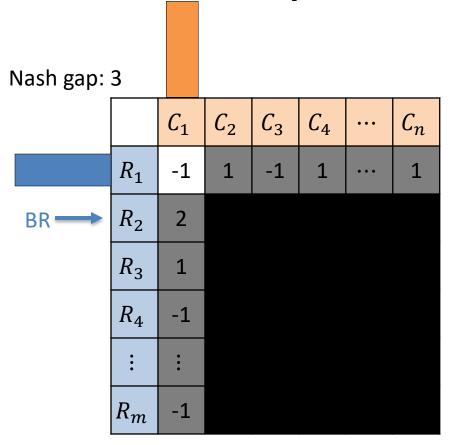
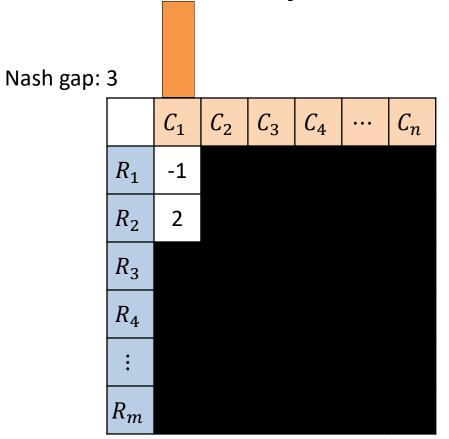
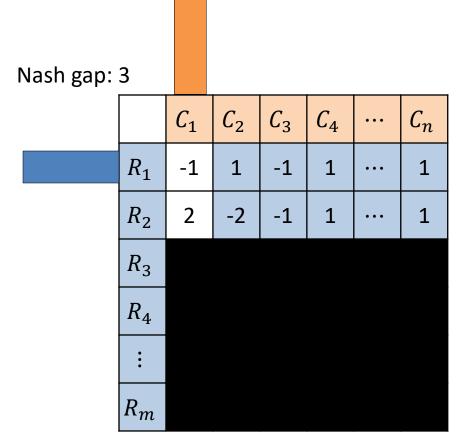
Anytime PSRO \mathcal{C}_1 C_2 C_3 C_4 C_n • • • R_1 -1 R_2 R_3 R_4 : R_m





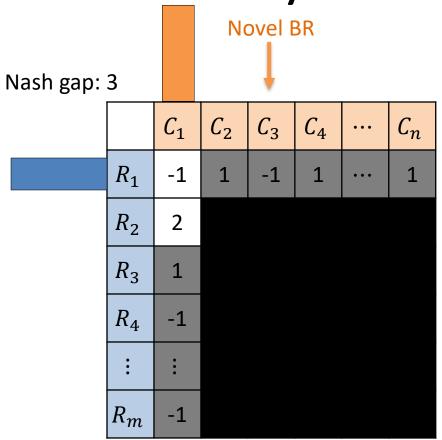


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$

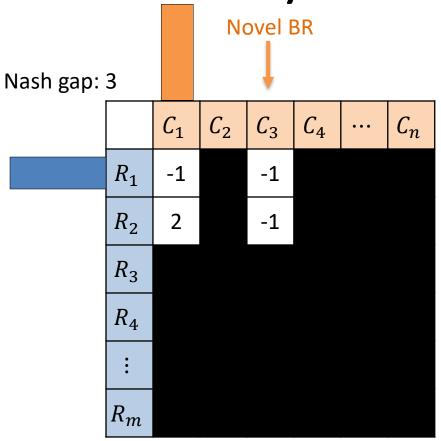


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$

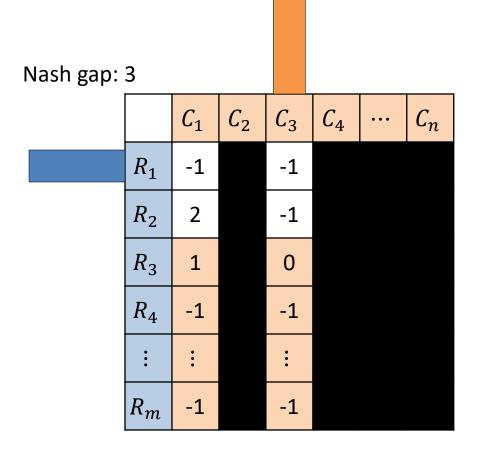


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$

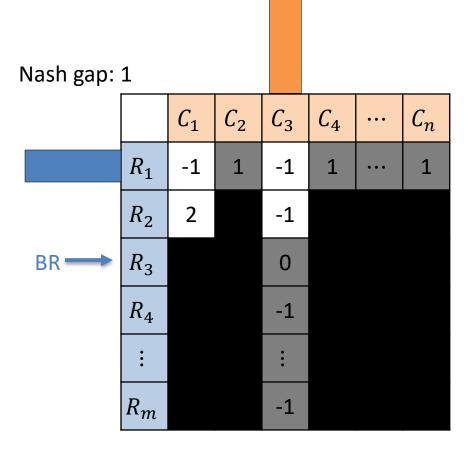


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg\max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$

