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Single-agent reinforcement learning

Single-agent learning:
e Setof states § (information sets) with fixed “start state” s; € S (root infoset)
 Setofactions A

 We’ll assume finite horizon: § =85, U S, U --- Sy, where
H = time horizon (depth of game tree), and §; = {s1}

* Fixed environment (opponent/nature) given by transition functions
P:S, xA - A(S,,,) foreach h < H. Playing action a in state s results in
random next state s’ w.p. P(s’[s, a).

* Trajectory (history): T = (81,a4,S2, A2, .., Ay—1, Sy)
*  Policy (strategy): m : S = A(A)

*  Reward (utility): R : Sy = R
(assume for simplicity that reward is only received at the end)
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Q-values, state values, and advantages

Define recursively:

T — T !/
G =, E V)
. R(s) ifs € Sy
Vi(s) =1 E Q™(s,a) otherwise
a~m(:|s)

A™(s,a) = Q™(s,a) —V™(s)

Goal: find T maximizing expected reward
V™(s1) = E R(sy,ay).
T~TT

In extensive form, when
multiplied by environment reach
probability of infoset s, these are:

“state-action value” counterfactual value u(a|s)

“state value” counterfactual value u(s)

“advantage” immediate regret g(als)

S, A small enough to iterate over
= easy! (backwards induction)

S,A large = ?7?7?



Policy gradient theorem

VW (s,) = Z R(s,; VP (z|m)

= 2 R(sy) P(z|m)Vlog P(t|m) using Vlog f(x) = fo(%)
T
= E R(sy)VlogP(z|r)
T~TT
H-1
- TLE,T R(sy)Vlogm(an|sp)
h=1
H-1
= Lk A(spy,ap)Vlogm(ay|sy) (won’t show—same idea as “baselines”)

26



27

Advantage actor-critic (A2C)
(very roughly)

initialize policy ! to be uniform random
fort=1,..,T:

. . . ~ . f oV =R
train value function estimate V! ~ V™ using MSE: of course, V(siy) = R(su)

H-1
~ . i 7 (7 2
Vt ‘= arg min E . Z [V(Sh) - V(Sh+1)]
V t~1 =1

train policy mt*1 by taking gradient steps according to the policy gradient theorem:

H-1
VW"(sy) = E, > A(sp an)Vlogn(aglsy)

T~TT
h=1
Problem: Variance in gradients can be very large,

so 1t can change very fast = training can be unstable
where

At(s,a) = E )Vt(s’) — V(s)

s'~P(:|s,a

is an advantage function estimate



Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)
Proximal policy optimization (PPO)
(very roughly)

initialize policy ! to be uniform random
fort=1,..,T:

e train value function estimate V¢ = V™ using MSE:
H-1

~ - iy (7 2
Vt:=argmin E . E [V(Sh) - V(Sh+1)]
VoTent i

of course, V(sy) == R(sy)

* train policy mt*?! according to:

f N\
t(ayls . .
H-1 min{ t( nlSn) 1+ e} At(sy,ap) ifAt(sp,ap) >0
F+1 nt(aplsn)
m-T = argmax [E { .
T r~nth ] {T[(ahlsh) 1 }At( ) 'f/it( ) <0
= ax , 1 — € S, a 1 Sp, A
L mt(ap|sn) v wen
where
Al(s,a) = E Vi) =TVis)
s'~P(:|s,a)

is an advantage function estimate



Schulman, Wolski, Dhariwal, Radford, Klimov (arXiv 2017)

PPO is great™
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Best large-scale single-agent RL algorithm right now!

*Very very sensitive to hyperparameters... hard to use in practice...
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Srinivasan, Lanctot, Zambaldi, Perolat, Tuyls, Munos, Bowling (NeurlPS 2018)

Do these algorithms work for games?

Certainly not in theory. In practice... kind of, at small scale?

