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Main focus of the course:

Multi-step imperfect-information games

Why?



Most real-world games are incomplete-information games
with sequential (& simultaneous) moves

* Negotiation

« Auctions, e.g.,:

— Multi-stage auctions (e.g., FCC ascending, combinatorial auctions)

— Sequential auctions of multiple items

* A robot facing adversaries in uncertain, stochastic envt
» Card games, e.g., poker
* Currency attacks

« International (over-)fishing

* Political campaigns (e.g., TV spending in each region)
* Ownership games (polar regions, moons, planets)

» Allocating and timing troops/armaments to locations

« Military spending games, e.g., space vs ocean

« Cybersecurity




SO...

* Techniques for perfect-information games
such as checkers, chess, and Go don’t apply

e ... because there are additional 1ssues:
— Private information

— Need to understand signals and how other
players will interpret signals

— Need to understand deception

— Need to deceive



Game representations,
game-theoretic solution concepts,
and complexity



The heart of the problem

 In a 1-agent setting, agent’ s expected utility
maximizing strategy is well-defined

« But in a multiagent system, the outcome may
depend on others’ strategies also

=> the agent’s best strategy may depend on what
strategies the other agent(s) choose, and vice
versa



Terminology

Agent = player

Action = move = choice that agent can make at a point in
the game

Strategy s; = mapping from history (to the extent that the
agent i can distinguish) to actions

Strategy set S; = strategies available to the agent

Strategy profile (s, S,, ..., Sj5) = One strategy for each
agent

Agent’ s utility is determined after each agent (including
nature that is used to model uncertainty) has chosen its
strategy, and game has been played: u; = ui(s;, S,, ..., Sjp)



Agenthood

* Agent attempts to maximize its expected utility

 Utility function u; of agent i is a mapping from outcomes to reals
— Incorporates agent’s risk attitude (allows quantitative tradeoffs)
* E.g. outcomes over money

Ui a
Lottery 1: $0.5M w.p. 1

1 Risk averse
Lottery 2: $1M  w.p. 0.5

0 w.p.05 05
3 i Risk seeking
Agent’s strategy is the 0 > M$
choice of lottery 0 0.5 1

Risk aversion => insurance companies

« Often in game theory we just talk about expected payoff or
expected value (EV)



Utility functions are scale-invariant

Agent 1 chooses a strategy that maximizes expected utility

max 2 utcome P(OUtCOmMe | strategy) u.(outcome)

strategy

If u’()=au()+Dbtfora>0 then the agent will choose the
same strategy under utility function u;’ as it would under u.

— (u, has to be finite for each possible outcome; otherwise expected utility could
be infinite for several strategies, so the strategies could not be compared.)

Inter-agent utility comparison would be problematic



Game representations

| Matrix form
Extensive form (aka normal form

(aka tree form) aka strategic form)

player 2’ s strategy

Left ~ 1.2 . :
© Left, Left, Right, Right,

Left Right Left Right

3,4 , U 1.2 1.2 3 4 3.4
player 1" s P ’ ’ ’ ’

5.6 strategy
Down| 56 | 7.8 56 | 7.8

Right

Potential combinatorial explosion

—



Dominant strategy “equilibrium”

Best response s;* (for a given strategy profile s of the
other players): foralls;”, u,(s*s,) 2 u(s/’,s.)
Dominant strategy s;*: s;* IS a best response for all s
— Does not always exist

— Inferior strategies are called “dominated”

Dominant strategy equilibrium is a strategy profile where
each agent has picked its dominant strategy

— Does not always exist
— Requires no counterspeculation
— E.g., Prisoners’ Dilemma:

cooperate  defect

Pareto optimal?

cooperate O, 5
Social welfare

maximizing?
defect 5,0 @




Nash equilibrium
[Nash50]

