Deep learning in games: Algorithms based on single-agent RL

Brian Zhang

What if we just run single-agent RL, independently? ("self-play")

- Not guaranteed to converge to equilibrium, even in averages
- In practice: sometimes works, especially with very large amounts of compute

(e) Box Surfing

after ≈400M episodes: trained agents started exploiting a bug in the game's code!

total training:

- ≈ 600M episodes
- ≈ 32 billion frames
- \approx 16 years of experience (assuming 60 fps)

Today: More game-theoreticallymotivated methods that use single-agent RL

(d) Ramp Defense

(f) Surf Defense

Recap: Fictitious Play

$$
x_i^{t+1} = \arg \max_{x_i} \frac{1}{t} \sum_{\tau=1}^t u_i(x_i, x_{-i}^{\tau})
$$

Best respond to the opponent's average strategy so far

Converges to Nash in 2p0s games, but convergence rate is…

- **...slow** with adversarial tiebreaking [Daskalakis & Pan 2014]
- **...an open problem** with "reasonable" tiebreaking rules

Only requires a best-response oracle!

⇒ We can use **single-agent RL methods** to run an approximate version of FP

⇒ "Neural fictitious self-play" (NFSP)

3

 $\sqrt{4}$

Not explored, but that's OK!

Normal form: DO always finds an *exact equilibrium* in linearly many steps (obvious)

Extensive form:

- DO always converges in $\leq 2^N$ $(N =$ number of nodes) steps (obvious—this bounds the number of total strategies)
- There exist 2p0s EFGs where, with *adversarial tiebreaking* (in both "meta-equilibrium" and best responses), DO takes $2^{\Omega(N)}$ steps to converge [Zhang & Sandholm IJCAI'24].

Like FP, DO only needs a best-response oracle!

Policy Space Response Oracles (PSRO)

Generalizes FP and DO.

n-player game; X_i = player *i*'s pure strategy set

Meta-solver: takes finite subsets $\tilde{X}_i^t \subseteq X_i$ for each player i; outputs a *meta-strategy* π^t for the game restricted to the \tilde{X}_l^t $\frac{t}{i}$ s

FP: uniform over \tilde{X}_i^t ţ **DO:** Nash equilibrium of restricted game

Algorithm: Keep restricted strategy sets \tilde{X}_1^t $\frac{t}{1}$, \tilde{X}_2^t $_{2}^{t}$, initialized arbitrarily for $t = 1, ..., T$:

 π^t \leftarrow meta-strategy for game restricted to $\left(\tilde{X}_1^t\right)$ $\frac{t}{1}$, \tilde{X}_2^t t

for each player i : get best response $x_i^t \in X_i$ to π_{-i}^t , and set $\tilde{X}_i^{t+1} \leftarrow \tilde{X}_i^t \cup \{x_i^t\}$ output π^T

Today: approximate best responses with RL

The Rest of This Lecture: Fancy Versions of PSRO

• OpenAI Five and AlphaStar—large-scale practical achievements in zero-sum games

• More modern variants of PSRO

The Rest of This Lecture: Fancy Versions of PSRO

• **OpenAI Five and AlphaStar—large-scale practical achievements in zero-sum games**

• More modern variants of PSRO

OpenAI Five Plays Dota 2

- Popular "5v5" zero-sum real-time strategy (RTS) game
- Continuous-time, continuous-action

Timeline:

- **2017:** OpenAI introduces initial Dota 2 AI; beat a professional player in 1v1
- **2018:** OpenAI Five plays full Dota 2 (5v5) against top human teams; *loses*
- **April 2019:** OpenAI Five plays and defeats the world champion team OG by 2-0 in a best-of-three match
- **June 2019:** OpenAI Five released on public server… and found to be exploitable!

Players act as a team, see the same things, and can communicate ⇒ it's really a two-*player* zero-sum game!

Dota 2 Training

Agent trains against a **mixture**: 80% current strategy, 20% against past strategies

Past strategy k weighted by $p_k \propto e^{q_k}$, where q_k depends on how well the current strategy is doing against past strategy i :

$$
q_k \leftarrow q_k - \frac{1}{100tp_k}
$$

every time i loses a game to the current agent, where t is the current timestep.

⇒ "PSRO-like" training process

Meanwhile...

DeepMind's AlphaStar Plays StarCraft II

- Popular two-player zero-sum realtime strategy (RTS) game
- Continuous-time, continuous-action Timeline:
- **2016:** Partnership between DeepMind and Blizzard announced
- **2017:** Introduction of the StarCraft II Learning Environment (SC2LE)
- **Early-Mid 2019:** AlphaStar competes anonymously on public servers, achieving grandmasterlevel performance
- **Late 2019:** AlphaStar paper published in Nature

League Training (roughly)

Maintain a **league** of past agents (think: partial strategy set \tilde{X}_i^t $_{i}^{t}$ League contains three types of agents: **main, main exploiter, league exploiter**

Prioritized fictitious self-play (PFSP): weight league player y by some function $f(w(y))$ depending on $w(y)$, the winrate against y

