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Sampling and deep learning in CFR: 
MCCFR and Deep CFR



Recall: Self-play in 
regret matching/CFR

for 𝑡 = 1, … , 𝑇:

• for all 𝐽: 𝜋𝑡 ⋅ 𝐽 ← next behavior strategy from regret minimizer at 𝐽

• for all 𝐽:  𝑢𝑡(⋅ |𝐽) ← counterfactual values at 𝐽

• for all 𝐽: regret minimizer at 𝐽 observes 𝑢𝑡(⋅ |𝐽)
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Can we do better?
Idea: Estimate the utilities

O(# sequences)

O(# sequences)

O(# terminal nodes)



Recall: Self-play in 
regret matching/CFR

for 𝑡 = 1, … , 𝑇:

• for all 𝐽: 𝜋𝑡 ⋅ 𝐽 ← next behavior strategy from regret minimizer at 𝐽

• for all 𝐽:  ෤𝑢𝑡(⋅ |𝐽) ← fast randomized estimate of counterfactual values at 𝐽

• for all 𝐽: regret minimizer at 𝐽 observes ෤𝑢𝑡(⋅ |𝐽)
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Can we do better?
Idea: Estimate the utilities

O(# sequences)

O(# sequences)

faster than O(# terminal nodes)?



martingale!

bounded by 𝒪 𝑀 𝑛𝑇 log
𝑛

𝛿
  w.p. 1 − 𝛿 

if 𝔼[෥𝒖𝑡] = 𝒖𝑡 

Regret minimization
with estimated utility vectors
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regret against estimated utilities

bounded by 𝒪 𝑀 𝑛𝑇

(with RM, where 𝑀 = max
𝑡

𝒖𝑡
∞)

estimation error

How do we get an 
unbiased estimate of 𝒖𝑡? 

𝑅 𝑇 = max
ෝ𝒙∈Δ𝑛

෍

𝑡≤𝑇

𝒖𝑡, ෝ𝒙 − 𝒙𝑡

= max
ෝ𝒙∈Δ𝑛

෍

𝑡≤𝑇

𝒖𝑡 + ෥𝒖𝑡 − ෥𝒖𝑡 , ෝ𝒙 − 𝒙𝑡

= max
ෝ𝒙∈Δ𝑛

෍

𝑡≤𝑇

෥𝒖𝑡, ෝ𝒙 − 𝒙𝑡  +  ෍

𝑡≤𝑇

𝒖𝑡 − ෥𝒖𝑡 , ෝ𝒙 − 𝒙𝑡

𝑅𝑋 𝑇 ≤ ෍

𝐽

𝑅𝐽 𝑇
+

≤ ෨𝒪 |Σ|𝑀 𝑇

where ෨𝒪 hides a poly log(|Σ|, 1/𝛿) term

CFR:



How do we estimate utility vectors?
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Idea 1: Sample opponent and chance actions
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How do we estimate utility vectors?
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Idea 1: Sample opponent and chance actions

Claim: 𝔼[ ෤𝑢𝑡 𝑎 𝐼 ] = 𝑢𝑡 𝑎 𝐼
⇒  Regret minimization still works!

Time complexity: 𝒪 Σ  per iteration worst-case

Often better! (only need to update infosets 
if the opponent/chance plays to reach them 

in the sampled strategy)

Can we do even better?

“External sampling Monte Carlo CFR”

1 2
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෤𝑢1
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How do we estimate utility vectors?
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1 2

1

sampling strategy ෤𝜋1
𝑡

can depend on 𝜋1
𝑡, but 

must be fully mixed 

Idea 2: Sample our actions too?

0     1
.6       .4 

1           2

1                     1.6

.5   .5 

𝜋1
𝑡

෤𝜋1
𝑡

.4  .6

෤𝑢1
𝑡



How do we estimate utility vectors?
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1

Idea 2: Sample our actions too?

0     1

5           0

0                     2

Importance 
sampling!

Time complexity: 𝒪 𝑑|𝐴|  per iteration 
(𝑑 = depth, |𝐴| = action set)

(update all infosets along sampled trajectory)

Problem: Extremely high variance due to 

importance sampling: 𝑀 = max
𝑧

1

෥𝜋1
𝑡 (𝑧)

“Outcome sampling Monte Carlo CFR”
.6       .4 

sampling strategy ෤𝜋1
𝑡

can depend on 𝜋1
𝑡, but 

must be fully mixed 

𝜋1
𝑡

෤𝜋1
𝑡

෤𝑢1
𝑡

Claim: 𝔼[ ෤𝑢𝑡 𝑎 𝐼 ] = 𝑢𝑡 𝑎 𝐼
⇒  Regret minimization still works!

