
Deep Learning in 
Tree-Based Game Solving 3

Stephen McAleer



Single-agent reinforcement learning

Single-agent learning:

• Set of states 𝑆 (information sets) with fixed “start state” 𝑠1 ∈ 𝑆 (root infoset)

• Set of actions 𝐴

• We’ll assume finite horizon:  𝑆 = 𝑆1 ⊔ 𝑆2 ⊔ ⋯ 𝑆𝐻, where 
𝐻 = time horizon (depth of game tree), and 𝑆1 = {𝑠1}

• Fixed environment (opponent/nature) given by transition functions
𝑃 ∶ 𝑆ℎ × 𝐴 → Δ 𝑆ℎ+1  for each ℎ < 𝐻. Playing action 𝑎 in state 𝑠 results in 
random next state 𝑠′ w.p. 𝑃(𝑠′|𝑠, 𝑎).

• Trajectory (history): 𝜏 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑎𝐻−1, 𝑠𝐻) 

• Policy (strategy): 𝜋 ∶ 𝑆 → Δ 𝐴

• Reward (utility): 𝑅 ∶ 𝑆𝐻 → ℝ 
(assume for simplicity that reward is only received at the end)
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Q-values, state values, and advantages

Define recursively:
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𝑄𝜋 𝑠, 𝑎 = 𝔼
𝑠′∼𝑃(⋅|𝑠,𝑎)

𝑉𝜋 𝑠′

𝑉𝜋 𝑠 = ൝
𝑅(𝑠) if 𝑠 ∈ 𝑆𝐻

𝔼
𝑎∼𝜋(⋅|𝑠)

𝑄𝜋(𝑠, 𝑎) otherwise

𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠

“state-action value”

“state value”

“advantage”

In extensive form, when 
multiplied by environment reach 
probability of infoset 𝑠, these are:

counterfactual value 𝑢(𝑎|𝑠)

counterfactual value 𝑢(𝑠)

immediate regret 𝑔(𝑎|𝑠)

Goal: find 𝜋 maximizing expected reward 

𝑉𝜋 𝑠1 = 𝔼
𝜏∼𝜋

𝑅 𝑠𝐻 , 𝑎𝐻 .

𝑆, 𝐴 small enough to iterate over 
⇒ easy! (backwards induction)

𝑆, 𝐴 large ⇒ ???



Policy gradient theorem
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using ∇ log 𝑓 𝑥 =
∇𝑓 𝑥

𝑓 𝑥

∇𝑉𝜋 𝑠1 = ෍

𝜏

𝑅 𝑠𝐻 ∇𝑃(𝜏|𝜋)

= ෍

𝜏

𝑅 𝑠𝐻  𝑃 𝜏 𝜋 ∇ log 𝑃(𝜏|𝜋) 

= 𝔼
𝜏∼𝜋

𝑅 𝑠𝐻 ∇ log 𝑃(𝜏|𝜋)

= 𝔼
𝜏∼𝜋

෍

ℎ=1

𝐻−1

𝑅 𝑠𝐻 ∇ log 𝜋 𝑎ℎ 𝑠ℎ

= 𝔼
𝜏∼𝜋

෍

ℎ=1

𝐻−1

𝐴 𝑠ℎ, 𝑎ℎ ∇ log 𝜋 𝑎ℎ 𝑠ℎ (won’t show—same idea as “baselines”)



initialize policy 𝜋1 to be uniform random 

for 𝑡 = 1, … , 𝑇:

• train value function estimate ෨𝑉𝑡 ≈ 𝑉𝜋 using MSE:

෨𝑉𝑡 ≔ arg min
෡𝑉

𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1

෠𝑉 𝑠ℎ − ෠𝑉 𝑠ℎ+1
2

• train policy 𝜋𝑡+1 by taking gradient steps according to the policy gradient theorem:

       where
ሚ𝐴𝑡 𝑠, 𝑎 ≔ 𝔼

𝑠′∼𝑃(⋅|𝑠,𝑎)
෨𝑉𝑡 𝑠′ − ෨𝑉𝑡(𝑠)

       is an advantage function estimate

Advantage actor-critic (A2C) 
(very roughly)
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∇𝑉𝜋 𝑠1 = 𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1

መ𝐴 𝑠ℎ, 𝑎ℎ ∇ log 𝜋 𝑎ℎ 𝑠ℎ

Problem: Variance in gradients can be very large, 
so 𝜋 can change very fast ⇒ training can be unstable

of course, ෠𝑉 𝑠𝐻 ≔ 𝑅(𝑠𝐻)



Proximal policy optimization (PPO) 
(very roughly)

initialize policy 𝜋1 to be uniform random 

for 𝑡 = 1, … , 𝑇:

• train value function estimate ෨𝑉𝑡 ≈ 𝑉𝜋 using MSE:

෨𝑉𝑡 ≔ arg min
෡𝑉

𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1

෠𝑉 𝑠ℎ − ෠𝑉 𝑠ℎ+1
2

• train policy 𝜋𝑡+1 according to:

       where
ሚ𝐴𝑡 𝑠, 𝑎 ≔ 𝔼

𝑠′∼𝑃(⋅|𝑠,𝑎)
෨𝑉𝑡 𝑠′ − ෨𝑉𝑡(𝑠)

       is an advantage function estimate
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𝜋𝑡+1 ≔ arg max
ෝ𝜋

𝔼
𝜏∼𝜋𝑡

෍

ℎ=1

𝐻−1 min
ො𝜋 𝑎ℎ 𝑠ℎ

𝜋𝑡 𝑎ℎ 𝑠ℎ
, 1 + 𝜖 መ𝐴𝑡(𝑠ℎ, 𝑎ℎ) if መ𝐴𝑡 𝑠ℎ, 𝑎ℎ > 0

max
ො𝜋 𝑎ℎ 𝑠ℎ

𝜋𝑡 𝑎ℎ 𝑠ℎ
, 1 − 𝜖 መ𝐴𝑡(𝑠ℎ, 𝑎ℎ) if መ𝐴𝑡 𝑠ℎ, 𝑎ℎ < 0

of course, ෠𝑉 𝑠𝐻 ≔ 𝑅(𝑠𝐻)

Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)



PPO is great*

29

Best large-scale single-agent RL algorithm right now!

*Very very sensitive to hyperparameters… hard to use in practice…

Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)



Do these algorithms work for games?
Certainly not in theory. In practice… kind of, at small scale? 

(but probably at this scale you should just use PCFR+ instead…)

30Srinivasan, Lanctot, Zambaldi, Perolat, Tuyls, Munos, Bowling (NeurIPS 2018)
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Games in AI 

Backgammon
1992

Chess
1997

Go
2016

Poker
2017/2019

Starcraft/Dota
2019

Stratego
2022

Diplomacy
2022



Stratego

- Pieces are numbered from 2 to 10 (Also a spy, bomb and flag)
- Higher numbers capture lower numbers (Exceptions: spys, bombs)
- First, both players place their pieces (Can’t see opponents pieces)
- Each piece moves one square (Exception: 2)
- If your piece is captured, you see the other piece number
- Objective is to capture the opponent’s flag 



Stratego

- Two challenges: size and 
imperfect information

- Size: order of 10535 nodes
- Texas hold ‘em: 10164 nodes
- Go: 10360 nodes

- Imperfect information
- 1066 possible deployments
- Can’t use perfect-info search
- Bluffing, mixing are important
- Gathering and hiding information 

very important
- Compared to video games, 

decisions are made deliberately
- Doesn’t just test reaction time and 

instincts



Stratego

- Existing approaches have 
hand-coded rules and play at an 
amateur level

- PSRO-based approach got SOTA on 
Barrage Stratego in 2020

- Still played at an amateur level

McAleer*, Lanier*, Fox, Baldi. Pipeline PSRO: A Scalable Approach for Finding
Approximate Nash Equilibria in Large Games. NeurIPS 2020



Finding Equilibrium via Regularization

- Continuous-time Follow-the-Regularized Leader (FoReL)

- Motivation: want to get last-iterate convergence

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- In two-player zero-sum games, the Nash Gap (exploitability) is preserved, 
so FoReL is recurrent

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- If we modify the game to have this new policy-dependent reward function

- Then FoReL is convergent

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- However, FoReL 
converges to a biased 
solution

- Plot shows eta= 0, 0.5, 1, 
and 10

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- Solve the original game by iteratively using last policy as the reference policy

- This procedure monotonically gets closer to Nash

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



DeepNash

- Two components
- NeuRD
- Regularized Nash Dynamics (R-NaD)

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning. 
Science 2022



DeepNash

- Regularized Nash Dynamics (R-NaD)
- Same as in previous paper



DeepNash

- Same reward transformation as before

- Learn value function via V-Trace
- Learn policy via NeuRD

- Adapts IMPALA to parallelize

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning. 
Science 2022



DeepNash

- Neural network input doesn’t include full observation history, but a lot of it



Results

Expert-Level Performance: Won 84% of games on online 
server, placing it 3rd all-time. 

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning. 
Science 2022



Results







Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning. 
Science 2022



What is magnetic mirror descent?

• Generalization of regularized gradient descent to different 

notions of distance

• Negative Entropy (policy space):



What is magnetic mirror descent?

• Generalization of regularized gradient descent to different 

notions of distance

• Negative Entropy (policy space):



Theoretical Grounding

In two-player zero-sum one-shot games, if                         

magnetic mirror descent converges exponentially fast to a 

regularized equilibrium in self play



Comparison Against CFR

Sokota et al. A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and 
Two-Player Zero-Sum Games. ICLR 2023



Deep RL Experiments: Approximate 
Exploitability

Sokota et al. A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and 
Two-Player Zero-Sum Games. ICLR 2023



Deep RL Experiments: Head-to-Head 
Matchups

Sokota et al. A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and 
Two-Player Zero-Sum Games. ICLR 2023


