Deep learning in games:
Algorithms based on single-agent RL



Baker, Kanitscheider, Markov, Wu, Powell, McGrew, Mordatch (ICLR 2020)

What if we just run single-agent RL,
independently? (“self-play”)

* Not guaranteed to converge to equilibrium, even in averages

* |n practice: sometimes works, especially with very large
amounts of compute

(_eiR_unning and Chasing - (E) Fort Buildinf; (c) Ramp Use
. . — . .
Jf _})ﬁ - after *400M episodes: trained
e s 7A - -
ALY ’ - / b\ agents started exploiting a bug
' 7 —_

in the game’s code!

total training:

~ 600M episodes

~ 32 billion frames

~ 16 years of experience
(assuming 60 fps)

Today: More game-theoretically-
motivated methods that use
single-agent RL

(d) Ramp Defense (e) Box Surfing (f) Surf Defense



Recap: Fictitious Play

1
t+1 __ T
;' =argmax - E u; (o, x2;

Xi
=1

Best respond to the opponent’s average strategy so far

Converges to Nash in 2p0s games, but convergence rate is...
» ..slow with adversarial tiebreaking [Daskalakis & Pan 2014] ®
e ..anopen problem with “reasonable” tiebreaking rules

Only requires a best-response oracle!

= We can use single-agent RL methods to run an approximate version of FP @
= “Neural fictitious self-play” (NFSP)
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Double Oracle

Nash gap: 0 (done!) Normal form: DO always finds an
P1EV:0 exact equilibrium in linearly
many steps (obvious)

Extensive form:

« DO always converges in < 2V
(N = number of nodes) steps
(obvious—this bounds the
number of total strategies)

* There exist 2p0s EFGs where,
with adversarial tiebreaking
(in both “meta-equilibrium”
and best responses), DO takes
29(N) steps to converge
[Zhang & Sandholm 1JCAI’'24].

Not explored, but that’s OK!

Like FP, DO only needs a best-response oracle!



Policy Space Response Oracles (PSRO)

Generalizes FP and DO.
n-player game; X; = player i’s pure strategy set

Meta-solver: takes finite subsets )?f C X; for each player i; outputs a meta-strategy
¢ for the game restricted to the X/'s

FP: uniform over X}
DO: Nash equilibrium of restricted game

Algorithm: Keep restricted strategy sets )?f, )?Zt, initialized arbitrarily
fort=1,..,T:
m! « meta-strategy for game restricted to (X{, X})
: t t ot+1 . ot t
for each player i: get best response x; € X; tom_;, andset X;” "~ « X; U {xi}

output w7 \

Today: approximate best responses with RL



The Rest of This Lecture:
Fancy Versions of PSRO

 OpenAl Five and AlphaStar—large-scale
practical achievements in zero-sum games

e More modern variants of PSRO
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Berner et al. (arXiv 2019) 15

OpenAl Five Plays Dota 2

/ = Players act as a team, see the same
things, and can communicate
= it’s really a two-player zero-sum game!

Popular “5v5” zero-sum real-time
strategy (RTS) game

Continuous-time, continuous-action

Timeline:

2017: OpenAl introduces initial Dota 2
Al; beat a professional player in 1v1

2018: OpenAl Five plays full Dota 2
(5v5) against top human teams; loses

April 2019: OpenAl Five plays and
defeats the world champion team OG
by 2-0 in a best-of-three match

June 2019: OpenAl Five released on
public server... and found to be
exploitable!



Berner et al. (arXiv 2019)

Dota 2 Training

Agent trains against a mixture: 80% current strategy, 20% against past strategies

Past strategy k weighted by p;, « ek, where q; depends on how well the current

strategy is doing against past strategy i:
1

every time i loses a game to the current agent, where t is the current timestep.

= “PSRO-like” training process
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Berner et al. (arXiv 2019) 17

OG (world champions) —3 —

250 A
—@
Benchmark (casters)
Test team A (semi-pro)
200 - Test team B (amateur)
150 A

TrueSkill

100 4 W—— Hand-scripted

50 A+
- QOpenAl Five
® Pro matches won
0 4 m——— Random B Calibration matches
0 100 200 300 400 500 600 700 800

Compute (PFLOPs/s-days)

PFLOP

total training: 800 - days = 7 x 107 PFLOP = 70 ZFLOP

57600 parallel games at % speed X 180 days = 14000 years of experience



Meanwhile...



Vinyals et al. (Nature 2019

DeepMind’s AlphaStar Plays StarCraft Il

* Popular two-player zero-sum real-
time strategy (RTS) game

* Continuous-time, continuous-action
Timeline:

e 2016: Partnership between
DeepMind and Blizzard announced

e 2017: Introduction of the StarCraft
Il Learning Environment (SC2LE)

e Early-Mid 2019: AlphaStar
competes anonymously on public
servers, achieving grandmaster-
level performance

* Late 2019: AlphaStar paper
published in Nature
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Vinyals et al. (Nature 2019

League Training (roughly)

Maintain a league of past agents (think: partial strategy set )?it)
League contains three types of agents: main, main exploiter, league exploiter

Prioritized fictitious self-play (PFSP): weight league player y by some function f(w(y))
depending on w(y), the winrate against y

Main agents: Trained by PFSP against the league
Main exploiters: Trained against current main agents
League exploiters: Trained by PFSP against the league (but not targeted by main exploiters)

