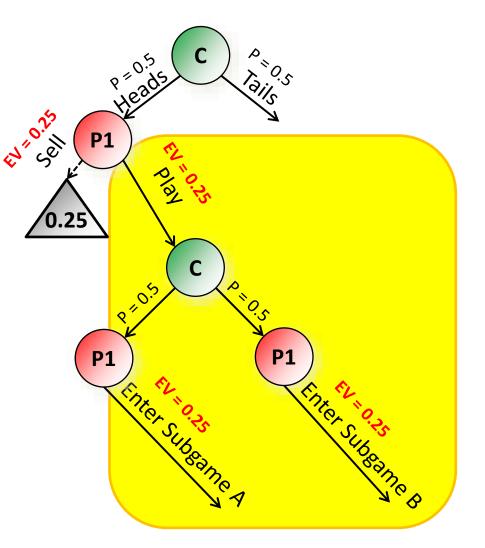
- If multiple subgames are refined, off-path EVs might not remain constant
- Solution: split gifts among subgames by probability subgame is reached



- Gifts might not be as large as we thought, because the subgames they come from will be improved
- Solution: substitute a lower bound on the gift



- Gifts might not be as large as we thought, because the subgames they come from will be improved
- Solution: substitute a lower bound on the gift



- Gifts might not be as large as we thought, because the subgames they come from will be improved
- Solution: substitute a lower bound on the gift

Medium-scale experiments on subgame solving within action abstraction

	Small Game Exploitability	Large Game Exploitability
Blueprint Strategy	91.3 mbb / hand	41.4 mbb / hand
Unsafe Subgame Solving	5.51 mbb / hand	397 mbb / hand
Re-solve Refinement	81.2 mbb / hand	36.3 mbb / hand
Maxmargin Refinement	9.36 mbb / hand	6.12 mbb / hand
Reach-Maxmargin Refinement	8.26 mbb / hand	5.50 mbb / hand

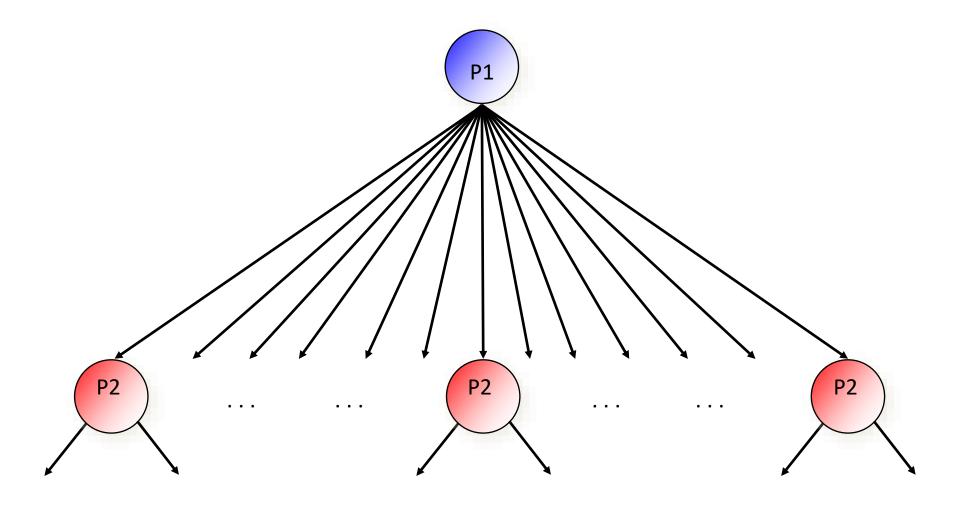
New ideas in subgame solver

NIPS-17 best paper award

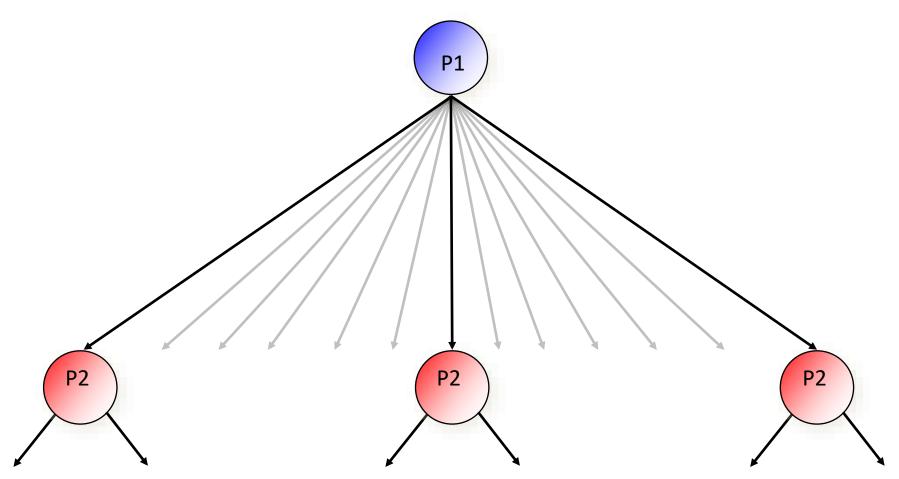
- Provably safe subgame solving taking into account opponent's mistakes in the hand so far
- Nested subgame solving
- Subgame solving starts much earlier
- No card abstraction in the subgame
- Changed our action abstraction between hands