.4  .6
.5   .5 

(Now same as Q-values!)

Note that this isn’t 2.5 
because we update up 
the tree based on action 
probabilities 𝜋1

𝑡 rather 
than sampling 
probabilities ෤𝜋1

𝑡  



Importance sampling
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Utility vector for P1, estimated with outcome sampling:

• Sample terminal node 𝑧 ∼ ෤𝜋𝑡,1 ≔ ෤𝜋1
𝑡 , 𝜋2

𝑡

• Set counterfactual utilities for all 𝐽 ≼ 𝑧, 𝑎 ∈ 𝐴

= 𝑢1
𝑡 𝑎|𝐽 ✓

…but really high variance…
1

0     1

5           0

0                     2

Importance 
sampling!

.6       .4 

sampling strategy ෤𝜋1
𝑡

can depend on 𝜋1
𝑡, but 

must be fully mixed 

𝜋1
𝑡

෤𝜋1
𝑡

.5   .5 
.4  .6

𝔼 ෤𝑢1
𝑡 𝑎|𝐽 = ෍

𝑧:𝜎1 𝑧 =𝐽𝑎

𝑢1(𝑧)

෤𝜋1
𝑡(𝑧)

⋅ ෤𝜋𝑡,1 𝑧 + ෍

𝐽′∈𝑁(𝐽𝑎)

𝑎′∈𝐽′

𝜋1 𝑎′ 𝐽′  𝔼 ෤𝑢1
𝑡(𝑎′|𝐽′)

෤𝑢1
𝑡 𝑎|𝐽 =

𝑢1(𝑧)

෤𝜋1
𝑡(𝑧)

if 𝜎1 𝑧 = 𝐽𝑎

෍

𝐽′∈𝑁(𝐽𝑎)

𝑎′∈𝐴

𝜋1 𝑎′ 𝐽′ ෤𝑢1
𝑡(𝑎′|𝐽′) if 𝜎1 𝑧 ≻ 𝐽𝑎

0 if 𝜎1 𝑧 ⋡ 𝐽𝑎

𝜋−1
𝑡 (𝑧)

෤𝑢1
𝑡



Variance reduction using baselines
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Utility vector for P1, estimated with outcome sampling:

• Sample terminal node 𝑧 ∼ ෤𝜋𝑡,1 ≔ ෤𝜋1
𝑡 , 𝜋2

𝑡

• Set counterfactual utilities for all 𝐽 ≼ 𝑧, 𝑎 ∈ 𝐴

1

0     1

3           6

1                    1.8

Importance 
sampling!

.6       .4 

sampling strategy ෤𝜋1
𝑡

can depend on 𝜋1
𝑡, but 

must be fully mixed 

𝜋1
𝑡

෤𝜋1
𝑡

.5   .5 
.4  .6 ✓𝔼 ෤𝑢1

𝑡 𝑎|𝐽 = 𝔼 ො𝑢1
𝑡 𝑎 𝐽 = 𝑢1

𝑡 𝑎|𝐽

෤𝑢1
𝑡 𝑎|𝐽 = 𝑏1

𝑡 𝑎 𝐽 + 𝟏 𝜎1(𝑧) ≽ 𝐽𝑎 ⋅ ො𝑢1
𝑡 𝑎 𝐽 −

𝑏1
𝑡 𝑎 𝐽

෤𝜋1
𝑡 𝑎 𝐽

ො𝑢1
𝑡 𝑎 𝐽 =

𝑢1(𝑧)

෤𝜋1
𝑡(𝑧)

if 𝜎1 𝑧 = 𝐽𝑎

෍

𝐽′∈𝑁(𝐽𝑎)

𝑎′∈𝐴

𝜋1 𝑎′ 𝐽′ ෤𝑢1
𝑡(𝑎′|𝐽′) if 𝜎1 𝑧 ≻ 𝐽𝑎

0 if 𝜎1 𝑧 ⋡ 𝐽𝑎

2         6

1                    2
𝑏1

𝑡

෤𝑢1
𝑡

“Optimal” baseline (if you had an oracle) would be: 

𝑏1
𝑡 𝑎 𝐽 =

𝑢1
𝑡 𝑎|𝐽

෤𝜋1
𝑡(𝐽)



CFR vs MCCFR
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Per-iteration complexity Regret bound

