Deep learning in games:
Algorithms based on single-agent RL

Baker, Kanitscheider, Markov, Wu, Powell, McGrew, Mordatch (ICLR 2020)

What if we just run single-agent RL,
independently? (“self-play”)

* Not guaranteed to converge to equilibrium, even in averages

* |n practice: sometimes works, especially with very large
amounts of compute

(_eiR_unning and Chasing - (E) Fort Buildinf; (c) Ramp Use
. . — . .
Jf _})ﬁ - after *400M episodes: trained
e s 7A - -
ALY ’ - / b\ agents started exploiting a bug
' 7 —_

in the game’s code!

total training:

~ 600M episodes

~ 32 billion frames

~ 16 years of experience
(assuming 60 fps)

Today: More game-theoretically-
motivated methods that use
single-agent RL

(d) Ramp Defense (e) Box Surfing (f) Surf Defense

Recap: Fictitious Play

1
t+1 __ T
;' =argmax - E u; (o, x2;

Xi
=1

Best respond to the opponent’s average strategy so far

Converges to Nash in 2p0s games, but convergence rate is...
» ..slow with adversarial tiebreaking [Daskalakis & Pan 2014] ®
e ..anopen problem with “reasonable” tiebreaking rules

Only requires a best-response oracle!

= We can use single-agent RL methods to run an approximate version of FP @
= “Neural fictitious self-play” (NFSP)

Double Oracle

Double Oracle

Nash gap: 3
PLEV:-1

Double Oracle

P1EV: 2

Double Oracle

BR

Nash gap: 4
PLEV: 2

Double Oracle

Double Oracle

BR
Nash gap: 2

PLEV:0

.|
.Rz
—

BR

Double Oracle

PLEV:0

11

Double Oracle

Nash gap: 0 (done!) Normal form: DO always finds an
P1EV:0 exact equilibrium in linearly
many steps (obvious)

Extensive form:

« DO always converges in < 2V
(N = number of nodes) steps
(obvious—this bounds the
number of total strategies)

* There exist 2p0s EFGs where,
with adversarial tiebreaking
(in both “meta-equilibrium”
and best responses), DO takes
29(N) steps to converge
[Zhang & Sandholm 1JCAI’'24].

Not explored, but that’s OK!

Like FP, DO only needs a best-response oracle!

Policy Space Response Oracles (PSRO)

Generalizes FP and DO.
n-player game; X; = player i’s pure strategy set

Meta-solver: takes finite subsets)?f C X; for each player i; outputs a meta-strategy
¢ for the game restricted to the X/'s

FP: uniform over X}
DO: Nash equilibrium of restricted game

Algorithm: Keep restricted strategy sets)?f,)?Zt, initialized arbitrarily
fort=1,..,T:
m! « meta-strategy for game restricted to (X{, X})
: t t ot+1 . ot t
for each player i: get best response x; € X; tom_;, andset X;” "~ « X; U {xi}

output w7 \

Today: approximate best responses with RL

The Rest of This Lecture:
Fancy Versions of PSRO

 OpenAl Five and AlphaStar—large-scale
practical achievements in zero-sum games

e More modern variants of PSRO

The Rest of This Lecture:
Fancy Versions of PSRO

 OpenAl Five and AlphaStar—Ilarge-scale
practical achievements in zero-sum games

e More modern variants of PSRO

Berner et al. (arXiv 2019) 15

OpenAl Five Plays Dota 2

/ = Players act as a team, see the same
things, and can communicate
= it’s really a two-player zero-sum game!

Popular “5v5” zero-sum real-time
strategy (RTS) game

Continuous-time, continuous-action

Timeline:

2017: OpenAl introduces initial Dota 2
Al; beat a professional player in 1v1

2018: OpenAl Five plays full Dota 2
(5v5) against top human teams; loses

April 2019: OpenAl Five plays and
defeats the world champion team OG
by 2-0 in a best-of-three match

June 2019: OpenAl Five released on
public server... and found to be
exploitable!