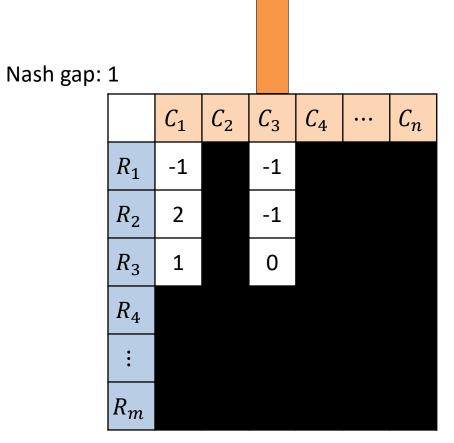


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$

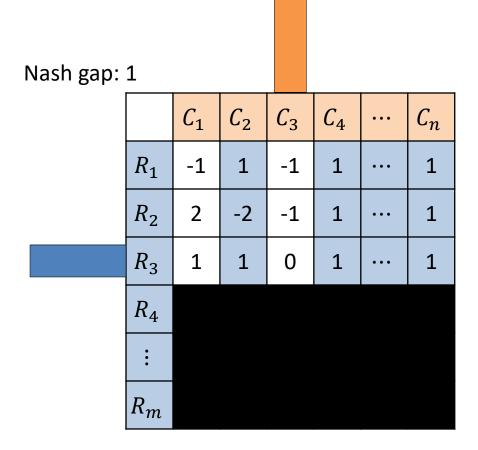


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$

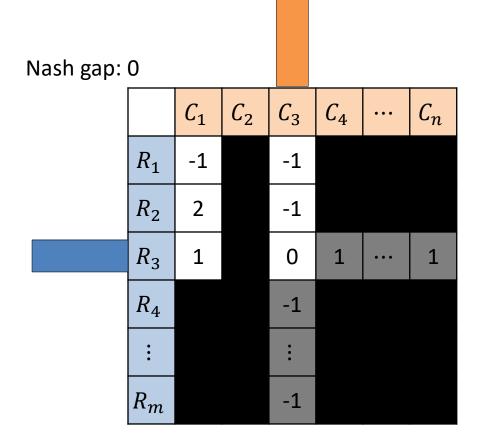


Idea: Solve the *one-sided restricted game* to compute meta-strategies

Something's wrong...

Requirement: Always find a *novel* best response if possible

$$\pi_i^{t+1} = \arg \max_{\pi_i} \left\{ u(\pi_i, \sigma_{-i}^t) + \lambda \min_{\pi_i^k \in \mathcal{H}(\Pi_i^t)} \operatorname{dist}(\pi_i, \pi_i^k) \right\}$$



Exploitability is monotonically nonincreasing ©

Every iteration requires us to solve a full game ⊗

...in which P1 has not too many strategies. Can we solve it efficiently?

How do we solve games where one side has a small number of strategies?

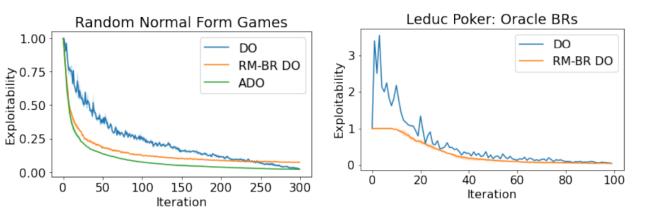
Recall (HW1): If P1 runs a regret minimizer and P2 best-responds on every step, then

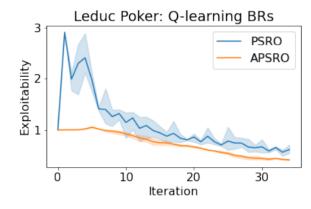
```
Nash gap \leq P1's regret / T
```

⇒ extremely efficient equilibrium computation when P1's strategy set is small!

Anytime PSRO = one-sided PSRO + this idea ("regret minimization with best responses"/"RM-BR") + RL best-response oracle for P2