New ideas in subgame solver

- Provably safe subgame solving taking into account opponent's mistakes in the hand so far
- Nested subgame solving
- Subgame solving starts much earlier
- No card abstraction in the subgame
- Changed our action abstraction between hands

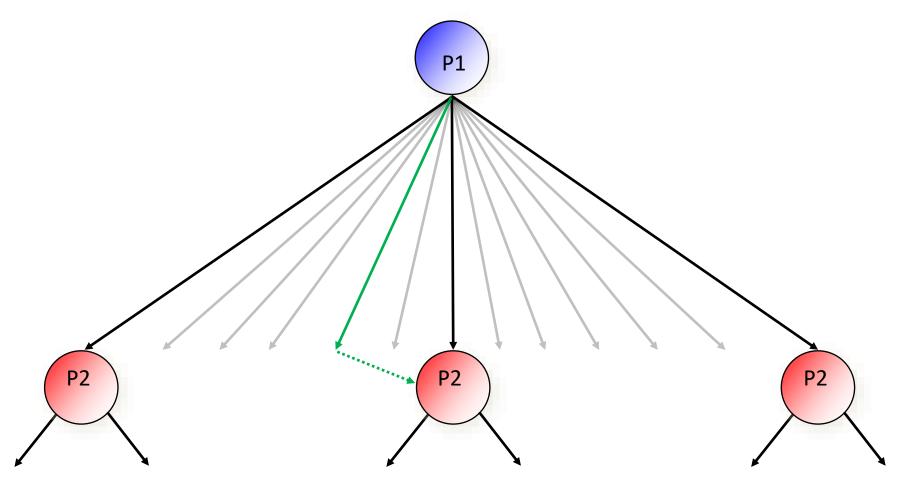


Action abstraction



[Gilpin, Sandholm & Sørensen, AAMAS-08], [Hawkin et al., AAAI-11, AAAI-12], [Brown & Sandholm, AAAI-14]

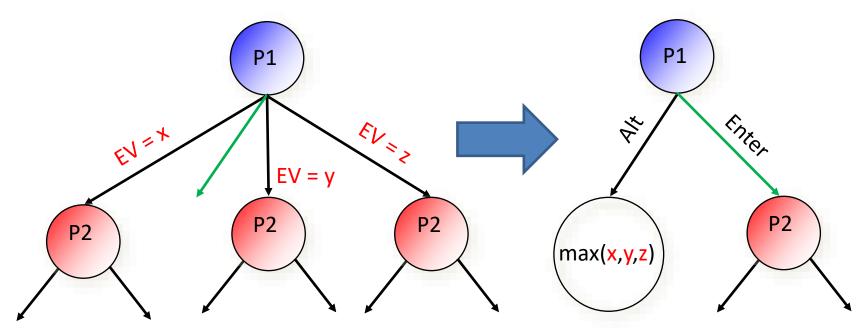
Action translation



[Gilpin, Sandholm & Sørensen, AAMAS-08], [Schnizlein et al., IJCAI-09], [Ganzfried & Sandholm, IJCAI-13]

Nested subgame solving

• Idea: Solve a subgame in real time for the off-tree action taken



- Theorem. Say the blueprint is an ε-equilibrium of the abstraction. If EV[Enter] ≤ EV[Alt] for all P1 types, then the strategies form an ε-equilibrium to the new abstraction that includes the new action
- Can be repeated for every subsequent off-tree action (typically in finer and finer abstraction)