Berner et al. (arXiv 2019)

Dota 2 Training

Agent trains against a mixture: 80% current strategy, 20% against past strategies

Past strategy k weighted by p;, « ek, where q; depends on how well the current

strategy is doing against past strategy i:
1

every time i loses a game to the current agent, where t is the current timestep.

= “PSRO-like” training process

_a\ Version=1001 Distribution Version=7001 Distribution
£ 0.10 A g 0.10 -

S =

£ 0.08 - Z 0.08 -

c k)

2 0.06 1 o 0.06 A

“ =

2 0.04 - = 0.04 -

e @

0 0.02 0.02 -

g M
2 0.00 T 0.00 4

o —2000 —1000 0 —2000 —1000 0

Relative Opponent Version Relative Opponent Version

Version=14001 Distribution

0.10 A
0.08 -
0.06 -
0.04 -

0.02 A

0.00 m

—-2000 —-1000 0
Relative Opponent Version

16

Berner et al. (arXiv 2019) 17

OG (world champions) —3 —

250 A
—@
Benchmark (casters)
Test team A (semi-pro)
200 - Test team B (amateur)
150 A

TrueSkill

100 4 W—— Hand-scripted

50 A+
- QOpenAl Five
® Pro matches won
0 4 m——— Random B Calibration matches
0 100 200 300 400 500 600 700 800

Compute (PFLOPs/s-days)

PFLOP

total training: 800 - days = 7 x 107 PFLOP = 70 ZFLOP

57600 parallel games at % speed X 180 days = 14000 years of experience

Meanwhile...

Vinyals et al. (Nature 2019

DeepMind’s AlphaStar Plays StarCraft Il

* Popular two-player zero-sum real-
time strategy (RTS) game

* Continuous-time, continuous-action
Timeline:

e 2016: Partnership between
DeepMind and Blizzard announced

e 2017: Introduction of the StarCraft
Il Learning Environment (SC2LE)

e Early-Mid 2019: AlphaStar
competes anonymously on public
servers, achieving grandmaster-
level performance

* Late 2019: AlphaStar paper
published in Nature

19

Vinyals et al. (Nature 2019

League Training (roughly)

Maintain a league of past agents (think: partial strategy set)?it)
League contains three types of agents: main, main exploiter, league exploiter

Prioritized fictitious self-play (PFSP): weight league player y by some function f(w(y))
depending on w(y), the winrate against y

Main agents: Trained by PFSP against the league
Main exploiters: Trained against current main agents
League exploiters: Trained by PFSP against the league (but not targeted by main exploiters)

Progression of Nash
0 of AlphaStar League

I 1 I 1 I 1 1
%] 100 200 300 400 500 600
Agent ID

20

Vinyals et al. (Nature 2019

Training Elo

Validation strategies beaten (%)

100

80+

60

40

20+

0

AlphaStar

Supervised Mid Final

AlphaStar AlphaStar

Main agents

4League exploiters

—————————————————————— b = = = = = = = = = =~ = = = =~ =~ {Supervised agent
T T T T Elite built-in bot
0 40
\Terran 4
’ ;rotoss 804 ’_.-"4
“uZer
g 204 -
o 60 A
S 50+ ‘,gl'
& 40- A
c =
‘© 301 f .
= r
2O I
AlphaStar AlphaStar AlphaStar 10+ g
Supervised Mid Final 0 . r . |
0 1'0 2'0 3'0 4'0 0 10 20 30 40
Training days Training days

total training time:
44 days X 16000 parallel games
~1900 years of experience

21

The Rest of This Lecture:
Fancy Versions of PSRO

 OpenAl Five and AlphaStar—large-scale
practical achievements in zero-sum games

 More modern variants of double oracle/PSRO

Pros and Cons of Double Oracle/PSRO

Pros:

* Practically sometimes faster than FP or CFR, esp. with deep RL
* Easy to use: deep RL is “black-boxed” away

 Demonstrated excellent performance in e.g. Starcraft/Dota Il
Cons:

* Requires re-computing best responses on every iteration =
expensive

* Exponential-time worst-case performance
* Non-monotone exploitability

» Strategies added “greedily” (to optimize best-response value,
not to decrease exploitability of the meta-Nash)

Parallelizing PSRO

Naive: with n parallel workers, train n
(approximate) best responses on each iteration

Can we do better?

