
Brian Zhang

1

Sampling and deep learning in CFR:
MCCFR and Deep CFR

Recall: Self-play in
regret matching/CFR

for 𝑡 = 1, … , 𝑇:

• for all 𝐽: 𝜋𝑡 ⋅ 𝐽 ← next behavior strategy from regret minimizer at 𝐽

• for all 𝐽: 𝑢𝑡(⋅ |𝐽) ← counterfactual values at 𝐽

• for all 𝐽: regret minimizer at 𝐽 observes 𝑢𝑡(⋅ |𝐽)

2

Can we do better?
Idea: Estimate the utilities

O(# sequences)

O(# sequences)

O(# terminal nodes)

Recall: Self-play in
regret matching/CFR

for 𝑡 = 1, … , 𝑇:

• for all 𝐽: 𝜋𝑡 ⋅ 𝐽 ← next behavior strategy from regret minimizer at 𝐽

• for all 𝐽: 𝑢𝑡(⋅ |𝐽) ← fast randomized estimate of counterfactual values at 𝐽

• for all 𝐽: regret minimizer at 𝐽 observes 𝑢𝑡(⋅ |𝐽)

3

Can we do better?
Idea: Estimate the utilities

O(# sequences)

O(# sequences)

faster than O(# terminal nodes)?

martingale!

bounded by 𝒪 𝑀 𝑛𝑇 log
𝑛

𝛿
 w.p. 1 − 𝛿

if 𝔼[𝒖𝑡] = 𝒖𝑡

Regret minimization
with estimated utility vectors

4

regret against estimated utilities

bounded by 𝒪 𝑀 𝑛𝑇

(with RM, where 𝑀 = max
𝑡

𝒖𝑡
∞)

estimation error

How do we get an
unbiased estimate of 𝒖𝑡?

𝑅 𝑇 = max
ෝ𝒙∈Δ𝑛

𝑡≤𝑇

𝒖𝑡, ෝ𝒙 − 𝒙𝑡

= max
ෝ𝒙∈Δ𝑛

𝑡≤𝑇

𝒖𝑡 + 𝒖𝑡 − 𝒖𝑡 , ෝ𝒙 − 𝒙𝑡

= max
ෝ𝒙∈Δ𝑛

𝑡≤𝑇

𝒖𝑡, ෝ𝒙 − 𝒙𝑡 +

𝑡≤𝑇

𝒖𝑡 − 𝒖𝑡 , ෝ𝒙 − 𝒙𝑡

𝑅𝑋 𝑇 ≤

𝐽

𝑅𝐽 𝑇
+

≤ ෨𝒪 |Σ|𝑀 𝑇

where ෨𝒪 hides a poly log(|Σ|, 1/𝛿) term

CFR:

How do we estimate utility vectors?

5

Idea 1: Sample opponent and chance actions

1 2

00 1

2 1

𝜋2
𝑡

.3 .6

.3 .48 1 .5 𝑢1
𝑡

.5 .5

.4 .6 .4 .6

𝜋1
𝑡

0 1 0 1

.4 .6

How do we estimate utility vectors?

6

Idea 1: Sample opponent and chance actions

Claim: 𝔼[𝑢𝑡 𝑎 𝐼] = 𝑢𝑡 𝑎 𝐼
⇒ Regret minimization still works!

Time complexity: 𝒪 Σ per iteration worst-case

Often better! (only need to update infosets
if the opponent/chance plays to reach them

in the sampled strategy)

Can we do even better?

“External sampling Monte Carlo CFR”

1 2

1

1 2

1 1.6

0 1

.4 .6

𝜋1
𝑡

𝑢1
𝑡

How do we estimate utility vectors?

7

1 2

1

sampling strategy 𝜋1
𝑡

can depend on 𝜋1
𝑡, but

must be fully mixed

Idea 2: Sample our actions too?

0 1
.6 .4

1 2

1 1.6

.5 .5

𝜋1
𝑡

𝜋1
𝑡

.4 .6

𝑢1
𝑡

How do we estimate utility vectors?

8

1

Idea 2: Sample our actions too?

0 1

5 0

0 2

Importance
sampling!

