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Main focus of the course:

Multi-step imperfect-information games

Why?



Most real-world games are incomplete-information games 

with sequential (& simultaneous) moves
• Negotiation

• Auctions, e.g.,:

– Multi-stage auctions (e.g., FCC ascending, combinatorial auctions)

– Sequential auctions of multiple items

• A robot facing adversaries in uncertain, stochastic envt

• Card games, e.g., poker

• Currency attacks 

• International (over-)fishing

• Political campaigns (e.g., TV spending in each region)

• Ownership games (polar regions, moons, planets)

• Allocating and timing troops/armaments to locations

• Military spending games, e.g., space vs ocean

• Airport security, air marshals, coast guard, rail 

• Cybersecurity 

• ...



So…

• Techniques for perfect-information games 

such as checkers, chess, and Go don’t apply

• … because there are additional issues:

– Private information

– Need to understand signals and how other 

players will interpret signals

– Need to understand deception

– Need to deceive

– …



Game representations, 

game-theoretic solution concepts, 

and complexity



The heart of the problem

• In a 1-agent setting, agent’s expected utility 

maximizing strategy is well-defined

• But in a multiagent system, the outcome may 

depend on others’ strategies also

=> the agent’s best strategy may depend on what 

strategies the other agent(s) choose, and vice 

versa



Terminology

• Agent = player

• Action = move = choice that agent can make at a point in 

the game

• Strategy si = mapping from history (to the extent that the 

agent i can distinguish) to actions

• Strategy set Si = strategies available to the agent

• Strategy profile (s1, s2, ..., s|A|) = one strategy for each 

agent

• Agent’s utility is determined after each agent (including 

nature that is used to model uncertainty) has chosen its 

strategy, and game has been played: ui = ui(s1, s2, ..., s|A|)



Agenthood

• Agent attempts to maximize its expected utility

• Utility function ui of agent i is a mapping from outcomes to reals

– Incorporates agent’s risk attitude (allows quantitative tradeoffs)

• E.g. outcomes over money

• Often in game theory we just talk about expected payoff or 
expected value (EV)

Risk aversion => insurance companies

Lottery 1: $0.5M w.p. 1

Lottery 2: $1M    w.p. 0.5

      $0       w.p. 0.5

Agent’s strategy is the 

choice of lottery
M$

ui

Risk seeking

Risk neutral

Risk averse1

0.5

0
0 0.5 1



Utility functions are scale-invariant

• Agent i chooses a strategy that maximizes expected utility

maxstrategy outcome p(outcome | strategy) ui(outcome)

• If  ui’() = a ui() + b for a > 0 then the agent will choose the 

same strategy under utility function ui’ as it would under ui

– (ui has to be finite for each possible outcome; otherwise expected utility could 

be infinite for several strategies, so the strategies could not be compared.)

• Inter-agent utility comparison would be problematic



Game representations

Extensive form 

(aka tree form)

player 1

1, 2

3, 4

player 2Up

Down

Left

Right

5, 6

7, 8

player 2

Left

Right

Matrix form 

(aka normal form

aka strategic form)

player 1’s

strategy

player 2’s strategy

1, 2Up

Down

Left,

Left

Left,

Right

3, 4

5, 6 7, 8

Right,

Left

Right,

Right

3, 41, 2

5, 6 7, 8

Potential combinatorial explosion



Dominant strategy “equilibrium”
• Best response si* (for a given strategy profile s-i of the 

other players):  for all si’,  ui(si*,s-i) ≥ ui(si’,s-i)

• Dominant strategy  si*:   si* is a best response for all s-i

– Does not always exist

– Inferior strategies are called “dominated”

• Dominant strategy equilibrium is a strategy profile where 

each agent has picked its dominant strategy

– Does not always exist

– Requires no counterspeculation

– E.g., Prisoners’ Dilemma:

cooperate

cooperate defect

defect

3, 3 0, 5

5, 0 1, 1

Pareto optimal?

Social welfare

maximizing?