Pipeline PSRO (P2SRO)

nf = player i’s BR at time t
't := subgame where each player i is restricted to {nio, ...,nf}
on iteration t:
strategies 7y, ..., ; are fixed
repeat until nit“ plateaus:
forsef{t+1,t+2,..,t+k}:
Compute meta-NE ¢° € A([s]) for subgame I'®

Train w7t (for some number of steps) to best respond to ¢,

Policy Level
For k = 1 this is just regular double oracle o 1 2 3 4 5 6 7 8
«“ ” S 0 2 3 Leaend
P2SRO to “pre-start” r; long before L . o = [] Fixed Policy
. . oy o Lowest Active
(k iterations before) it is needed . | 0] [. 2| [Policy
I:‘ Active Policy
S| 3 ||t |
©
Q
= 4 0 it T2
5 ||t | m? 14
6 T[0 T[l T[Z 1-[7 T[8

25

Exploitability

3x10°

2x10°

10° 1

6x107?

4x107?

26

Pipeline PSRO Experiments

Leduc Poker

P2SRO (Ours)
Rectified PSRO
Naive PSRO
DCH

Ll T Ll | L Ll

1 2 3 4 5 6 7
Steps (Million)

*1 111

(a) Leduc poker

Exploitability

10° 1

10-1 .

Dimension: 60, Learning Rate: 0.1, Workers: 4

DCH

Fictitious Play
Naive PSRO
P2SRO (Ours)
Rectified PSRO
Self Play
Sequential PSRO

—

RRES SN

0 50 100 150 200 250 300 350 400
Iteration

(b) Random Symmetric Normal Form Games

Pipeline PSRO Experiments:
Barrage Stratego

F
9 2 10
2 3 B S
Best Response Payoffs Against Preceding Meta-Nashes S 2 3
os 2 10
9
06
B F
5
g Name P2SRO Win Rate vs. Bot
0.2 Asmodeus 81%
Celsius 70%
a0 Vixen 69%
— — — Celsiusl.1 65%
1 2 3 4 5 6 7 8 9
Best Response Generation All Bﬂ'ts Averﬂge 71%

Figure 3: Barrage Best Response Payoffs Over Table 1: Barrage P2SRO Results vs. Existing Bots
Time

Anytime PSRO

Nash gap: 3

Anytime PSRO

29

Anytime PSRO

Nash gap: 3

Anytime PSRO

Nash gap: 3

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

Wfﬂ = arg max U(Wiggt—z‘) +A min dist(m,’ﬁf)
U mr €H(IT)

Nash gap: 3

32

Anytime PSRO

Novel BR

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

m T = argmax S u(mi, 0L,) + A min dist(m, 7})
U mr €H(IT)

Anytime PSRO

Nash gap: 3

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

Wfﬂ = arg max U(Wi,Ut—z‘) +A min dist(m,’ﬁf)
T mFEH(ITE)

Anytime PSRO

Nash gap: 3

Idea: Solve the one-sided restricted
game to compute meta-strategies
[R,
R .,
2 Something’s wrong...

R3

R, Requirement: Always find a
novel best response if possible

Rin

Diversity is good! e.g.:

Wfﬂ = arg max U(Wiggt—z‘) +A min dist(m,’ﬁf)
U mr €H(IT)

35

Anytime PSRO

Nash gap: 1

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...
BR =——>

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

m T = argmax S u(mi, 0L,) + A min dist(m, 7})
U mr €H(IT)

Anytime PSRO

Nash gap: 1

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

Wfﬂ = arg max U(Wi,Ut—z‘) +A min dist(m,’ﬁf)
T mFEH(ITE)

Anytime PSRO

Nash gap: 1
¢, ¢ lc e, C. Idea: Solve the one-sided restric.ted
game to compute meta-strategies
Ry |11 |-1]1 1
R 2 |-2|-11|1 1 .,
2 Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

Wfﬂ = arg max U(Wiggt—z‘) +A min dist(m,’ﬁf)
U mr €H(IT)

38

Anytime PSRO

Nash gap: O

Exploitability is
monotonically
nonincreasing ©

Every iteration requires us
to solve a full game ®

...in which P1 has not too
many strategies. Can we
solve it efficiently?