(but probably at this scale you should just use PCFR+ instead...)
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Stratego

- Pieces are numbered from 2 to 10 (Also a spy, bomb and flag)

- Higher numbers capture lower numbers (Exceptions: spys, bombs)
- First, both players place their pieces (Can’t see opponents pieces)
- Each piece moves one square (Exception: 2)
- If your piece is captured, you see the other piece number
- Objective is to capture the opponent’s flag
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Stratego

- Two challenges: size and

imperfect information

- Size: order of 10°%° nodes

- Texas hold ‘em: 10'%* nodes
- Go: 10%9° nodes

- Imperfect information

- 10% possible deployments

- Can’t use perfect-info search

- Bluffing, mixing are important

- Gathering and hiding information
very important

- Compared to video games,

decisions are made deliberately

- Doesn't just test reaction time and
instincts
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Stratego

- Existing approaches have Name P2SRO Win Rate vs. Bot
hand-coded rules and play at an Asmodeus 81%
| | Celsius 70%
amateur leve Vixen 69%
Celsiusl.1 65%
- PSRO-based approach got SOTA on AT Boks Avirage e

Barrage Stratego in 2020

- Still played at an amateur level
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McAleer*, Lanier®, Fox, Baldi. Pipeline PSRO: A Scalable Approach for Finding
Approximate Nash Equilibria in Large Games. NeurlPS 2020



Finding Equilibrium via Regularization

- Continuous-time Follow-the-Regularized Leader (FoRel)

t

yi(a®) = / Qi (a¥)ds and 7 = argmax A¥(p, y)
4 peEAA

A (p,y) = (y,p) — ¢i(p)

* - )
¢; (y) = maxp A*(p, y)
- Motivation: want to get last-iterate convergence

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- In two-player zero-sum games, the Nash Gap (exploitability) is preserved,
so FoRelL is recurrent
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Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- If we modify the game to have this new policy-dependent reward function

. 5. : TT ) T
rp(a) =r'(a",a™") —nlog —— + nlog ———
= =ri i) O e

- Then FoReL is convergent

2

CTw) =3 Vi s = Vi) - ZKL )

=1 %/_/

<0 because 7 is a Nash

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



Finding Equilibrium via Regularization

- However, FoReL
converges to a biased
solution

- Plot shows eta=0, 0.5, 1,
and 10
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Player 2 probability for action 1

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:

Finding Equilibrium via Regularization. ICML 2021.




Finding Equilibrium via Regularization

- Solve the original game by iteratively using last policy as the reference policy

ﬂ(aﬂ)

v (h,a) =7"(a",a") —nlog r(a) -7 log —

7rk_ (a?)

“q(a™?)

- This procedure monotonically gets closer to Nash

Perolat et al. From Poincare Recurrence to Convergence in Imperfect Information Games:
Finding Equilibrium via Regularization. ICML 2021.



DeepNash

- Two components

- NeuRD
- Regularized Nash Dynamics (R-NaD)

o Imperfect information e DeepRL G Self-Play

¢ il @ Nash equilibrium

Replicator dynamics: =72 (a') = 72 (a?) [Q%_(a®) — 3pi w2 (b)) Q% (bY)]
nt(at)

Reward transformation: r*(7*, 7%, a’,a=*) = r*(a’,a"") — nlog (wig(ai)) + nlog (%)
re; reg

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning.
Science 2022



DeepNash

Regularized Nash Dynamics (R-NaD)

- Same as in previous paper

Player 2
| Head: H Tail: T
Head: H 1 -1
Flayerl | 3 1

(a) Matching pennies

R-NaD Iteration
Start with an arbitrary regularization policy: 7 reg

1. Reward transformation: Construct the trans-
formed game with: 7, 1,

2. Dynamics: Run the replicator dynamics until
convergence to: T, fix

3. Update: Set the regularization policy:
Tn+1,reg = Tn fix

Repeat steps until convergence

(b) Algorithmic steps

Iteration 1 Iteration 0

Iteration 2

Replicator dynamics

Lyapunov function

0, reg

0.0,
00 02 04 06 08 10
abiH)

T, fix

0.0
00 02 04 06 08 10
aliH)

2 fix

0.0
00 02 04 06 08 1.0
RUH)

(c) Dynamics and Lyapunov function

Figure 2: The R-NaD learning algorithm illustrated with the matching pennies game



DeepNash

- Same reward transformation as before

ri(el,mlal ™) = ri(a,a”) — nlog(Z1Eh) + nlog(Ied)