Anytime PSRO Experiments





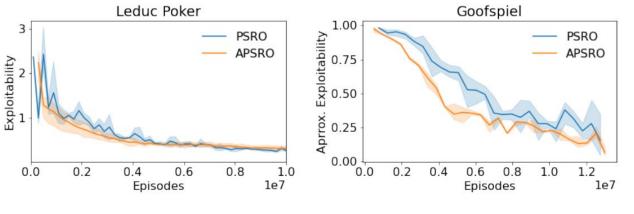
(a) Random Normal Form Games

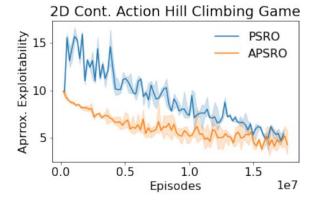
(a) Leduc with DDQN BRs

(b) Leduc with Oracle Best Responses

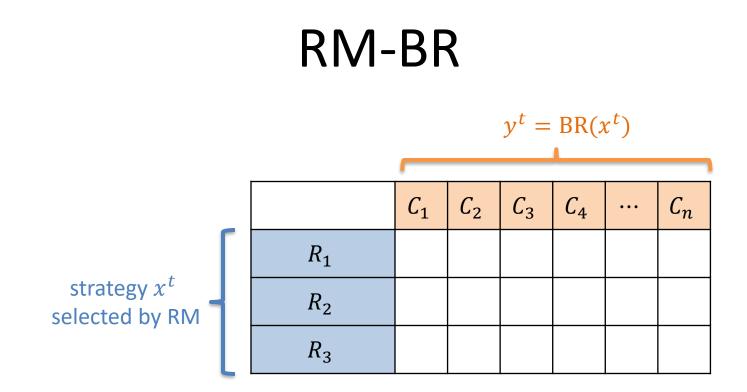
(b) Goofspiel with DDQN BRs

(c) Leduc with Q-Learning Best Responses

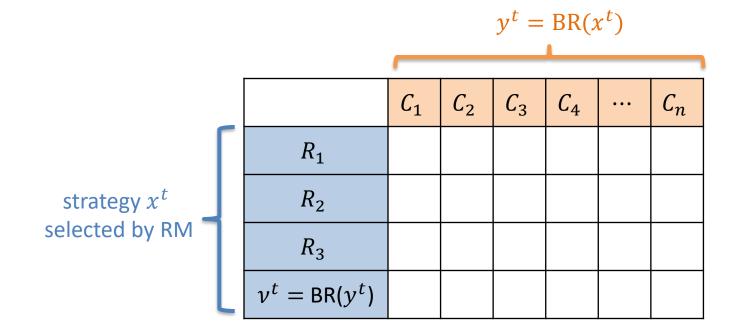




(c) Continuous-Action Hill-Climbing Game



From RM-BR to Self-Play PSRO

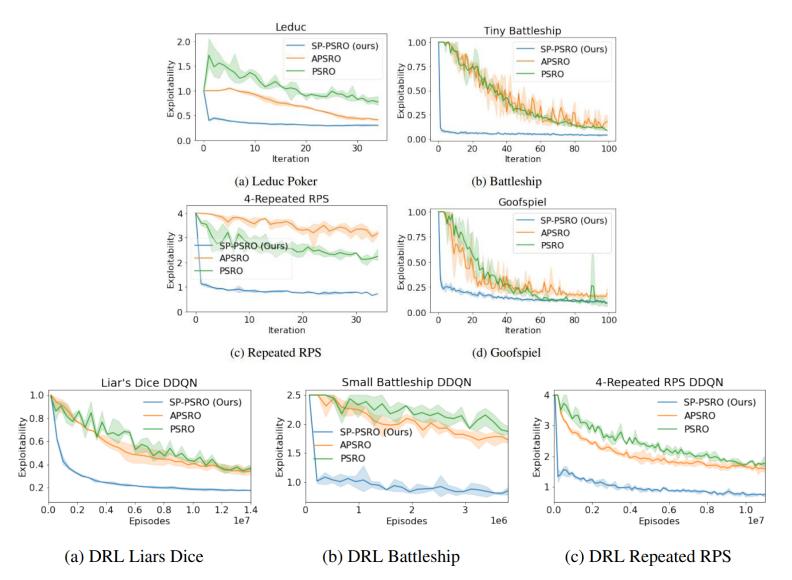


After some time, add \bar{v}^t to P1's strategy set and y^t to P2's strategy set

"Self-play PSRO"

Intuition: self-play "stabilized" by having strategies R_1, R_2, R_3 available to the row player \Rightarrow better PSRO performance in practice?

Self-play PSRO experiments



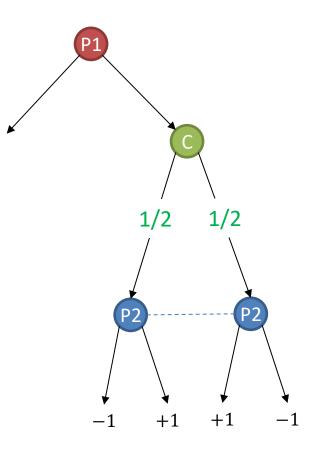
Certificates in Extensive-Form Games

Brian Hu Zhang and Tuomas Sandholm, "Small Nash Equilibrium Certificates in Very Large Games", NeurIPS-20: <u>https://arxiv.org/abs/2006.16387</u>