39

How do we solve games where one
side has a small number of strategies?

Recall (HW1): If P1 runs a regret minimizer and P2 best-responds
on every step, then

Nash gap < P1'sregret /T

= extremely efficient equilibrium computation when P1’s
strategy set is small!

Anytime PSRO = one-sided PSRO
+ this idea (“regret minimization with best responses”/“RM-BR”)
+ RL best-response oracle for P2

Exploitability

Exploitability

40

Anytime PSRO Experiments

Random Normal Form Games

1.00
— DO
0.75 RM-BR DO
—— ADO
0.50
0.25
0.00 L_ , , , : ,
0 50 100 150 200 250 300
lteration
(a) Random Normal Form Games
Leduc Poker
3 —— PSRO
APSRO
2
1
0.0 0.2 0.4 0.6 0.8 1.0
Episodes le7
(a) Leduc with DDQN BRs

Exploitability

Leduc Poker: Oracle BRs

—— DO
RM-BR DO
0 20 40 60 80 100
[teration

(b) Leduc with Oracle Best Responses

Goofspiel

1.00

z

50.75

E

£ 0.50

w

:

2025

Q

<

0.00 4 ; ‘ v , ;

0.0 02 04 06 08 1.0 1.2

Episodes le7

(b) Goofspiel with DDQN BRs

Exploitability
[\ S]

[

Leduc Poker: Q-learning BRs

—— PSRO
APSRO

20 30

lteration

0 10

(c) Leduc with Q-Learning Best Responses

= =
o w

Aprrox. Exploitability
(9]

2D Cont. Action Hill Climbing Game
—— PSRO

APSRO

15
le7

1.0
Episodes

0.0 0.5

(c) Continuous-Action Hill-Climbing Game

strategy x!
selected by RM

41

y* = BR(x")
C;p |G | G5 | Cy ("
F
Ry
strategy x! R,
selected by RM ™
R
| vt =BR(y")

After some time, add V' to P1’s strategy set and y¢ to P2’s strategy set
“Self-play PSRO”

Intuition: self-play “stabilized” by having strategies R4, R,, R3 available to the row player
= better PSRO performance in practice?

42

Self-play PSRO experiments

Leduc
2.0 —— SP-PSRO (ours)
APSRO
2 —— PSRO

Exploitability
(=1
o

0.0 T T
0 10 20 30
Iteration
(a) Leduc Poker
4-Repeated RPS
4
23 A N
E “+—— "SPPSRO (Ours)
E,] -+ APSRO \/\’\“’\’\/
o
2% +— PsrO
x
0~ . 5 ,
0 10 20 30

Iteration

(c) Repeated RPS

Liar's Dice DDQN

Small Battleship DDQN

Tiny Battleship

—— SP-PSRO (Ours)
APSRO
= "PSRO

g
o
o

3
~
v

Exploitability
o
w
<)

o
N
%)

0.00 1, . . : . ;
0 20 40 60 80 100

lteration

(b) Battleship

Goofspiel

1.00
——— SP-PSRO (Ours)
APSRO

o
o
wn

—— PSRO

Exploitability
o
w
=)

o
N
w

bt
o
S

0 20 40 60 80 100
Iteration

(d) Goofspiel

4-Repeated RPS DDQN

Lo —— SP-PSRO (Ours) 4 —— SP-PSRO (Ours)
>.0.8 APSRO o A TAC o APSRO
= o b= py=nmg \ =3 —
z PSRO = SP-PSRO (Ours) = PSRO
0.6 = APSRO E
] s 52
204 £ Z