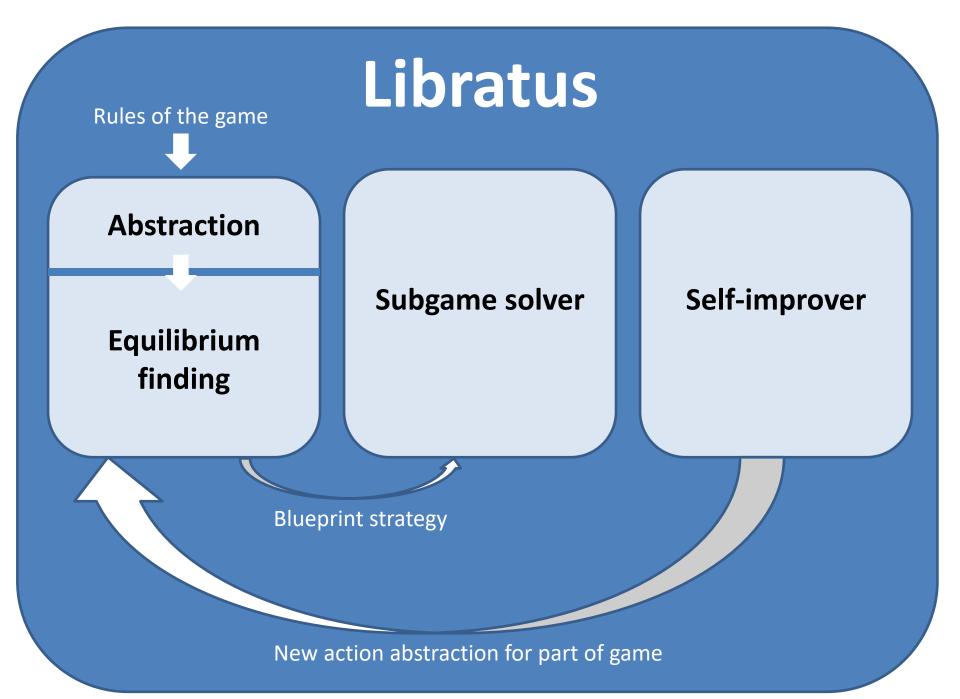
Medium-scale experiments on *nested* subgame solving

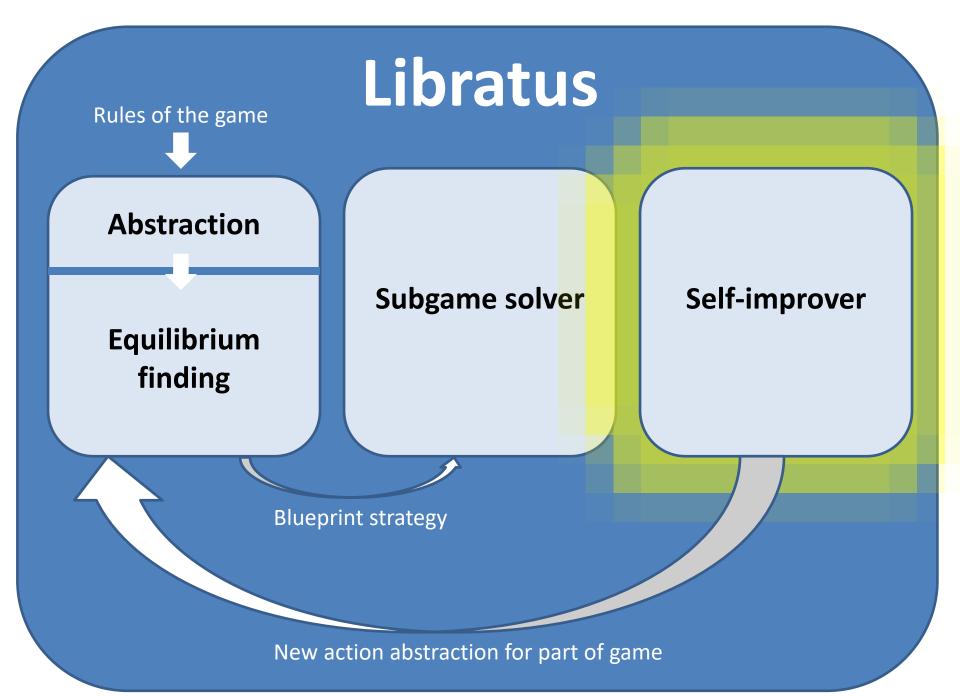
	Exploitability
Randomized Pseudo-Harmonic Mapping [Ganzfried & Sandholm IJCAI-13]	1465 mbb / hand
Nested Re-solve Refinement	150.2 mbb / hand
Nested Unsafe Refinement	148.3 mbb / hand
Nested Maxmargin Refinement	122.0 mbb / hand
Nested Reach-Maxmargin Refinement	119.1 mbb / hand