- Learn value function via V-Trace
- Learn policy via NeuRD

2 Lefective
A lrnvlgrmc + Z Z Z VH [0 a, Of)Cllp ((2t n(av 0!)7 Celip NeuRD) ’ lI'", 3)]

IL
i=1 effective t—0 =

- Adapts IMPALA to parallelize

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning.
Science 2022



DeepNash

- Neural network input doesn’t include full observation history, but a lot of it
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Results

Opponent Number of Games Wins Draws Losses
Probe 30 100.0% 0.0%  0.0%
Master of the Flag 30 100.0% 0.0%  0.0%
Demon of Ignorance 800 971% 1.8% 1.1%
Asmodeus 800 99.7% 0.0%  0.3%
Celsius 800 982% 0.0% 1.8%
Celsiusl.1 800 979% 0.0% 2.1%
PeternLewis 800 99.9% 0.0% 0.1%
Vixen 800 100.0% 0.0%  0.0%

Expert-Level Performance: Won 84% of games on online
server, placing it 3rd all-time.

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning.
Science 2022
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(a) Four example deployments DeepNash played on Gravon.
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(b) While Blue is behind a 7 and 8, none of its pieces
are revealed and only two pieces moved. As a result

DeepNash assesses its chance of winning to be still
around 70% (Blue indeed won this match).
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(c) Blue to move. DeepNash’s policy supports three
moves at this state, with the indicated probabilities
(the move on the right was played in the actual match).
While Blue has the opportunity to capture the oppo-
nent’s 6 with its 9, this move is not considered by
DeepNash, likely because the protection of 9’s identity
is assessed to be more important than the material gain.
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(b) Negative bluffing.
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Figure 5: Illustration of DeepNash blutfing.

(c) DeepNash
makes a Scout
(2) behave like
a Spy and gains
material.

Perolat et al. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning.

Science 2022



What is mirror descent?

* Generalization of gradient descent to different

notions of distance
, 1
Li+1 = arg mlnw<gax>+;B(CB7 ':Ct)

* Negative Entropy (policy space):

1
Tt41 — aI'g Imnax <Q7 7T>__KL(7T7 7Tt)



What is magnetic mirror descent?

* Generalization of regularized gradient descent to different

notions of distance
1
Ty = arg min (g, z)+—B(z, z;)+aB(z, 2)
n

* Negative Entropy (policy space):

1
i1 = arg max, (q, m)——KL(m, 7 )—aKL(7, p)
n

ox | p*] a7



Theoretical Grounding

In two-player zero-sum one-shot games, if
n < a/L?
magnetic mirror descent converges exponentially fast to a

regularized equilibrium in self play

KL Divergence to QRE Simplex Trajectories Payoff Matrix

1071 1 Temperature
- 0.2

0.5
10751 —_ 10 R P S
- — 20 R|O0O -1 3
10791 P 1 O -3
T S|-3 3 0
1071%

g - . , - -
0 200 400 600 800 1000

Iterations



Exploitability

Comparison Against CFR

2x2 Abrupt 4-Sided Liar's Dice  Leduc Poker

Kuhn Poker Dark Hex

106 . T ] 3 . a—
10t 102 10° 10* 10> 10 10% 10° 10* 10° 10! 10 102 10* 10° 10' 10% 10° 10% 10°

lterations

Sokota et al. A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and
Two-Player Zero-Sum Games. ICLR 2023

MMD (Annealing
Temperature)

- MMD (Moving

Magnet)

CFR

CFR+



Approximate Exploitability

Deep RL Experiments: Approximate
Exploitability

3x3 Abrupt Dark Hex

Phantom Tic-Tac-Toe
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Sokota et al. A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and

Exploitee Training Steps

Two-Player Zero-Sum Games. ICLR 2023

Exploitee

MMD
NFSP(OpenSpiel)
PPO(RLIib)

Random
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Expected Return

Deep RL Experiments: Head-to-Head
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Random
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MMD  NFSP(OpenSpiel) PPO(RLIib) MMD  NFSP(OpenSpiel) PPO(RLIib)

Sokota et al. A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and
Two-Player Zero-Sum Games. ICLR 2023