Time complexity: 𝒪 𝑑|𝐴| per iteration
(𝑑 = depth, |𝐴| = action set)

(update all infosets along sampled trajectory)

Problem: Extremely high variance due to

importance sampling: 𝑀 = max
𝑧

1

𝜋1
𝑡 (𝑧)

“Outcome sampling Monte Carlo CFR”
.6 .4

sampling strategy 𝜋1
𝑡

can depend on 𝜋1
𝑡, but

must be fully mixed

𝜋1
𝑡

𝜋1
𝑡

𝑢1
𝑡

Claim: 𝔼[𝑢𝑡 𝑎 𝐼] = 𝑢𝑡 𝑎 𝐼
⇒ Regret minimization still works!

.4 .6
.5 .5

(Now same as Q-values!)

Note that this isn’t 2.5
because we update up
the tree based on action
probabilities 𝜋1

𝑡 rather
than sampling
probabilities 𝜋1

𝑡

Importance sampling

9

Utility vector for P1, estimated with outcome sampling:

• Sample terminal node 𝑧 ∼ 𝜋𝑡,1 ≔ 𝜋1
𝑡 , 𝜋2

𝑡

• Set counterfactual utilities for all 𝐽 ≼ 𝑧, 𝑎 ∈ 𝐴

= 𝑢1
𝑡 𝑎|𝐽 ✓

…but really high variance…
1

0 1

5 0

0 2

Importance
sampling!

.6 .4

sampling strategy 𝜋1
𝑡

can depend on 𝜋1
𝑡, but

must be fully mixed

𝜋1
𝑡

𝜋1
𝑡

.5 .5
.4 .6

𝔼 𝑢1
𝑡 𝑎|𝐽 =

𝑧:𝜎1 𝑧 =𝐽𝑎

𝑢1(𝑧)

𝜋1
𝑡(𝑧)

⋅ 𝜋𝑡,1 𝑧 +

𝐽′∈𝑁(𝐽𝑎)

𝑎′∈𝐽′

𝜋1 𝑎′ 𝐽′ 𝔼 𝑢1
𝑡(𝑎′|𝐽′)

𝑢1
𝑡 𝑎|𝐽 =

𝑢1(𝑧)

𝜋1
𝑡(𝑧)

if 𝜎1 𝑧 = 𝐽𝑎

𝐽′∈𝑁(𝐽𝑎)

𝑎′∈𝐴

𝜋1 𝑎′ 𝐽′ 𝑢1
𝑡(𝑎′|𝐽′) if 𝜎1 𝑧 ≻ 𝐽𝑎

0 if 𝜎1 𝑧 ⋡ 𝐽𝑎

𝜋−1
𝑡 (𝑧)

𝑢1
𝑡

Variance reduction using baselines

10

Utility vector for P1, estimated with outcome sampling:

• Sample terminal node 𝑧 ∼ 𝜋𝑡,1 ≔ 𝜋1
𝑡 , 𝜋2

𝑡

• Set counterfactual utilities for all 𝐽 ≼ 𝑧, 𝑎 ∈ 𝐴

1

0 1

3 6

1 1.8

Importance
sampling!

.6 .4

sampling strategy 𝜋1
𝑡

can depend on 𝜋1
𝑡, but

must be fully mixed

𝜋1
𝑡

𝜋1
𝑡

.5 .5
.4 .6 ✓𝔼 𝑢1

𝑡 𝑎|𝐽 = 𝔼 ො𝑢1
𝑡 𝑎 𝐽 = 𝑢1

𝑡 𝑎|𝐽

𝑢1
𝑡 𝑎|𝐽 = 𝑏1

𝑡 𝑎 𝐽 + 𝟏 𝜎1(𝑧) ≽ 𝐽𝑎 ⋅ ො𝑢1
𝑡 𝑎 𝐽 −

𝑏1
𝑡 𝑎 𝐽

𝜋1
𝑡 𝑎 𝐽

ො𝑢1
𝑡 𝑎 𝐽 =

𝑢1(𝑧)

𝜋1
𝑡(𝑧)

if 𝜎1 𝑧 = 𝐽𝑎

𝐽′∈𝑁(𝐽𝑎)