CFR 𝒪 #histories
𝒪 Σ 𝑇  

(often faster in practice, 
esp. with PCFR+)

External-sampling 
MCCFR

𝒪 Σ     
(often even faster)

෨𝒪 |Σ| 𝑇

Outcome-sampling 
MCCFR

𝒪 𝑑|𝐴|
෨𝒪 Σ 2 𝑇

(using balanced sampling strategy)

∃ ෤𝜋𝑖 with ෤𝜋𝑖 𝜎 ≥
1

Σ
 ∀𝜎, thus 𝑀 = |Σ|

Recall: general stochastic regret minimization regret bound w/ unbiased utility estimates:

𝑅𝑋 𝑇 ≤ |Σ|𝑀 𝑇 log
1

𝛿



Experiments: CFR vs MCCFR

12Lanctot, Waugh, Zinkevich, Bowling (NeurIPS 2009)

MCCFR reaches reasonable exploitability before CFR even finishes one iteration!



Experiments: MCCFR vs MCCFR+, 
with and without Baselines for VR
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MCCFR+ doesn’t beat MCCFR…

unless variance reduction is used!

Practical advice: 

• Use PCFR+ (try both 𝛾 = 2 and 
last-iterate) if doing full game 
tree traversals is feasible—it 
will probably win. 

• If that isn’t feasible, use 
external sampling.

• If that isn’t feasible, use 
outcome sampling with 
baselines for VR.

Schmid, Burch, Lanctot, Moravcik, Kadlec, Bowling (AAAI 2019)



Deep Learning for Games 
(as an alternative to abstraction)
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Deep (MC)CFR
Maintain: Training set 𝑆, regret networks ǁ𝑟𝑖

𝑡: Σ → ℝ

On each iteration 𝑡 = 1, … , 𝑇, for each player 𝑖:

1. Iterate through the game tree using MCCFR and    
(behavioral) strategy profile 𝜋𝑡 ∝ ǁ𝑟𝑡 + (and some 

sampling profile ෤𝜋𝑖
𝑡 if using outcome sampling) to 

compute sampled counterfactual values ෤𝑢𝑖
𝑡(𝑎|𝐽)

2. Compute immediate counterfactual regrets 

          for each sampled infoset using ෤𝑢𝑖
𝑡 and 𝜋𝑡, ෤𝜋𝑖

𝑡 

3. For each sequence (𝐽, 𝑎) encountered in Step 1,   

add (𝐽, 𝑎), ෤𝑔𝑖
𝑡 (𝑎|𝐽)  to training set 𝑆

4. Train network ǁ𝑟𝑖
𝑡+1 ∶ Σ → ℝ on 𝑆:

15

regret matching! 
(as usual, if no regrets are 
positive then play arbitrarily)

When 𝑆 grows too big, 
use reservoir sampling

ǁ𝑟𝑖
𝑡 𝑎|𝐽 ≈

1

𝑁𝑡,𝐽,𝑎
⋅ ෍

𝜏≤𝑡

෤𝑔𝑖
𝜏(𝑎|𝐽)

regret
doesn’t matter: 

RM is scale-invariant!

If networks ǁ𝑟𝑡 are perfect 
then this is just MCCFR

If networks are imperfect… 
we may get to take 
advantage of generalization!  

Brown, Lerer, Gross, Sandholm (ICML 2019)

෤𝑔𝑖
𝑡 𝑎 𝐽 ≔ ෤𝑢𝑖

𝑡 𝑎 𝐽 − ෍

𝑎′

𝜋𝑖
𝑡 𝑎′ 𝐽 ⋅ ෤𝑢𝑖

𝑡 𝑎′ 𝐽

DREAM 
[Steinberger, Lerer, 
Brown arXiv 2020] 

= 
outcome-sampling deep 

MCCFR with baselines for 
variance reduction



16Brown, Lerer, Gross, Sandholm (ICML 2019)



ESCHER: Can we get rid of 
importance sampling?