Brian Hu Zhang and Tuomas Sandholm, "Finding and Certifying (Near-)Optimal Strategies in Black-Box Extensive-Form Games", AAAI-21: <u>https://arxiv.org/abs/2009.07384</u>

Pseudogames and Certificates

Pseudogame: Game without known utilities on all terminal nodes



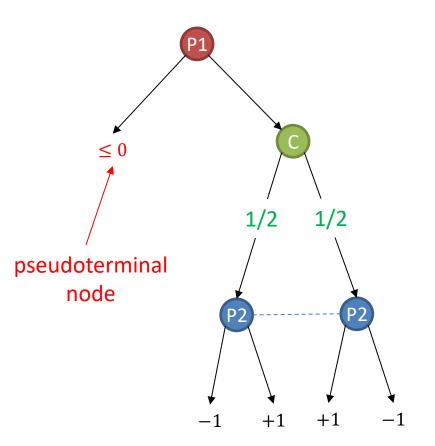
Pseudogames and Certificates

Pseudogame: Game without known utilities on all terminal nodes

Think: partially-expanded game tree, "alpha-beta" style

In zero-sum land, gives rise to **two** games:

- a *lower-bound game* in which rewards are optimistic for P2, and
- an *upper-bound game* in which rewards are optimistic for P1



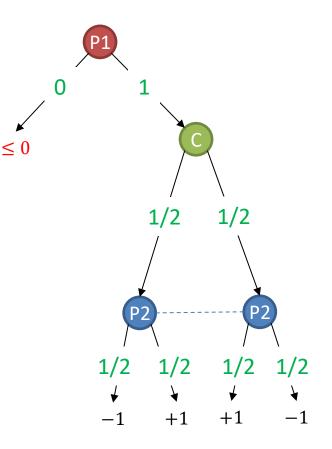
Pseudogames and Certificates

(Approximate) Nash equilibrium in a pseudogame: strategy profile in which every player is *provably* playing an (approximate) best response (irrespective of what happens at pseudoterminal nodes)

Results in Nash equilibrium regardless of what the pseudoterminal node hides!

(Approximate) Certificate:

Pseudogame created from partial expansion of a full game + (approximate) Nash equilibrium of that pseudogame



 Question: When do small ε-certificates (size O(N^cpoly(1/ε)) for some c < 1, where N is the number of nodes) exist?

When do Small Certificates Exist?

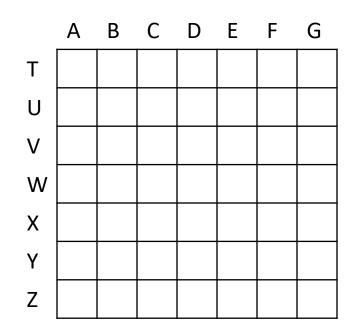
 Answer #1: They exist in perfect-information zero-sum games with no nature randomness,

...under reasonable assumptions about the game tree (uniform branching factor and depth, alternating moves)

- **Proof:** The optimal alpha-beta search tree is a certificate of size $\approx \sqrt{N}$.

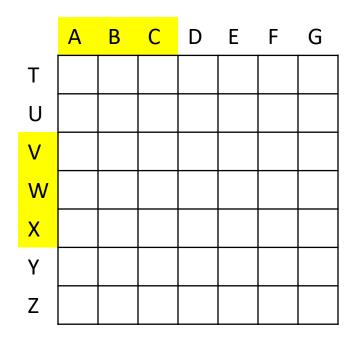
Answer #2: They exist in (squarish) normalform games. Proof:

Consider an $m \times m$ normal-form game. *Lipton et al, 2003:* ε -Nash equilibrium exists where each player mixes between $\log(m) / \varepsilon^2$ pure strategies.



Answer #2: They exist in (squarish) normalform games. Proof:

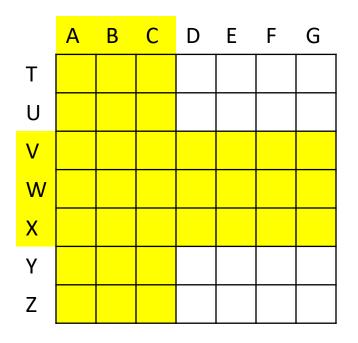
Consider an $m \times m$ normal-form game. *Lipton et al, 2003:* ε -Nash equilibrium exists where each player mixes between $\log(m) / \varepsilon^2$ pure strategies.



Answer #2: They exist in (squarish) normalform games. Proof:

We only need those rows and columns!

 $\Rightarrow O(m \log(m) / \varepsilon^2)$ -size certificate



So, small certificates exist in games where the players have **perfect information** or **no information**.

What about in between?

Unfortunately, no. 🛞

Bad News

Counterexample: Consider this game:

- Matching pennies
- repeated k times, each round worth 1/k points.
- After each round, both players learn what the other played

Game tree size: 4^k

Theorem: Any ε -certificate of this game must at least $4^{k(1-2\varepsilon)}$ nodes.