𝑎′∈𝐴

𝜋1 𝑎′ 𝐽′ 𝑢1
𝑡(𝑎′|𝐽′) if 𝜎1 𝑧 ≻ 𝐽𝑎

0 if 𝜎1 𝑧 ⋡ 𝐽𝑎

2 6

1 2
𝑏1

𝑡

𝑢1
𝑡

“Optimal” baseline (if you had an oracle) would be:

𝑏1
𝑡 𝑎 𝐽 =

𝑢1
𝑡 𝑎|𝐽

𝜋1
𝑡(𝐽)

CFR vs MCCFR

11

Per-iteration complexity Regret bound

CFR 𝒪 #histories
𝒪 Σ 𝑇

(often faster in practice,
esp. with PCFR+)

External-sampling
MCCFR

𝒪 Σ
(often even faster)

෨𝒪 |Σ| 𝑇

Outcome-sampling
MCCFR

𝒪 𝑑|𝐴|
෨𝒪 Σ 2 𝑇

(using balanced sampling strategy)

∃ 𝜋𝑖 with 𝜋𝑖 𝜎 ≥
1

Σ
 ∀𝜎, thus 𝑀 = |Σ|

Recall: general stochastic regret minimization regret bound w/ unbiased utility estimates:

𝑅𝑋 𝑇 ≤ |Σ|𝑀 𝑇 log
1

𝛿

Experiments: CFR vs MCCFR

12Lanctot, Waugh, Zinkevich, Bowling (NeurIPS 2009)

MCCFR reaches reasonable exploitability before CFR even finishes one iteration!

Experiments: MCCFR vs MCCFR+,
with and without Baselines for VR

13

MCCFR+ doesn’t beat MCCFR…

unless variance reduction is used!

Practical advice:

• Use PCFR+ (try both 𝛾 = 2 and
last-iterate) if doing full game
tree traversals is feasible—it
will probably win.

• If that isn’t feasible, use
external sampling.

• If that isn’t feasible, use
outcome sampling with
baselines for VR.

Schmid, Burch, Lanctot, Moravcik, Kadlec, Bowling (AAAI 2019)

Deep Learning for Games
(as an alternative to abstraction)

14

Deep (MC)CFR
Maintain: Training set 𝑆, regret networks ǁ𝑟𝑖

𝑡: Σ → ℝ

On each iteration 𝑡 = 1, … , 𝑇, for each player 𝑖:

1. Iterate through the game tree using MCCFR and
(behavioral) strategy profile 𝜋𝑡 ∝ ǁ𝑟𝑡 + (and some

sampling profile 𝜋𝑖
𝑡 if using outcome sampling) to

compute sampled counterfactual values 𝑢𝑖
𝑡(𝑎|𝐽)

2. Compute immediate counterfactual regrets

 for each sampled infoset using 𝑢𝑖
𝑡 and 𝜋𝑡, 𝜋𝑖

𝑡

3. For each sequence (𝐽, 𝑎) encountered in Step 1,

add (𝐽, 𝑎), 𝑔𝑖
𝑡 (𝑎|𝐽) to training set 𝑆

4. Train network ǁ𝑟𝑖
𝑡+1 ∶ Σ → ℝ on 𝑆:

15

regret matching!
(as usual, if no regrets are
positive then play arbitrarily)

When 𝑆 grows too big,
use reservoir sampling

ǁ𝑟𝑖
𝑡 𝑎|𝐽 ≈

1

𝑁𝑡,𝐽,𝑎
⋅

𝜏≤𝑡

𝑔𝑖
𝜏(𝑎|𝐽)

regret
doesn’t matter:

RM is scale-invariant!

If networks ǁ𝑟𝑡 are perfect
then this is just MCCFR

If networks are imperfect…
we may get to take
advantage of generalization!

Brown, Lerer, Gross, Sandholm (ICML 2019)

𝑔𝑖
𝑡 𝑎 𝐽 ≔ 𝑢𝑖

𝑡 𝑎 𝐽 −

𝑎′

𝜋𝑖
𝑡 𝑎′ 𝐽 ⋅ 𝑢𝑖

𝑡 𝑎′ 𝐽

DREAM
[Steinberger, Lerer,
Brown arXiv 2020]

=
outcome-sampling deep

MCCFR with baselines for
variance reduction

16Brown, Lerer, Gross, Sandholm (ICML 2019)

ESCHER: Can we get rid of
importance sampling?

