
Anytime PSRO
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𝐶1 𝐶2 𝐶3 𝐶4 ⋯ 𝐶𝑛

𝑅1 -1 1 -1 1 ⋯ 1

𝑅2 2 -2 -1 1 ⋯ 1

𝑅3 1 1 0 1 ⋯ 1

𝑅4 -1 -1 -1

⋮ ⋮ ⋮ ⋮

𝑅𝑚 -1 -1 -1
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Something’s wrong…

Idea: Solve the one-sided restricted 
game to compute meta-strategies

Requirement: Always find a 
novel best response if possible

Nash gap: 3

Diversity is good! e.g.:
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BR

Diversity is good! e.g.:
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𝐶1 𝐶2 𝐶3 𝐶4 ⋯ 𝐶𝑛

𝑅1 -1 1 -1 1 ⋯ 1

𝑅2 2 -2 -1 1 ⋯ 1

𝑅3 1 1 0 1 ⋯ 1

𝑅4 -1 -1 -1

⋮ ⋮ ⋮ ⋮

𝑅𝑚 -1 -1 -1

Exploitability is 
monotonically 
nonincreasing ☺

Every iteration requires us 
to solve a full game 

…in which P1 has not too 
many strategies. Can we 
solve it efficiently?

Nash gap: 0



How do we solve games where one 
side has a small number of strategies?

Recall (HW1): If P1 runs a regret minimizer and P2 best-responds 
on every step, then 

Nash gap ≤ P1’s regret / T

⇒ extremely efficient equilibrium computation when P1’s 
strategy set is small!

Anytime PSRO = one-sided PSRO 
+ this idea (“regret minimization with best responses”/“RM-BR”) 

+ RL best-response oracle for P2

12



Anytime PSRO Experiments
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RM-BR

14

strategy 𝑥𝑡 
selected by RM

𝐶1 𝐶2 𝐶3 𝐶4 ⋯ 𝐶𝑛

𝑅1

𝑅2

𝑅3

𝑦𝑡 = BR(𝑥𝑡)



From RM-BR to Self-Play PSRO

15

strategy 𝑥𝑡 
selected by RM

𝐶1 𝐶2 𝐶3 𝐶4 ⋯ 𝐶𝑛

𝑅1

𝑅2

𝑅3

𝜈𝑡 = BR(𝑦𝑡)

𝑦𝑡 = BR(𝑥𝑡)

After some time, add ҧ𝜈𝑡 to P1’s strategy set and 𝑦𝑡 to P2’s strategy set

“Self-play PSRO”

Intuition: self-play “stabilized” by having strategies 𝑅1, 𝑅2, 𝑅3 available to the row player
⇒ better PSRO performance in practice?



Self-play PSRO experiments
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Certificates in 
Extensive-Form Games

Brian Hu Zhang and Tuomas Sandholm, “Small Nash Equilibrium Certificates in 
Very Large Games”, NeurIPS-20: 

https://arxiv.org/abs/2006.16387 

Brian Hu Zhang and Tuomas Sandholm, “Finding and Certifying (Near-)Optimal 
Strategies in Black-Box Extensive-Form Games”, AAAI-21: 

https://arxiv.org/abs/2009.07384 

https://arxiv.org/abs/2006.16387
https://arxiv.org/abs/2009.07384


Pseudogames and Certificates

Pseudogame: Game without 
known utilities on all terminal 
nodes

Think: partially-expanded game 
tree, “alpha-beta” style

In zero-sum land, gives rise to two 
games: 
• a lower-bound game in which 

rewards are optimistic for P2, 
and

• an upper-bound game in which 
rewards are optimistic for P1

P1
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P2 P2

−1 +1 +1 −1

1/2 1/2
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known utilities on all terminal 
nodes

Think: partially-expanded game 
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games: 
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• an upper-bound game in which 
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pseudoterminal
node

P1

C

P2 P2
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Pseudogames and Certificates

(Approximate) Nash equilibrium in a 
pseudogame: strategy profile in 
which every player is provably playing 
an (approximate) best response 
(irrespective of what happens at 
pseudoterminal nodes)

Results in Nash equilibrium regardless 
of what the pseudoterminal node 
hides!

(Approximate) Certificate: 
Pseudogame created from partial 
expansion of a full game + 
(approximate) Nash equilibrium of 
that pseudogame

P1

C

P2 P2

≤ 0

−1 +1 +1 −1

1/2 1/2
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Small Certificates

• Question: When do small 𝜀-certificates (size 

𝑂 𝑁𝑐poly Τ1 𝜀  for some 𝑐 < 1, where 𝑁 is 

the number of nodes) exist? 