More Bad News

Theorem: It is NP-hard to approximate the smallest certificate of an extensive-form zerosum game, to better than an $O(\log N)$ multiplicative factor.

Proof Idea: Reduction from set cover.

Oracle Model

Assume access to an **oracle** that allows us to query any node h to obtain:

- upper and lower bounds on the future utility after *h*
- the player to act at *h*, if any, and that player's information
- if the player to act is nature, the exact nature distribution **Goal:**
- Compute and verify "ex-post" approximate equilibria with only black-box access
- Output both an equilibrium strategy and a bound ε on exploitability

More Bad News

Theorem: With only an oracle for an extensiveform zero-sum game, there is no equilibriumfinding algorithm that runs in time polynomial in the size of the smallest certificate.

Proof: One-player "SAT" games: certificate of size $O(\log N)$ exists, but clearly no sublinear-time algorithm.

Let's Try Anyway

Repeat until satisfied:

- Solve both the upper- and lower-bound pseudogames exactly (with e.g., an LP solver)
- Create the next pseudogame, by expanding all pseudoterminal nodes in the support of the optimistic profile (in which the max-player her equilibrium strategy in the upper-bound game, and the min-player plays her strategy in the lower-bound game)

Output: Pessimistic profile, and $\varepsilon =$ difference in values between upper- and lower-bound pseudogames

Intuition: In the perfect-information setting with no nature randomness, it's just alpha-beta search

Let's Try Anyway

Repeat until satisfied:

- Solve both the upper- and lower-bound pseudogames exactly (with e.g., an LP solver)
- Create the next pseudogame, by expanding all pseudoterminal nodes in the support of the optimistic profile (in which the max-player her equilibrium strategy in the upper-bound game, and the min-player plays her strategy in the lower-bound game)

Output: Pessimistic profile, and $\varepsilon =$ difference in values between upper- and lower-bound pseudogames

Theorem (Correctness): If the pessimistic profile is not a Nash equilibrium, then the second step expands at least one node.

Let's Try Anyway

Repeat until satisfied:

- Solve both the upper- and lower-bound pseudogames exactly (with e.g., an LP solver)
- Create the next pseudogame, by expanding all pseudoterminal nodes in the support of the optimistic profile (in which the max-player her equilibrium strategy in the upper-bound game, and the min-player plays her strategy in the lower-bound game)

Output: Pessimistic profile, and $\varepsilon =$ difference in values between upper- and lower-bound pseudogames

"Works" even on games that have infinitely large trees or infinite/unbounded rewards!

Experiments

game	size of game		size of ce		rtificate	
	nodes infosets		nodes		infosets	
search game	234,705	11,890	13,682	5.8%	532	4.5%
4-rank PI Goofspiel	2,229	1,653	275	12.3%	110	6.7%
5-rank PI Goofspiel	55,731	41,331	2,593	4.7%	957	2.3%
6-rank PI Goofspiel	2,006,323	1,487,923	21,948	1.1%	7,584	0.5%
4-rank Goofspiel	2,229	738	614	27.5%	117	15.9%
5-rank Goofspiel	55,731	9,948	11,415	20.5%	2,160	21.7%
6-rank Goofspiel	2,006,323	166,002	266,756	13.3%	15,776	9.5%
3-rank random Goofspiel4-rank random Goofspiel5-rank random Goofspiel	1,066	426	309	29.0%	92	21.6%
	68,245	17,432	16,416	24.1%	3,270	18.8%
	8,530,656	1,175,330	1,854,858	21.7%	241,985	20.6%
5-rank Leduc 9-rank Leduc 13-rank Leduc	∞ ∞ ∞	∞ ∞ ∞	26,306 137,662 337,312		2,406 6,811 12,171	_

Simulators

Assume access to a **simulator**:

- Allows us to play through the game from the perspective of all players at once
- Gives player to act, acting player's information, bounds on future utility, and valid actions
- **Does not** give nature distribution; only gives a single sample
- **Does not** allow saving and rewinding. Must perform complete playthroughs

Goal:

- Compute and verify "ex-post" approximate equilibria with only black-box access
- Output both an equilibrium strategy **and** a bound ε on exploitability
- Want: correctness with high probability, say, $1 T^{-\gamma}$ for some $\gamma > 0$ after T iterations.