Motivation: Deep networks have a hard time with outputs of different
magnitudes (e.g., with importance sampling)

Idea: For each player 𝑖, at each timestep 𝑡:

1. Train network 𝑄 ∶ Σ → ℝ directly to estimate the conditional (not

counterfactual) values 𝑄 𝑎|𝐽 ≔
𝑢𝑡 𝑎 𝐽
𝜋−𝑖

𝑡 (𝐽)

2. Use fixed (i.e., time-independent) sampling strategy 𝜋𝑖
∗ for each player 𝑖

3. Sample trajectory 𝑧 ∼ 𝜋𝑖
∗, 𝜋−𝑖

𝑡

4. Update regret minimizer at each player 𝑖 infoset 𝐽 ≼ 𝑧 using Q-values

𝑢𝑖
𝑡 ⋅ 𝐽 = 𝑄(⋅ |𝐽)

𝔼 𝑢𝑖
𝑡 𝑎 𝐽 = 𝜋𝑖

∗ 𝐽 ⋅ 𝜋−𝑖
𝑡 𝐽 ⋅ 𝑄 𝑎|𝐽 = 𝜋𝑖

∗ 𝐽 ⋅ 𝑢𝑡(𝑎|𝐽)

17

doesn’t matter—RM is scale-invariant!

plug this idea into deep CFR ⇒ ESCHER

McAleer, Farina, Lanctot, Sandholm (ICLR 2023)

CFR vs MCCFR vs ESCHER

18

Per-iteration
complexity

Regret bound
Importance
sampling?

CFR 𝒪 #histories
𝒪 Σ 𝑇

(often faster in practice,
esp. with PCFR+)

No
(deterministic

algorithm)

External-sampling
MCCFR

𝒪 Σ
(often even faster)

෨𝒪 |Σ| 𝑇 No

Outcome-sampling
MCCFR

𝒪 𝑑|𝐴|
෨𝒪 Σ 2 𝑇

using balanced sampling strategy

Yes

ESCHER (Tabular,
oracle Q-values)

No

Experiments: Head-to-head
against other algorithms

19McAleer, Farina, Lanctot, Sandholm (ICLR 2023)

Experiments: ablations

20

divides through by 𝜋𝑖
∗ 𝐽 to make

𝔼 𝑢𝑖
𝑡 𝑎 𝐽 = 𝑢𝑡(𝑎|𝐽)

(needlessly adds variance, so we
should expect this to be worse)

uses 𝑢𝑖
𝑡 ⋅ 𝐽 from Deep VR-MCCFR

(DREAM), but multiplied by 𝜋𝑖
∗ 𝐽

McAleer, Farina, Lanctot, Sandholm (ICLR 2023)

Experiments: variance in
counterfactual utility estimates

21McAleer, Farina, Lanctot, Sandholm (ICLR 2023)

Experiments against ablations

22

Bonus slides on single-agent RL

23

Single-agent reinforcement learning

Single-agent learning:

• Set of states 𝑆 (information sets) with fixed “start state” 𝑠1 ∈ 𝑆 (root infoset)

• Set of actions 𝐴

• We’ll assume finite horizon: 𝑆 = 𝑆1 ⊔ 𝑆2 ⊔ ⋯ 𝑆𝐻, where
𝐻 = time horizon (depth of game tree), and 𝑆1 = {𝑠1}

• Fixed environment (opponent/nature) given by transition functions
𝑃 ∶ 𝑆ℎ × 𝐴 → Δ 𝑆ℎ+1 for each ℎ < 𝐻. Playing action 𝑎 in state 𝑠 results in
random next state 𝑠′ w.p. 𝑃(𝑠′|𝑠, 𝑎).