0.2 1

00 02 04 06 08 10 12 14 0 1 2 3 00 02 04 06 08 10
Episodes le7 Episodes leb Episodes le7
(a) DRL Liars Dice (b) DRL Battleship (c) DRL Repeated RPS

43

References

Constantinos Daskalakis, Qinxuan Pan (FOCS 2014) "A Counter-Example to Karlin's Strong Conjecture for
Fictitious Play”

Brian Hu Zhang, Tuomas Sandholm (IJCAI 2024) “Exponential Lower Bounds on the Double Oracle Algorithm in
Zero-Sum Games”

Double oracle: H Brendan McMahan, Geoffrey J Gordon, Avrim Blum (ICML 2003) “Planning in the Presence of
Cost Functions Controlled by an Adversary”

PSRO: Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David
Silver, Thore Graepel (NeurlPS 2017) “A unified game-theoretic approach to multiagent reinforcement learning”

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, Igor Mordatch (ICLR
2020) “Emergent Tool Use From Multi-Agent Autocurricula”

Oriol Vinyals et al. (Nature 2019) “Grandmaster level in StarCraft Il using multi-agent reinforcement learning”
Christopher Berner et al. (arXiv 2019) “Dota 2 with Large Scale Deep Reinforcement Learning”

Stephen McAleer, John Lanier, Roy Fox, Pierre Baldi (NeurlPS 2020) “Pipeline PSRO: A Scalable Approach for
Finding Approximate Nash Equilibria in Large Games”

Anytime and self-play PSRO: Stephen McAleer, JB Lanier, Kevin Wang, Pierre Baldi, Roy Fox, Tuomas Sandholm
(ICLR 2024) “Toward Optimal Policy Population Growth in Two-Player Zero-Sum Games”

Jian Yao, Weiming Liu, Haobo Fu, Yaodong Yang, Stephen McAleer, Qiang Fu, Wei Yang (NeurlPS 2023) “Policy
Space Diversity for Non-Transitive Games”

	Slide 1: Deep learning in games: Algorithms based on single-agent RL
	Slide 2: What if we just run single-agent RL, independently? (“self-play”)
	Slide 3: Recap: Fictitious Play
	Slide 4: Double Oracle
	Slide 5: Double Oracle
	Slide 6: Double Oracle
	Slide 7: Double Oracle
	Slide 8: Double Oracle
	Slide 9: Double Oracle
	Slide 10: Double Oracle
	Slide 11: Double Oracle
	Slide 12: Policy Space Response Oracles (PSRO)
	Slide 13: The Rest of This Lecture: Fancy Versions of PSRO
	Slide 14: The Rest of This Lecture: Fancy Versions of PSRO
	Slide 15: OpenAI Five Plays Dota 2
	Slide 16: Dota 2 Training
	Slide 17
	Slide 18: Meanwhile…
	Slide 19: DeepMind’s AlphaStar Plays StarCraft II
	Slide 20: League Training (roughly)
	Slide 21
	Slide 22: The Rest of This Lecture: Fancy Versions of PSRO
	Slide 23: Pros and Cons of Double Oracle/PSRO
	Slide 24: Parallelizing PSRO
	Slide 25: Pipeline PSRO (P2SRO)
	Slide 26: Pipeline PSRO Experiments
	Slide 27: Pipeline PSRO Experiments: Barrage Stratego
	Slide 28: Anytime PSRO
	Slide 29: Anytime PSRO
	Slide 30: Anytime PSRO
	Slide 31: Anytime PSRO
	Slide 32: Anytime PSRO
	Slide 33: Anytime PSRO
	Slide 34: Anytime PSRO
	Slide 35: Anytime PSRO
	Slide 36: Anytime PSRO
	Slide 37: Anytime PSRO
	Slide 38: Anytime PSRO
	Slide 39: How do we solve games where one side has a small number of strategies?
	Slide 40: Anytime PSRO Experiments
	Slide 41: RM-BR
	Slide 42: RM-BR?
	Slide 43: Self-play PSRO experiments
	Slide 44: References