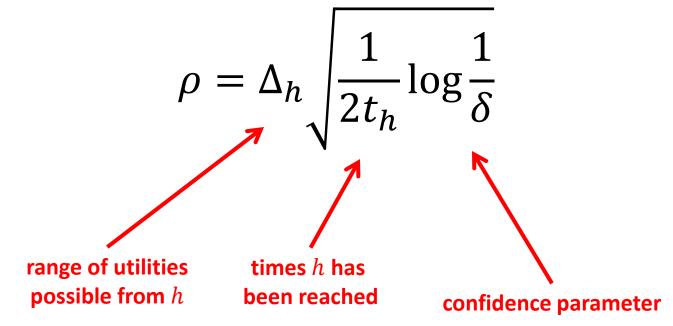
Lower Bounds

Theorem: Consider any algorithm with the following guarantee: For some constant $\gamma > 0$, given a zero-sum game in our black-box setting, with T game samples, the algorithm outputs a pair of strategies (x, y) and a bound ε_T such that, with probability $1 - O(T^{-\gamma}), (x, y)$ is an ε_T -Nash equilibrium. Then

$$\varepsilon_T = \Omega\left(\sqrt{\frac{\log T}{T}}\right).$$

Our goal: Match this bound.

- At nodes that have not yet been expanded, use bounds given by simulator
- At nature nodes h, give each player reward bounded by $[-\rho, \rho]$, where



- At nodes that have not yet been expanded, use bounds given by simulator.
- At nature nodes h, give each player reward bounded by $[-\rho, \rho]$, where

$$\rho = \Delta_h \sqrt{\frac{1}{2t_h} \log \frac{1}{\delta}}$$

Intuition: ρ represents the **uncertainty** in the nature distribution at h

- At nodes that have not yet been expanded, use bounds given by simulator.
- At nature nodes h, give each player reward bounded by $[-\rho, \rho]$, where

$$\rho = \Delta_h \sqrt{\frac{1}{2t_h} \log \frac{1}{\delta}}$$

Intuition: It looks like UCB. That is not a coincidence.

Choice of Confidence Bound

During equilibrium computation, values of children are changing, so we need to use a Hoeffding bound to be robust:

$$\rho = \Delta_h \sqrt{\frac{1}{2t_h} \log \frac{1}{\delta}}$$

During best response computation, strategy profiles after *h* are fixed by induction, so we can use a tighter empirical Bernstein bound [Maurer & Pontil '09]:

$$\rho = S_{\sqrt{\frac{2}{t_h}\log\frac{2}{\delta}}} + \frac{7\Delta'_h}{3(t_h - 1)}\log\frac{2}{\delta}$$

where S is the unbiased sample standard deviation, and Δ'_h is the range of possible utilities from h under the fixed strategy profile, which may be much smaller than Δ_h

Theorem: For appropriate choice of $\delta = 1/\text{poly}(T, N)$, with high probability, at every time, for every strategy profile, for every player the true reward of the player is bounded by the pessimistic and optimistic rewards achieved in the confidence bound pseudogame.

("Confidence bounds are actually bounds")

Repeat *T* times:

- **Solve** both the upper- and lower-bound pseudogames *exactly* (with e.g., an LP solver)
- **Sample** one play-through from the optimistic profile (in which the maxplayer her equilibrium strategy in the upper-bound game, and the minplayer plays her strategy in the lower-bound game)
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and ε_T = difference in values between upper- and lower-bound pseudogames

Intuition: In the perfect-information setting with no nature randomness, it's just alpha-beta search

Repeat *T* times:

- **Solve** both the upper- and lower-bound pseudogames *exactly* (with e.g., an LP solver)
- **Sample** one play-through from the optimistic profile (in which the maxplayer her equilibrium strategy in the upper-bound game, and the minplayer plays her strategy in the lower-bound game)
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and ε_T = difference in values between upper- and lower-bound pseudogames

Intuition: In the one-player "multi-armed bandit" setting, it's UCB (up to a constant factor).

Repeat *T* times:

- **Solve** both the upper- and lower-bound pseudogames *exactly* (with e.g., an LP solver)
- **Sample** one play-through from the optimistic profile (in which the maxplayer her equilibrium strategy in the upper-bound game, and the minplayer plays her strategy in the lower-bound game)
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and ε_T = difference in values between upper- and lower-bound pseudogames

Advantage: Sample-efficient

Disadvantage: Expensive iterations (requires game re-solve on each iteration)

Repeat *T* times:

- **Solve** both the upper- and lower-bound pseudogames *exactly* (with e.g., an LP solver)
- **Sample** one play-through from the optimistic profile (in which the maxplayer her equilibrium strategy in the upper-bound game, and the minplayer plays her strategy in the lower-bound game)
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and ε_T = difference in values between upper- and lower-bound pseudogames

Advantage: Sample-efficient

Disadvantage: Expensive iterations (requires game re-solve on each iteration)

Repeat T times:

- **Solve** both the upper- and lower-bound pseudogames *exactly* (with e.g., an LP solver)
- **Sample** one play-through from the optimistic profile (in which the maxplayer her equilibrium strategy in the upper-bound game, and the minplayer plays her strategy in the lower-bound game)
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and ε_T = difference in values between upper- and lower-bound pseudogames

Theorem: The *best iterate* of the algorithm converges at rate

$$\mathbb{E}\varepsilon_T \le \tilde{O}\left(\frac{N}{\sqrt{T}}\right)$$

number of nodes in final pseudogame (may be << total number of nodes!)