When do Small Certificates Exist?

• Answer #1: They exist in perfect-information 
zero-sum games with no nature randomness, 

…under reasonable assumptions about the game tree (uniform branching factor and depth, alternating moves)

– Proof: The optimal alpha-beta search tree is a 

certificate of size ≈ 𝑁.



Small Certificates

Answer #2: They exist 
in (squarish) normal-
form games.

Proof:

Consider an 𝑚 × 𝑚 
normal-form game.
Lipton et al, 2003: 
𝜀-Nash equilibrium exists 
where each player mixes 
between log 𝑚 /𝜀2 pure 
strategies.
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Small Certificates

Answer #2: They exist 
in (squarish) normal-
form games.

Proof: 

We only need those rows 
and columns!

⇒ 𝑂 Τ𝑚 log 𝑚 𝜀2 -size 
certificate
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T

U

V
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Y

Z



Small Certificates

So, small certificates exist in games where the 
players have perfect information or no 
information. 

What about in between?

Unfortunately, no.  



Bad News

Counterexample: Consider this game:

• Matching pennies

• repeated 𝑘 times, each round worth 1/𝑘 points.

• After each round, both players learn what the 
other played

Game tree size: 4𝑘

Theorem: Any 𝜀-certificate of this game must at 
least 4𝑘(1−2𝜀) nodes.



More Bad News

Theorem: It is NP-hard to approximate the 
smallest certificate of an extensive-form zero-
sum game, to better than an 𝑂(log 𝑁) 
multiplicative factor.

Proof Idea: Reduction from set cover.



Oracle Model

Assume access to an oracle that allows us to query any node ℎ 
to obtain:
• upper and lower bounds on the future utility after ℎ
• the player to act at ℎ, if any, and that player’s information
• if the player to act is nature, the exact nature distribution
Goal: 
• Compute and verify “ex-post” approximate equilibria with 

only black-box access
• Output both an equilibrium strategy and a bound 𝜀 on 

exploitability



More Bad News

Theorem: With only an oracle for an extensive-
form zero-sum game, there is no equilibrium-
finding algorithm that runs in time polynomial in 
the size of the smallest certificate.

Proof: One-player “SAT” games: certificate of 
size 𝑂 log 𝑁  exists, but clearly no sublinear-
time algorithm.



Let’s Try Anyway

Repeat until satisfied:
• Solve both the upper- and lower-bound pseudogames 

exactly (with e.g., an LP solver)
• Create the next pseudogame, by expanding all 

pseudoterminal nodes in the support of the optimistic 
profile (in which the max-player her equilibrium strategy in 
the upper-bound game, and the min-player plays her 
strategy in the lower-bound game)

Output: Pessimistic profile, and 𝜀 = difference in values 
between upper- and lower-bound pseudogames

Intuition: In the perfect-information setting with no nature 
randomness, it’s just alpha-beta search
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Repeat until satisfied:
• Solve both the upper- and lower-bound pseudogames 

exactly (with e.g., an LP solver)
• Create the next pseudogame, by expanding all 

pseudoterminal nodes in the support of the optimistic 
profile (in which the max-player her equilibrium strategy in 
the upper-bound game, and the min-player plays her 
strategy in the lower-bound game)

Output: Pessimistic profile, and 𝜀 = difference in values 
between upper- and lower-bound pseudogames

Theorem (Correctness): If the pessimistic profile is not a Nash 
equilibrium, then the second step expands at least one node.



Let’s Try Anyway

Repeat until satisfied:
• Solve both the upper- and lower-bound pseudogames 

exactly (with e.g., an LP solver)
• Create the next pseudogame, by expanding all 

pseudoterminal nodes in the support of the optimistic 
profile (in which the max-player her equilibrium strategy in 
the upper-bound game, and the min-player plays her 
strategy in the lower-bound game)

Output: Pessimistic profile, and 𝜀 = difference in values 
between upper- and lower-bound pseudogames

“Works” even on games that have infinitely large trees or 
infinite/unbounded rewards!



Experiments



Simulators

Assume access to a simulator:
• Allows us to play through the game from the perspective of all 

players at once
• Gives player to act, acting player’s information, bounds on future 

utility, and valid actions
• Does not give nature distribution; only gives a single sample
• Does not allow saving and rewinding. Must perform complete play-

throughs
Goal: 
• Compute and verify “ex-post” approximate equilibria with only 

black-box access
• Output both an equilibrium strategy and a bound 𝜀 on exploitability
• Want: correctness with high probability, say, 1 − 𝑇−𝛾 for some 𝛾 >

0 after 𝑇 iterations.