New ideas in subgame solver

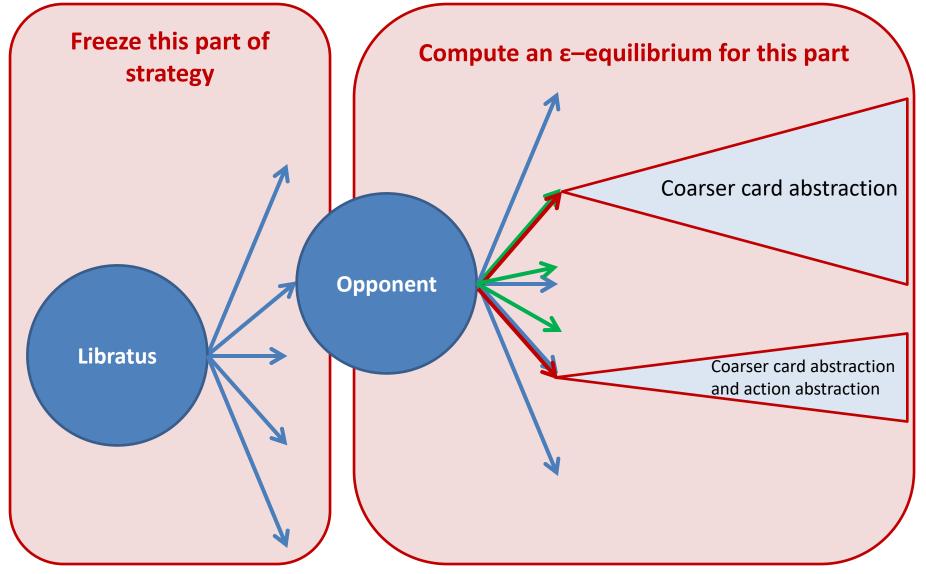
- Provably safe subgame solving taking into account opponent's mistakes in the hand so far
- Nested subgame solving
- Subgame solving starts much earlier
- No card abstraction in the subgame
- Changed our action abstraction between hands

Libratus's "balance" and use of "blockers"





Filling holes in the action tree



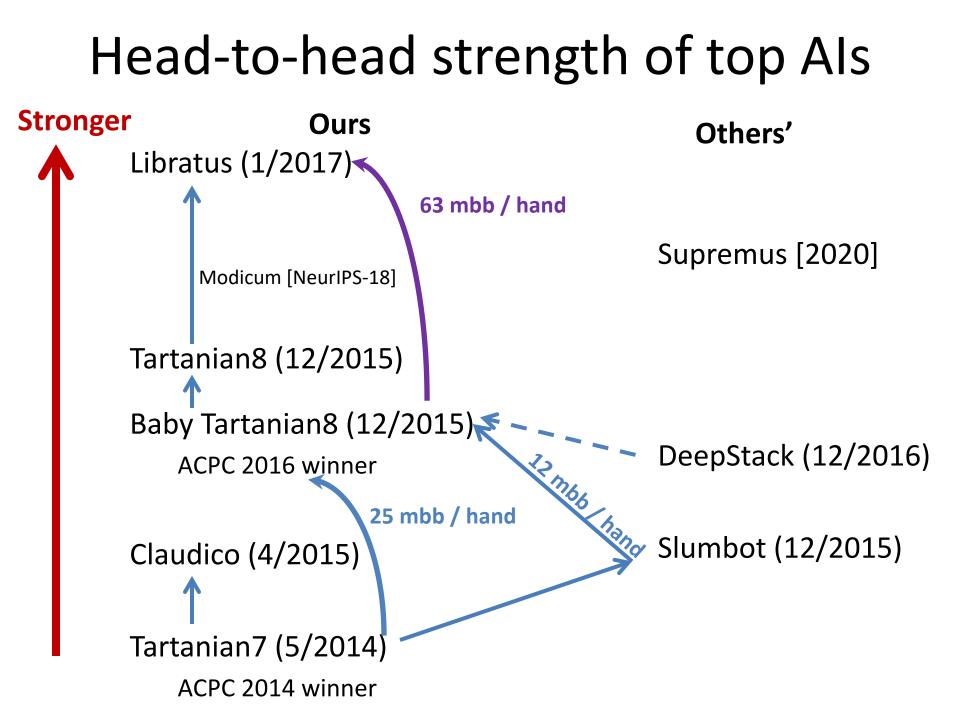
We do this for top *k* holes

Libratus fixing its own weaknesses

Libratus fixing its own weaknesses...

The Fight For Humanity Rages On!

0 1



Observations about Libratus's play

- Strengths:
 - Small bets & huge bets & huge all-ins
 - Multiple bet sizes in any one situation
 - "Limping", "donk betting"
 - "Perfect balance"
 - Mixed strategy
 - Probability distributions over players' hands; not just "range-based"
 - Near-perfect subgame play; great use of "blockers"
 - Different bet sizings used in subgames
- Weaknesses?
 - No opponent exploitation

Is safe (equilibrium) play timid/boring?