• Trajectory (history): 𝜏 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑎𝐻−1, 𝑠𝐻)

• Policy (strategy): 𝜋 ∶ 𝑆 → Δ 𝐴

• Reward (utility): 𝑅 ∶ 𝑆𝐻 → ℝ
(assume for simplicity that reward is only received at the end)

24

Q-values, state values, and advantages

Define recursively:

25

𝑄𝜋 𝑠, 𝑎 = 𝔼
𝑠′∼𝑃(⋅|𝑠,𝑎)

𝑉𝜋 𝑠′

𝑉𝜋 𝑠 = ൝
𝑅(𝑠) if 𝑠 ∈ 𝑆𝐻

𝔼
𝑎∼𝜋(⋅|𝑠)

𝑄𝜋(𝑠, 𝑎) otherwise

𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠

“state-action value”

“state value”

“advantage”

In extensive form, when
multiplied by environment reach
probability of infoset 𝑠, these are:

counterfactual value 𝑢(𝑎|𝑠)

counterfactual value 𝑢(𝑠)

immediate regret 𝑔(𝑎|𝑠)

Goal: find 𝜋 maximizing expected reward

𝑉𝜋 𝑠1 = 𝔼
𝜏∼𝜋

𝑅 𝑠𝐻 , 𝑎𝐻 .

𝑆, 𝐴 small enough to iterate over
⇒ easy! (backwards induction)

𝑆, 𝐴 large ⇒ ???

Policy gradient theorem

26

using ∇ log 𝑓 𝑥 =
∇𝑓 𝑥

𝑓 𝑥

∇𝑉𝜋 𝑠1 =

𝜏

𝑅 𝑠𝐻 ∇𝑃(𝜏|𝜋)

=

𝜏

𝑅 𝑠𝐻 𝑃 𝜏 𝜋 ∇ log 𝑃(𝜏|𝜋)

= 𝔼
𝜏∼𝜋

𝑅 𝑠𝐻 ∇ log 𝑃(𝜏|𝜋)

= 𝔼
𝜏∼𝜋

ℎ=1

𝐻−1

𝑅 𝑠𝐻 ∇ log 𝜋 𝑎ℎ 𝑠ℎ

= 𝔼
𝜏∼𝜋

ℎ=1

𝐻−1

𝐴 𝑠ℎ, 𝑎ℎ ∇ log 𝜋 𝑎ℎ 𝑠ℎ (won’t show—same idea as “baselines”)

initialize policy 𝜋1 to be uniform random

for 𝑡 = 1, … , 𝑇:

• train value function estimate ෨𝑉𝑡 ≈ 𝑉𝜋 using MSE:

෨𝑉𝑡 ≔ arg min
𝑉

𝔼
𝜏∼𝜋𝑡

ℎ=1

𝐻−1

𝑉 𝑠ℎ − 𝑉 𝑠ℎ+1
2

• train policy 𝜋𝑡+1 by taking gradient steps according to the policy gradient theorem:

 where
ሚ𝐴𝑡 𝑠, 𝑎 ≔ 𝔼

𝑠′∼𝑃(⋅|𝑠,𝑎)
෨𝑉𝑡 𝑠′ − ෨𝑉𝑡(𝑠)

 is an advantage function estimate

Advantage actor-critic (A2C)
(very roughly)

27

∇𝑉𝜋 𝑠1 = 𝔼
𝜏∼𝜋𝑡

ℎ=1

𝐻−1

መ𝐴 𝑠ℎ, 𝑎ℎ ∇ log 𝜋 𝑎ℎ 𝑠ℎ

Problem: Variance in gradients can be very large,
so 𝜋 can change very fast ⇒ training can be unstable

of course, 𝑉 𝑠𝐻 ≔ 𝑅(𝑠𝐻)

Proximal policy optimization (PPO)
(very roughly)

initialize policy 𝜋1 to be uniform random

for 𝑡 = 1, … , 𝑇:

• train value function estimate ෨𝑉𝑡 ≈ 𝑉𝜋 using MSE:

෨𝑉𝑡 ≔ arg min
𝑉

𝔼
𝜏∼𝜋𝑡

ℎ=1

𝐻−1

𝑉 𝑠ℎ − 𝑉 𝑠ℎ+1
2

• train policy 𝜋𝑡+1 according to:

 where
ሚ𝐴𝑡 𝑠, 𝑎 ≔ 𝔼

𝑠′∼𝑃(⋅|𝑠,𝑎)
෨𝑉𝑡 𝑠′ − ෨𝑉𝑡(𝑠)