Lower Bounds

Theorem: Consider any algorithm with the following 
guarantee: For some constant 𝛾 > 0, given a zero-sum 
game in our black-box setting, with 𝑇 game samples, the 
algorithm outputs a pair of strategies (𝑥, 𝑦) and a bound 
𝜀𝑇 such that, with probability 1 –  𝑂 𝑇−𝛾 , (𝑥, 𝑦) is an 𝜀𝑇-
Nash equilibrium. Then

𝜀𝑇 = Ω
log 𝑇

𝑇
.

Our goal: Match this bound.



Main Tool: Pseudogames as 
Confidence Bounds

• At nodes that have not yet been expanded, 
use bounds given by simulator

• At nature nodes ℎ, give each player reward 
bounded by [−𝜌, 𝜌], where

𝜌 = Δℎ

1

2𝑡ℎ
log

1

𝛿

.
times ℎ has 

been reached confidence parameter

range of utilities
possible from ℎ



Main Tool: Pseudogames as 
Confidence Bounds

• At nodes that have not yet been expanded, 
use bounds given by simulator.

• At nature nodes ℎ, give each player reward 
bounded by [−𝜌, 𝜌], where

𝜌 = Δℎ

1

2𝑡ℎ
log

1

𝛿

Intuition: 𝜌 represents the uncertainty in the 
nature distribution at ℎ



Main Tool: Pseudogames as 
Confidence Bounds

• At nodes that have not yet been expanded, 
use bounds given by simulator.

• At nature nodes ℎ, give each player reward 
bounded by [−𝜌, 𝜌], where

𝜌 = Δℎ

1

2𝑡ℎ
log

1

𝛿

Intuition: It looks like UCB. That is not a 
coincidence. 



Choice of Confidence Bound

During equilibrium computation, values of children are changing, so 
we need to use a Hoeffding bound to be robust:

𝜌 = Δℎ

1

2𝑡ℎ
log

1

𝛿

During best response computation, strategy profiles after ℎ are fixed 
by induction, so we can use a tighter empirical Bernstein bound 
[Maurer & Pontil ’09]:

𝜌 = 𝑆
2

𝑡ℎ
log

2

𝛿
+

7Δℎ
′

3(𝑡ℎ − 1)
log

2

𝛿

where 𝑆 is the unbiased sample standard deviation, and Δℎ
′  is the 

range of possible utilities from ℎ under the fixed strategy profile, 
which may be much smaller than Δℎ



Main Tool: Pseudogames as 
Confidence Bounds

Theorem: For appropriate choice of 𝛿 =
1/poly 𝑇, 𝑁 , with high probability, at every 
time, for every strategy profile, for every player 
the true reward of the player is bounded by the 
pessimistic and optimistic rewards achieved in 
the confidence bound pseudogame.

(“Confidence bounds are actually bounds”)



Zero-Sum LP-Based Algorithm

Repeat 𝑇 times:
• Solve both the upper- and lower-bound pseudogames exactly (with e.g., 

an LP solver)
• Sample one play-through from the optimistic profile (in which the max-

player her equilibrium strategy in the upper-bound game, and the min-
player plays her strategy in the lower-bound game)

• Create the next pseudogame:
– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and 𝜀𝑇 = difference in values between upper- and 
lower-bound pseudogames

Intuition: In the perfect-information setting with no nature randomness, it’s 
just alpha-beta search



Zero-Sum LP-Based Algorithm

Repeat 𝑇 times:
• Solve both the upper- and lower-bound pseudogames exactly (with e.g., 
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• Sample one play-through from the optimistic profile (in which the max-

player her equilibrium strategy in the upper-bound game, and the min-
player plays her strategy in the lower-bound game)

• Create the next pseudogame:
– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and 𝜀𝑇 = difference in values between upper- and 
lower-bound pseudogames

Intuition: In the one-player “multi-armed bandit” setting, it’s UCB (up to a 
constant factor). 
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– Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and 𝜀𝑇 = difference in values between upper- and 
lower-bound pseudogames

Advantage: Sample-efficient
Disadvantage: Expensive iterations (requires game re-solve on each iteration)
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Zero-Sum LP-Based Algorithm

Repeat 𝑇 times:
• Solve both the upper- and lower-bound pseudogames exactly (with e.g., 

an LP solver)
• Sample one play-through from the optimistic profile (in which the max-

player her equilibrium strategy in the upper-bound game, and the min-
player plays her strategy in the lower-bound game)

• Create the next pseudogame:
– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and 𝜀𝑇 = difference in values between upper- and 
lower-bound pseudogames

Theorem: The best iterate of the algorithm converges at rate

𝔼𝜀𝑇 ≤ ෨𝑂
𝑁

𝑇

number of nodes in final pseudogame 
(may be ≪ total number of nodes!)