Progression of Nash
0 of AlphaStar League

I 1 I 1 I 1 1
%] 100 200 300 400 500 600
Agent ID
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Vinyals et al. (Nature 2019

Training Elo

Validation strategies beaten (%)
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total training time:
44 days X 16000 parallel games
~1900 years of experience
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The Rest of This Lecture:
Fancy Versions of PSRO

 OpenAl Five and AlphaStar—large-scale
practical achievements in zero-sum games

 More modern variants of double oracle/PSRO



Pros and Cons of Double Oracle/PSRO

Pros:

* Practically sometimes faster than FP or CFR, esp. with deep RL
* Easy to use: deep RL is “black-boxed” away

 Demonstrated excellent performance in e.g. Starcraft/Dota Il
Cons:

* Requires re-computing best responses on every iteration =
expensive

* Exponential-time worst-case performance
* Non-monotone exploitability

» Strategies added “greedily” (to optimize best-response value,
not to decrease exploitability of the meta-Nash)



Parallelizing PSRO

Naive: with n parallel workers, train n
(approximate) best responses on each iteration

Can we do better?



Pipeline PSRO (P2SRO)

nf = player i’s BR at time t
't := subgame where each player i is restricted to {nio, ...,nf}
on iteration t:
strategies 7y, ..., ; are fixed
repeat until nit“ plateaus:
forsef{t+1,t+2,..,t+k}:
Compute meta-NE ¢° € A([s]) for subgame I'®

Train w7t (for some number of steps) to best respond to ¢,

Policy Level
For k = 1 this is just regular double oracle o 1 2 3 4 5 6 7 8
«“ ” S 0 2 3 Leaend
P2SRO to “pre-start” r; long before L . o = [] Fixed Policy
. . oy o Lowest Active
(k iterations before) it is needed . | 0] [ . 2| [ Policy
I:‘ Active Policy
S| 3 ||t |
©
Q
= 4 0 it T2
5 ||t | m? 14
6 T[0 T[l T[Z 1-[7 T[8

25



Exploitability

3x10°

2x10°

10° 1

6x107?

4x107?
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Pipeline PSRO Experiments

Leduc Poker

P2SRO (Ours)
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*1 111
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—
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(b) Random Symmetric Normal Form Games



Pipeline PSRO Experiments:
Barrage Stratego

F
9 2 10
2 3 B S
Best Response Payoffs Against Preceding Meta-Nashes S 2 3
os 2 10
9
06
B F
5
g Name P2SRO Win Rate vs. Bot
0.2 Asmodeus 81%
Celsius 70%
a0 Vixen 69%
— — — Celsiusl.1 65%
1 2 3 4 5 6 7 8 9
Best Response Generation All Bﬂ'ts Averﬂge 71%

Figure 3: Barrage Best Response Payoffs Over Table 1: Barrage P2SRO Results vs. Existing Bots
Time



Anytime PSRO




Nash gap: 3

Anytime PSRO
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Anytime PSRO

Nash gap: 3

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

Wfﬂ = arg max U(Wiggt—z‘) +A min dist(m,’ﬁf)
U mr €H(IT)



Nash gap: 3
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Anytime PSRO

Novel BR

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

m T = argmax S u(mi, 0L,) + A min dist(m, 7})
U mr €H(IT)
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Anytime PSRO

Nash gap: 3

Idea: Solve the one-sided restricted
game to compute meta-strategies
[ R,
R .,
2 Something’s wrong...

R3

R, Requirement: Always find a
novel best response if possible

Rin

Diversity is good! e.g.:

Wfﬂ = arg max U(Wiggt—z‘) +A min dist(m,’ﬁf)
U mr €H(IT)
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Anytime PSRO

Nash gap: 1

Idea: Solve the one-sided restricted
game to compute meta-strategies

Something’s wrong...
BR =——>

Requirement: Always find a
novel best response if possible

Diversity is good! e.g.:

m T = argmax S u(mi, 0L,) + A min dist(m, 7})
U mr €H(IT)
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Anytime PSRO

Nash gap: 1
¢, ¢ lc e, C. Idea: Solve the one-sided restric.ted
game to compute meta-strategies
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R 2 |-2|-11|1 1 .,
2 Something’s wrong...
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Diversity is good! e.g.:
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U mr €H(IT)
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Anytime PSRO

Nash gap: O

Exploitability is
monotonically
nonincreasing ©

Every iteration requires us
to solve a full game ®

...in which P1 has not too
many strategies. Can we
solve it efficiently?



39

How do we solve games where one
side has a small number of strategies?

Recall (HW1): If P1 runs a regret minimizer and P2 best-responds
on every step, then

Nash gap < P1'sregret /T

= extremely efficient equilibrium computation when P1’s
strategy set is small!

Anytime PSRO = one-sided PSRO
+ this idea (“regret minimization with best responses”/“RM-BR”)
+ RL best-response oracle for P2



Exploitability

Exploitability
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Anytime PSRO Experiments

Random Normal Form Games
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strategy x!
selected by RM
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y* = BR(x")
C;p |G | G5 | Cy ("
F
Ry
strategy x! R,
selected by RM ™
R
| vt =BR(y")

After some time, add V' to P1’s strategy set and y¢ to P2’s strategy set
“Self-play PSRO”

Intuition: self-play “stabilized” by having strategies R4, R,, R3 available to the row player
= better PSRO performance in practice?
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Self-play PSRO experiments
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