Main agents: Trained by PFSP against the league **Main exploiters:** Trained against **current** main agents **League exploiters:** Trained by PFSP against the league (but not targeted by main exploiters)

The Rest of This Lecture: Fancy Versions of PSRO

• OpenAI Five and AlphaStar—large-scale practical achievements in zero-sum games

• **More modern variants of double oracle/PSRO**

Pros and Cons of Double Oracle/PSRO

Pros:

- Practically sometimes faster than FP or CFR, esp. with deep RL
- Easy to use: deep RL is "black-boxed" away
- Demonstrated excellent performance in e.g. Starcraft/Dota II

Cons:

- Requires re-computing best responses on every iteration \Rightarrow expensive
- Exponential-time worst-case performance
- Non-monotone exploitability
- Strategies added "greedily" (to optimize best-response value, not to decrease exploitability of the meta-Nash)

Parallelizing PSRO

Naïve: with n parallel workers, train n (approximate) best responses on each iteration

Can we do better?

Pipeline PSRO (P2SRO)

 $\pi_i^t \coloneqq$ player i 's BR at time t

 $\Gamma^t \coloneqq \mathsf{subgame}$ where each player i is restricted to $\{\pi^0_i, ..., \pi^t_i\}$ on iteration t :

strategies π^0_i , ... , π^t_i are fixed repeat until π^{t+1}_i plateaus: for $s \in \{t+1, t+2, ..., t+k\}$: Compute meta-NE $\sigma^s \in \Delta([s])$ for subgame Γ^s Train π_i^{s+1} (for some number of steps) to best respond to σ_{-i}^s

For $k = 1$ this is just regular double oracle $\mathbf 0$ $\mathbf{1}$ P2SRO to "pre-start" π_i^s long before π^0 π^1 1 $(k$ iterations before) it is needed π^0 π^1 2 π^0 3 π^1

25

Pipeline PSRO Experiments

26

Pipeline PSRO Experiments: Barrage Stratego

9

 $\overline{2}$

B

 $\overline{2}$

 $\overline{2}$

3

S

 \mathbf{F}

10

 $\overline{3}$

 9

_S

10

 $2¹$

Table 1: Barrage P2SRO Results vs. Existing Bots

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong…

Requirement: Always find a *novel* best response if possible

$$
\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \text{dist}(\pi_i, \pi_i^k) \right\}
$$

Exploitability is monotonically nonincreasing \odot

Every iteration requires us to solve a full game \odot

…in which P1 has not too many strategies. Can we solve it efficiently?

How do we solve games where one side has a small number of strategies?

Recall (HW1): If P1 runs a regret minimizer and P2 best-responds on every step, then

```
Nash gap \leq P1's regret / T
```
⇒ extremely efficient equilibrium computation when P1's strategy set is small!

Anytime PSRO = one-sided PSRO + this idea ("regret minimization with best responses"/"RM-BR") + RL best-response oracle for P2

Anytime PSRO Experiments

(a) Random Normal Form Games

(a) Leduc with DDQN BRs

(b) Leduc with Oracle Best Responses

(b) Goofspiel with DDQN BRs

(c) Leduc with Q-Learning Best Responses

(c) Continuous-Action Hill-Climbing Game

After some time, add \bar{v}^t to P1's strategy set and y^t to P2's strategy set

"Self-play PSRO"

Intuition: self-play "stabilized" by having strategies R_1 , R_2 , R_3 available to the row player ⇒ better PSRO performance in practice?

Self-play PSRO experiments

References

Constantinos Daskalakis, Qinxuan Pan (FOCS 2014) "A Counter-Example to Karlin's Strong Conjecture for Fictitious Play"

Brian Hu Zhang, Tuomas Sandholm (IJCAI 2024) "Exponential Lower Bounds on the Double Oracle Algorithm in Zero-Sum Games"

Double oracle: H Brendan McMahan, Geoffrey J Gordon, Avrim Blum (ICML 2003) "Planning in the Presence of Cost Functions Controlled by an Adversary"

PSRO: Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David Silver, Thore Graepel (NeurIPS 2017) "A unified game-theoretic approach to multiagent reinforcement learning"

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, Igor Mordatch (ICLR 2020) "Emergent Tool Use From Multi-Agent Autocurricula"

Oriol Vinyals et al. (Nature 2019) "Grandmaster level in StarCraft II using multi-agent reinforcement learning"

Christopher Berner et al. (arXiv 2019) "Dota 2 with Large Scale Deep Reinforcement Learning"

Stephen McAleer, John Lanier, Roy Fox, Pierre Baldi (NeurIPS 2020) "Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games"

Anytime and self-play PSRO: Stephen McAleer, JB Lanier, Kevin Wang, Pierre Baldi, Roy Fox, Tuomas Sandholm (ICLR 2024) "Toward Optimal Policy Population Growth in Two-Player Zero-Sum Games"

Jian Yao, Weiming Liu, Haobo Fu, Yaodong Yang, Stephen McAleer, Qiang Fu, Wei Yang (NeurIPS 2023) "Policy Space Diversity for Non-Transitive Games"