Nash equilibrium 
[Nash50]

• Sometimes an agent’s best response depends on others’ 

strategies: a dominant strategy does not exist

• A strategy profile s* is a Nash equilibrium if no player has 

incentive to deviate from his strategy given that others do 

not deviate: for every agent i, ui(si*,s*-i) ≥ ui(si’,s*-i) for all si’
– Dominant strategy equilibria are Nash equilibria but not vice versa

– Defect-defect is the only Nash eq. in Prisoner’s Dilemma

– Battle of the Sexes game

• Has no dominant strategy equilibria

ballet 0, 0

boxing

boxing ballet

0, 02, 1

Woman

Man
1, 2

Image:John f nash 20061102 3.jpg

http://upload.wikimedia.org/wikipedia/commons/9/91/John_f_nash_20061102_3.jpg


Criticisms of Nash equilibrium

• Not unique in all games, e.g., Battle of the Sexes

– Approaches for addressing this problem

• Refinements (=strengthenings) of the equilibrium concept

– Eliminate weakly dominated strategies first

– Choose the Nash equilibrium with highest welfare

– Subgame perfection …

• Focal points

• Mediation

• Communication

• Convention

• Learning

• Does not exist in all games

1, 0

0, 1 1, 0

0, 1



Rock-scissors-paper game

Sequential moves



Rock-scissors-paper game

Simultaneous moves



Imperfect-information extensive-form games

move of
agent 1

move of
agent 2

rock

rock

rock

rock

scissors

scissors

scissors

scissors

paper

paper

paper

paper

0, 0

0, 0

0, 0

1, -1

1, -1

1, -1

-1, 1

-1, 1

-1, 1

Mixed strategy  = agent’s chosen probability 
distribution over pure strategies from its strategy set

(Bayes-)Nash equilibrium: 

Each agent uses a 

best-response strategy 

and has consistent beliefs

Fact: In mixed-strategy 

equilibrium, each 

strategy that occurs in 

the mix of agent i has 

equal expected utility to i

Information set

(the mover does not 

know which node of the 

set she is in)

Rock-paper-scissors 

game has a symmetric 

mixed-strategy Nash 

equilibrium where each 

player plays each pure 

strategy with probability 

1/3

Chance can also be a player 

(stochastic, not strategic )



Behavioral strategy

• Agent has a probability distribution over her 

actions at each of her information sets

• Kuhn’s theorem: If an agent has perfect 

recall, for every mixed strategy there is a 

behavioral strategy that has an equivalent 

payoff (i.e., the strategies are equivalent)

– Applies also to infinite games



Existence of pure-strategy Nash equilibria

• Thrm. 

– Any finite game, 

– where each action node is alone in its information set 

• (i.e., at every point in the game, the agent whose turn it is to move 

knows what moves have been played so far) 

– is dominance solvable by backward induction (at least as long 

as ties are ruled out)

• Constructive proof: Multi-player minimax search

• Lots of interesting work has been done on computer 

chess and Go to tackle the computational complexity



Existence & complexity of 

mixed-strategy Nash equilibria

• Every finite player, finite strategy game has at least one Nash 
equilibrium if we admit mixed-strategy equilibria as well as pure 
[Nash 50]

– (Proof is based on Kakutani’s fix point theorem)

• May be hard to compute
– Complexity of finding a Nash equilibrium in a normal-form game:

• 2-player 0-sum games can be solved in polytime with LP

• 2-player games are 
– PPAD-complete (even with 0/1 payoffs) [Chen, Deng & Teng JACM-09; Abbott, Kane & Valiant 

FOCS-05; Daskalakis, Goldberg & Papadimitriou STOC-06], 

– NP-complete to find an even approximately good Nash equilibrium [Conitzer & Sandholm GEB-08]

• 3-player games are FIXP-complete [Etessami & Yannakakis FOCS-07]



Properties of 2-player 0-sum games
• Swappability: if (x,y) and (x’,y’) are equilibria, then so are (x’,y) and (x,y’)

– => no equilibrium selection problem: player is safe playing any one of her equilibrium strategies

• A player’s equilibrium strategies form a bounded convex polytope

• Any convex combination of a player’s equilibrium strategies is an equilibrium strategy

• The set of Nash equilibria are exactly the set of solutions to the minmax problem maxx miny u1(x,y)

• Minmax theorem [von Neumann 1928]:

• Amazing in multi-step imperfect-information games:

– By playing a non-equilibrium strategy, our opponent can cause our beliefs to be wrong, but not by so much that the opponent’s 

expected value increases!

• Solvable in polynomial time in the size of the game tree using LP

– But what if the tree has 10165 nodes?

The function f(x,y)=y2-x2 is concave-convex.

y

x
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