Idea: Just use a regret minimizer, like CFR, for each player

Repeat T times:

- **Query** the regret minimizers for all players to obtain a strategy profile
- Sample one play-through from that strategy profile
- **Pass** the *optimistic* rewards to the regret minimizers
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Average strategy profile

Several problems!

Repeat T times:

- **Query** the regret minimizers for all players to obtain a strategy profile
- Sample one play-through from that strategy profile
- **Pass** the *optimistic* rewards to the regret minimizers
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Average strategy profile

Problem 1: The strategy space of each player is changing over time **Solution:** CFR "handles it naturally". *Formalization*: "Extendable" regret minimizers

Repeat T times:

- **Query** the regret minimizers for all players to obtain a strategy profile
- Sample one play-through from that strategy profile
- **Pass** the *optimistic* rewards to the regret minimizers
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Average strategy profile

Problem 2: We don't want to run a full CFR iterate on every sample; that is expensive

Solution: Use MCCFR + outcome sampling. Still works.

Repeat T times:

- **Query** the regret minimizers for all players to obtain a strategy profile
- **Sample** one play-through from that strategy profile
- **Pass** the *optimistic* rewards to the regret minimizers
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Average strategy profile

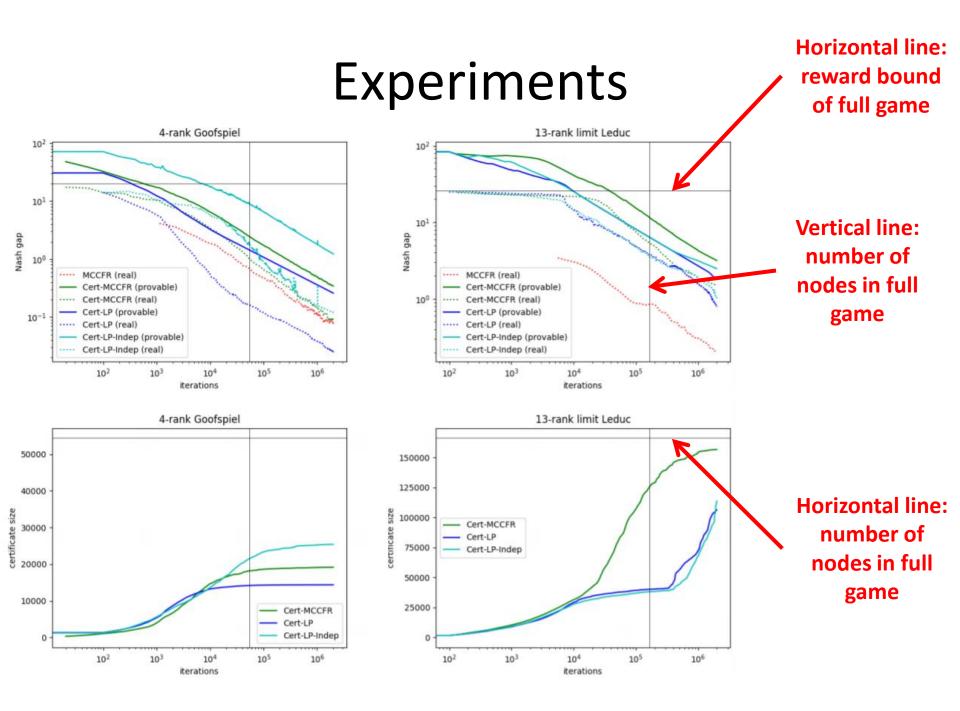
Problem 3: What equilibrium gap bound can we compute?

Repeat T times:

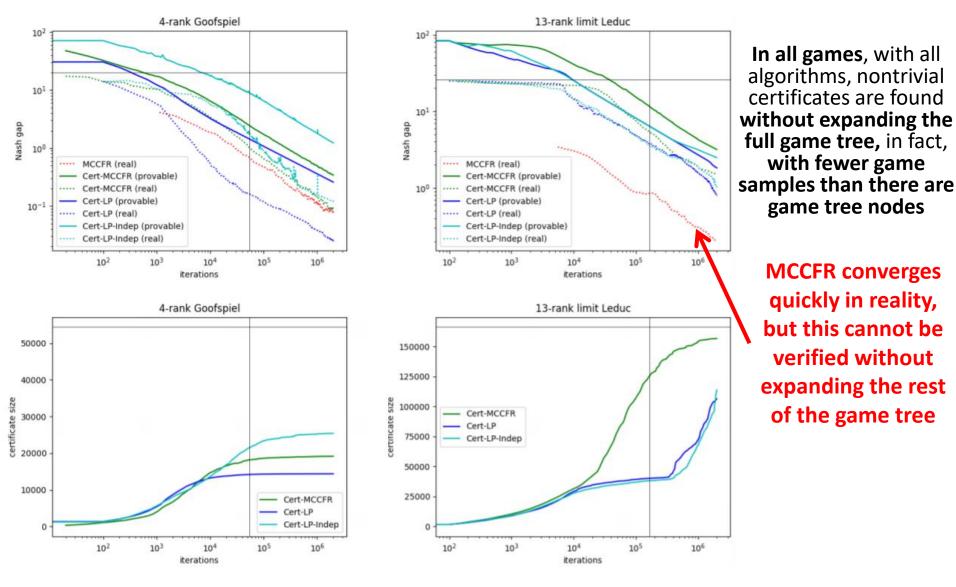
- **Query** the regret minimizers for all players to obtain a strategy profile
- Sample one play-through from that strategy profile
- **Pass** the *optimistic* rewards to the regret minimizers
- **Create** the next pseudogame:
 - Expand all encountered nodes
 - Update empirical nature distributions of nature nodes sampled during play

Output: Average strategy profile

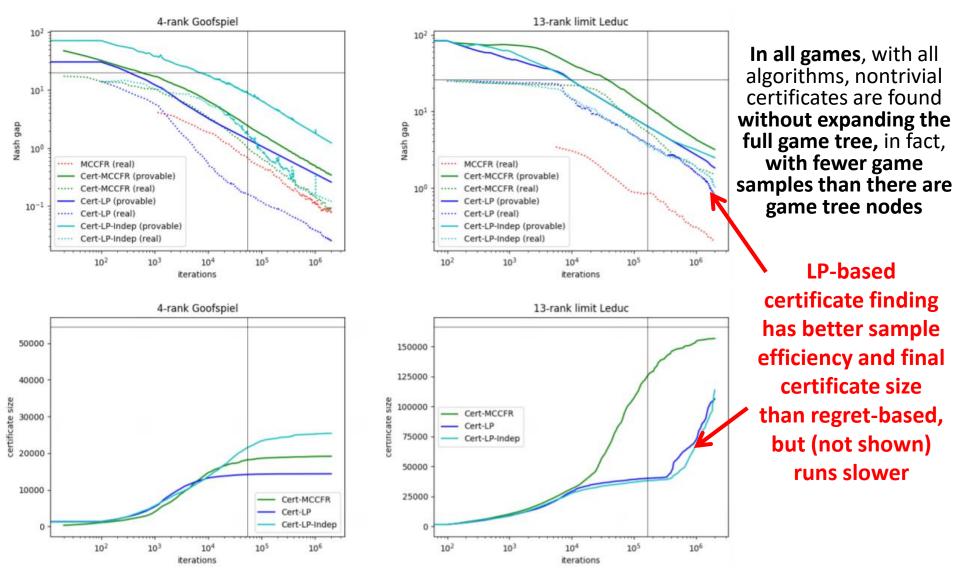
Theorem: The regret-based algorithm outputs a strategy profile (x, y) and exploitability bound ε after T iterations, where $\varepsilon \leq \tilde{O}(N^2/\sqrt{T})$.



Experiments



Experiments



Summary, Comparison of Algorithms, and Further Research

	Work per iteration	Convergence bound in terms of number of game samples
Oracle LP algorithm	Solve a game with $O(N)$ nodes	n/a (requires oracle access)
Simulator LP algorithm	Solve a game with $O(N)$ nodes	$\tilde{O}(N/\sqrt{T})$
Simulator CFR algorithm	0(bd)	$\tilde{O}(N^2/\sqrt{T})$

N = number of nodes in *current pseudogame* (could be less than the whole game size!)

Summary, Comparison of Algorithms, and Further Research

Algorithm	$T^{-1/2}$ theoretical convergence rate?	Uncoupled dynamics?	Simulator access?
Outcome-sampling MCCFR	Yes	Yes	No (requires prior knowledge of game structure)
Farina & Sandholm [<i>AAAI</i> 2021]	No (only $T^{-1/4}$)	Yes	Yes
Regret-based Certificate Algorithm [this lecture]	Yes	No (exploration requires control of both players)	Yes

Summary, Comparison of Algorithms, and Further Research

Algorithm	$T^{-1/2}$ theoretical convergence rate?	Uncoupled dynamics?	Simulator access?
Outcome-sampling MCCFR	Yes	Yes	No (requires prior knowledge of game structure)
Farina & Sandholm [<i>AAAI</i> 2021]	No (only $T^{-1/4}$)	Yes	Yes
Regret-based Certificate Algorithm [this lecture]	Yes	No (exploration requires control of both players)	Yes
IXOMD [Kozuno et al., NeurIPS 2021]	Yes	Yes	Yes