Motivation: Deep networks have a hard time with outputs of different 
magnitudes (e.g., with importance sampling) 

Idea: For each player 𝑖, at each timestep 𝑡:

1. Train network 𝑄 ∶ Σ → ℝ directly to estimate the conditional (not 

counterfactual) values 𝑄 𝑎|𝐽 ≔
𝑢𝑡 𝑎 𝐽
𝜋−𝑖 

𝑡 (𝐽)

2. Use fixed (i.e., time-independent) sampling strategy ෤𝜋𝑖
∗ for each player 𝑖

3. Sample trajectory 𝑧 ∼ ෤𝜋𝑖
∗, 𝜋−𝑖 

𝑡

4. Update regret minimizer at each player 𝑖 infoset 𝐽 ≼ 𝑧 using Q-values 

෤𝑢𝑖
𝑡 ⋅ 𝐽 = 𝑄(⋅ |𝐽) 

𝔼 ෤𝑢𝑖
𝑡 𝑎 𝐽 = ෤𝜋𝑖

∗ 𝐽 ⋅ 𝜋−𝑖 
𝑡 𝐽 ⋅ 𝑄 𝑎|𝐽 = ෤𝜋𝑖

∗ 𝐽 ⋅ 𝑢𝑡(𝑎|𝐽)

17

doesn’t matter—RM is scale-invariant!

plug this idea into deep CFR ⇒ ESCHER

McAleer, Farina, Lanctot, Sandholm (ICLR 2023)



CFR vs MCCFR vs ESCHER
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Per-iteration 
complexity

Regret bound
Importance 
sampling?

CFR 𝒪 #histories
𝒪 Σ 𝑇  

(often faster in practice, 
esp. with PCFR+)

No 
(deterministic 

algorithm)

External-sampling 
MCCFR

𝒪 Σ     
(often even faster)

෨𝒪 |Σ| 𝑇 No

Outcome-sampling 
MCCFR

𝒪 𝑑|𝐴|
෨𝒪 Σ 2 𝑇

using balanced sampling strategy

Yes

ESCHER (Tabular, 
oracle Q-values)

No



Experiments: Head-to-head 
against other algorithms

19McAleer, Farina, Lanctot, Sandholm (ICLR 2023)



Experiments: ablations
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divides through by ෤𝜋𝑖
∗ 𝐽  to make 

𝔼 ෤𝑢𝑖
𝑡 𝑎 𝐽 = 𝑢𝑡(𝑎|𝐽) 

(needlessly adds variance, so we 
should expect this to be worse)

uses ෤𝑢𝑖
𝑡 ⋅ 𝐽  from Deep VR-MCCFR 

(DREAM), but multiplied by ෤𝜋𝑖
∗ 𝐽   

McAleer, Farina, Lanctot, Sandholm (ICLR 2023)



Experiments: variance in 
counterfactual utility estimates

21McAleer, Farina, Lanctot, Sandholm (ICLR 2023)



Experiments against ablations
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Bonus slides on single-agent RL 
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Single-agent reinforcement learning

Single-agent learning:

• Set of states 𝑆 (information sets) with fixed “start state” 𝑠1 ∈ 𝑆 (root infoset)

• Set of actions 𝐴

• We’ll assume finite horizon:  𝑆 = 𝑆1 ⊔ 𝑆2 ⊔ ⋯ 𝑆𝐻, where 
𝐻 = time horizon (depth of game tree), and 𝑆1 = {𝑠1}

• Fixed environment (opponent/nature) given by transition functions
𝑃 ∶ 𝑆ℎ × 𝐴 → Δ 𝑆ℎ+1  for each ℎ < 𝐻. Playing action 𝑎 in state 𝑠 results in 
random next state 𝑠′ w.p. 𝑃(𝑠′|𝑠, 𝑎).

• Trajectory (history): 𝜏 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑎𝐻−1, 𝑠𝐻) 

• Policy (strategy): 𝜋 ∶ 𝑆 → Δ 𝐴

• Reward (utility): 𝑅 ∶ 𝑆𝐻 → ℝ 
(assume for simplicity that reward is only received at the end)

24



Q-values, state values, and advantages

Define recursively:

25

𝑄𝜋 𝑠, 𝑎 = 𝔼
𝑠′∼𝑃(⋅|𝑠,𝑎)

𝑉𝜋 𝑠′

𝑉𝜋 𝑠 = ൝
𝑅(𝑠) if 𝑠 ∈ 𝑆𝐻

𝔼
𝑎∼𝜋(⋅|𝑠)

𝑄𝜋(𝑠, 𝑎) otherwise

𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠

“state-action value”

“state value”

“advantage”

In extensive form, when 
multiplied by environment reach 
probability of infoset 𝑠, these are:

counterfactual value 𝑢(𝑎|𝑠)

counterfactual value 𝑢(𝑠)

immediate regret 𝑔(𝑎|𝑠)

Goal: find 𝜋 maximizing expected reward 

𝑉𝜋 𝑠1 = 𝔼
𝜏∼𝜋

𝑅 𝑠𝐻 , 𝑎𝐻 .