 is an advantage function estimate

28

𝜋𝑡+1 ≔ arg max
ෝ𝜋

𝔼
𝜏∼𝜋𝑡

ℎ=1

𝐻−1 min
ො𝜋 𝑎ℎ 𝑠ℎ

𝜋𝑡 𝑎ℎ 𝑠ℎ
, 1 + 𝜖 መ𝐴𝑡(𝑠ℎ, 𝑎ℎ) if መ𝐴𝑡 𝑠ℎ, 𝑎ℎ > 0

max
ො𝜋 𝑎ℎ 𝑠ℎ

𝜋𝑡 𝑎ℎ 𝑠ℎ
, 1 − 𝜖 መ𝐴𝑡(𝑠ℎ, 𝑎ℎ) if መ𝐴𝑡 𝑠ℎ, 𝑎ℎ < 0

of course, 𝑉 𝑠𝐻 ≔ 𝑅(𝑠𝐻)

Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)

PPO is great*

29

Best large-scale single-agent RL algorithm right now!

*Very very sensitive to hyperparameters… hard to use in practice…

Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)

Do these algorithms work for games?
Certainly not in theory. In practice… kind of, at small scale?

(but probably at this scale you should just use PCFR+ instead…)

30Srinivasan, Lanctot, Zambaldi, Perolat, Tuyls, Munos, Bowling (NeurIPS 2018)

References

31

MCCFR: Marc Lanctot, Kevin Waugh, Martin Zinkevich, Michael Bowling (NeurIPS 2009) “Monte Carlo sampling
for regret minimization in extensive games”

Simplified martingale-based presentation and improved bound in this lecture due to Gabriele Farina,
Christian Kroer, Tuomas Sandholm (ICML 2020) “Stochastic regret minimization in extensive-form games”

Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, Michael Bowling (AAAI 2019)
“Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form
Games using Baselines”

Noam Brown, Adam Lerer, Sam Gross, Tuomas Sandholm (ICML 2019) “Deep Counterfactual Regret
Minimization”

Deep CFR with variance reduction: Eric Steinberger, Adam Lerer, Noam Brown (arXiv 2020) “DREAM: Deep
regret minimization with advantage baselines and model-free learning”

Stephen McAleer, Gabriele Farina, Marc Lanctot, Tuomas Sandholm (ICLR 2023) “Eschewing Importance
Sampling in Games by Computing a History Value Function to Estimate Regret”

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov (arXiv 2017) “Proximal Policy
Optimization Algorithms”

Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Perolat, Karl Tuyls, Remi Munos, Michael Bowling
(NeurIPS 2018) “Actor-Critic Policy Optimization in Partially Observable Multiagent Environments”

	Slide 1: Sampling and deep learning in CFR: MCCFR and Deep CFR
	Slide 2: Recall: Self-play in regret matching/CFR
	Slide 3: Recall: Self-play in regret matching/CFR
	Slide 4: Regret minimization with estimated utility vectors
	Slide 5: How do we estimate utility vectors?
	Slide 6: How do we estimate utility vectors?
	Slide 7: How do we estimate utility vectors?
	Slide 8: How do we estimate utility vectors?
	Slide 9: Importance sampling
	Slide 10: Variance reduction using baselines
	Slide 11: CFR vs MCCFR
	Slide 12: Experiments: CFR vs MCCFR
	Slide 13: Experiments: MCCFR vs MCCFR+, with and without Baselines for VR
	Slide 14: Deep Learning for Games (as an alternative to abstraction)
	Slide 15: Deep (MC)CFR
	Slide 16
	Slide 17: ESCHER: Can we get rid of importance sampling?
	Slide 18: CFR vs MCCFR vs ESCHER
	Slide 19: Experiments: Head-to-head against other algorithms
	Slide 20: Experiments: ablations
	Slide 21: Experiments: variance in counterfactual utility estimates
	Slide 22: Experiments against ablations
	Slide 23: Bonus slides on single-agent RL
	Slide 24: Single-agent reinforcement learning
	Slide 25: Q-values, state values, and advantages
	Slide 26: Policy gradient theorem
	Slide 27: Advantage actor-critic (A2C) (very roughly)
	Slide 28: Proximal policy optimization (PPO) (very roughly)
	Slide 29: PPO is great*
	Slide 30: Do these algorithms work for games?
	Slide 31: References