Regret-Based Algorithm

Idea: Just use a regret minimizer, like CFR, for 
each player



Regret-Based Algorithm

Repeat 𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass the optimistic rewards to the regret minimizers
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play

Output: Average strategy profile

Several problems!
. 



Regret-Based Algorithm

Repeat 𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass the optimistic rewards to the regret minimizers
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play

Output: Average strategy profile

Problem 1: The strategy space of each player is changing over time
Solution: CFR “handles it naturally”. Formalization: “Extendable” 
regret minimizers



Regret-Based Algorithm

Repeat 𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass the optimistic rewards to the regret minimizers
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play

Output: Average strategy profile

Problem 2: We don’t want to run a full CFR iterate on every sample; 
that is expensive
Solution: Use MCCFR + outcome sampling. Still works.



Regret-Based Algorithm

Repeat 𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass the optimistic rewards to the regret minimizers
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play

Output: Average strategy profile

Problem 3: What equilibrium gap bound can we compute?
.



Regret-Based Algorithm

Repeat 𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass the optimistic rewards to the regret minimizers
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play

Output: Average strategy profile

.Theorem: The regret-based algorithm outputs a strategy 
profile (𝑥, 𝑦) and exploitability bound 𝜀 after 𝑇 iterations, 
where 𝜀 ≤ ෨𝑂(𝑁2/ 𝑇).



Experiments

Vertical line: 
number of 

nodes in full 
game

Horizontal line: 
reward bound 

of full game

Horizontal line: 
number of 

nodes in full 
game



Experiments
In all games, with all 
algorithms, nontrivial 
certificates are found 

without expanding the 
full game tree, in fact, 

with fewer game 
samples than there are 

game tree nodes 

MCCFR converges 
quickly in reality, 

but this cannot be 
verified without 

expanding the rest 
of the game tree



Experiments
In all games, with all 
algorithms, nontrivial 
certificates are found 

without expanding the 
full game tree, in fact, 

with fewer game 
samples than there are 

game tree nodes 

LP-based 
certificate finding 
has better sample 
efficiency and final 

certificate size 
than regret-based, 

but (not shown) 
runs slower



Summary, Comparison of Algorithms, 
and Further Research

Work per iteration Convergence bound in terms 
of number of game samples

Oracle LP algorithm Solve a game with 𝑂(𝑁) nodes n/a (requires oracle access)

Simulator LP algorithm Solve a game with 𝑂(𝑁) nodes ෨𝑂( Τ𝑁 𝑇)

Simulator CFR algorithm 𝑂(𝑏𝑑) ෨𝑂( Τ𝑁2 𝑇)

𝑁 = number of nodes in current pseudogame
(could be less than the whole game size!)



Summary, Comparison of Algorithms, 
and Further Research

Algorithm 𝑻−𝟏/𝟐 theoretical 
convergence rate?

Uncoupled 
dynamics?

Simulator access?

Outcome-sampling 
MCCFR

Yes Yes No (requires prior 
knowledge of game 
structure) 

Farina & Sandholm 
[AAAI 2021]

No (only 𝑇−1/4) Yes Yes

Regret-based 
Certificate Algorithm 
[this lecture]

Yes No (exploration 
requires control of 
both players)

Yes



Summary, Comparison of Algorithms, 
and Further Research

Algorithm 𝑻−𝟏/𝟐 theoretical 
convergence rate?

Uncoupled 
dynamics?

Simulator access?

Outcome-sampling 
MCCFR

Yes Yes No (requires prior 
knowledge of game 
structure) 

Farina & Sandholm 
[AAAI 2021]

No (only 𝑇−1/4) Yes Yes

Regret-based 
Certificate Algorithm 
[this lecture]

Yes No (exploration 
requires control of 
both players)

Yes

IXOMD [Kozuno et al., 
NeurIPS 2021]

Yes Yes Yes
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