𝑆, 𝐴 small enough to iterate over 
⇒ easy! (backwards induction)

𝑆, 𝐴 large ⇒ ???



Policy gradient theorem
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using ∇ log 𝑓 𝑥 =
∇𝑓 𝑥

𝑓 𝑥

∇𝑉𝜋 𝑠1 = ෍

𝜏

𝑅 𝑠𝐻 ∇𝑃(𝜏|𝜋)

= ෍

𝜏

𝑅 𝑠𝐻  𝑃 𝜏 𝜋 ∇ log 𝑃(𝜏|𝜋) 

= 𝔼
𝜏∼𝜋

𝑅 𝑠𝐻 ∇ log 𝑃(𝜏|𝜋)

= 𝔼
𝜏∼𝜋

෍

ℎ=1

𝐻−1

𝑅 𝑠𝐻 ∇ log 𝜋 𝑎ℎ 𝑠ℎ

= 𝔼
𝜏∼𝜋

෍

ℎ=1

𝐻−1

𝐴 𝑠ℎ, 𝑎ℎ ∇ log 𝜋 𝑎ℎ 𝑠ℎ (won’t show—same idea as “baselines”)



initialize policy 𝜋1 to be uniform random 

for 𝑡 = 1, … , 𝑇:

• train value function estimate ෨𝑉𝑡 ≈ 𝑉𝜋 using MSE:

෨𝑉𝑡 ≔ arg min
෡𝑉

𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1

෠𝑉 𝑠ℎ − ෠𝑉 𝑠ℎ+1
2

• train policy 𝜋𝑡+1 by taking gradient steps according to the policy gradient theorem:

       where
ሚ𝐴𝑡 𝑠, 𝑎 ≔ 𝔼

𝑠′∼𝑃(⋅|𝑠,𝑎)
෨𝑉𝑡 𝑠′ − ෨𝑉𝑡(𝑠)

       is an advantage function estimate

Advantage actor-critic (A2C) 
(very roughly)

27

∇𝑉𝜋 𝑠1 = 𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1

መ𝐴 𝑠ℎ, 𝑎ℎ ∇ log 𝜋 𝑎ℎ 𝑠ℎ

Problem: Variance in gradients can be very large, 
so 𝜋 can change very fast ⇒ training can be unstable

of course, ෠𝑉 𝑠𝐻 ≔ 𝑅(𝑠𝐻)



Proximal policy optimization (PPO) 
(very roughly)

initialize policy 𝜋1 to be uniform random 

for 𝑡 = 1, … , 𝑇:

• train value function estimate ෨𝑉𝑡 ≈ 𝑉𝜋 using MSE:

෨𝑉𝑡 ≔ arg min
෡𝑉

𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1

෠𝑉 𝑠ℎ − ෠𝑉 𝑠ℎ+1
2

• train policy 𝜋𝑡+1 according to:

       where
ሚ𝐴𝑡 𝑠, 𝑎 ≔ 𝔼

𝑠′∼𝑃(⋅|𝑠,𝑎)
෨𝑉𝑡 𝑠′ − ෨𝑉𝑡(𝑠)

       is an advantage function estimate

28

𝜋𝑡+1 ≔ arg max
ෝ𝜋

𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1 min
ො𝜋 𝑎ℎ 𝑠ℎ

𝜋𝑡 𝑎ℎ 𝑠ℎ
, 1 + 𝜖 መ𝐴𝑡(𝑠ℎ, 𝑎ℎ) if መ𝐴𝑡 𝑠ℎ, 𝑎ℎ > 0

max
ො𝜋 𝑎ℎ 𝑠ℎ

𝜋𝑡 𝑎ℎ 𝑠ℎ
, 1 − 𝜖 መ𝐴𝑡(𝑠ℎ, 𝑎ℎ) if መ𝐴𝑡 𝑠ℎ, 𝑎ℎ < 0

of course, ෠𝑉 𝑠𝐻 ≔ 𝑅(𝑠𝐻)

Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)



PPO is great*
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Best large-scale single-agent RL algorithm right now!

*Very very sensitive to hyperparameters… hard to use in practice…

Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)



Do these algorithms work for games?
Certainly not in theory. In practice… kind of, at small scale? 

(but probably at this scale you should just use PCFR+ instead…)

30Srinivasan, Lanctot, Zambaldi, Perolat, Tuyls, Munos, Bowling (NeurIPS 2018)
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