« Sometimes an agent’ s best response depends on others’
strategies: a dominant strategy does not exist
« A strategy profile s* is a Nash equilibrium if no player has
Incentive to deviate from his strategy given that others do
not deviate: for every agent i, u,(s;*,s*.) 2 ui(s;” ,s*.) for all s;’
— Dominant strategy equilibria are Nash equilibria but not vice versa
— Defect-defect is the only Nash eq. in Prisoner’ s Dilemma
— Battle of the Sexes game
« Has no dominant strategy equilibria

_ Woman
boxing ballet
" boxing A 2,1) <€+— 0,0 |,
an
pallet | | 0,0 —»(L2)"



http://upload.wikimedia.org/wikipedia/commons/9/91/John_f_nash_20061102_3.jpg

Criticisms of Nash equilibrium

Not unigue in all games, e.qg., Battle of the Sexes

— Approaches for addressing this problem

* Refinements (=strengthenings) of the equilibrium concept
— Eliminate weakly dominated strategies first
— Choose the Nash equilibrium with highest welfare
— Subgame perfection ...

» Focal points

« Mediation

« Communication

« Convention

« Learning 41, O 40,1

Does not exist in all games

I0,14'— 1,0 *




Rock-scissors-paper game

Sequential moves



Rock-scissors-paper game

Simultaneous moves



Imperfect-information extensive-form games

Mixed strategy = agent’ s chosen probability
distribution over pure strategies from its strategy set

move of ock_ 0,0
agent 2 scissors
1, -1
aper
-1, 1
-1, 1
move of scissors sScissors 0.0
nt 1 ’
agent baper aper
Information set 1,-1
(the mover does not 1, -1
know which node of the
set she is in) SCISSOrs 11

Chance can also be a player
(stochastic, not strategic )

aper

(Bayes-)Nash equilibrium:
Each agent uses a

best-response strategy
and has consistent beliefs

Rock-paper-scissors
game has a symmetric
mixed-strategy Nash
equilibrium where each
player plays each pure
strategy with probability
1/3

Fact: In mixed-strategy
equilibrium, each
strategy that occurs in
the mix of agent i has
equal expected utility to i



Behavioral strategy

* Agent has a probability distribution over her
actions at each of her information sets

 Kuhn’s theorem: If an agent has perfect
recall, for every mixed strategy there 1s a
behavioral strategy that has an equivalent
payoff (1.e., the strategies are equivalent)

— Applies also to infinite games



Existence of pure-strategy Nash equilibria

e Thrm.
— Any finite game,
— where each action node is alone in its information set

 (i.e., at every point in the game, the agent whose turn it is to move
knows what moves have been played so far)

— Is dominance solvable by backward induction (at least as long
as ties are ruled out)

« Constructive proof: Multi-player minimax search

« Lots of interesting work has been done on computer
chess and Go to tackle the computational complexity



Existence & complexity of
mixed-strategy Nash equilibria

« Every finite player, finite strategy game has at least one Nash
equilibrium if we admit mixed-strategy equilibria as well as pure

— (Proof is based on Kakutani’s fix point theorem)

 May be hard to compute
— Complexity of finding a Nash equilibrium in a normal-form game:

« 2-player 0-sum games can be solved in polytime with LP

» 2-player games are
— PPAD-complete (even with 0/1 payoffs)

— NP-complete to find an even approximately good Nash equilibrium

« 3-player games are FIXP-complete



Properties of 2-player 0-sum games

* Swappability: if (x,y) and (x’,y’) are equilibria, then so are (x’,y) and (x,y’)
— =>no equilibrium selection problem: player is safe playing any one of her equilibrium strategies
* A player’s equilibrium strategies form a bounded convex polytope
* Any convex combination of a player’s equilibrium strategies is an equilibrium strategy
*  The set of Nash equilibria are exactly the set of solutions to the minmax problem max, min, u,(x,y)
*  Minmax theorem [von Neumann 1928]:
Let X € BR® and Y < R™ be compact convex sets. If f: X x ¥ — R is a continuous function that is concave-convex, i.e.

f(-,y) : X — R is concave for fixed y, and The function f(x,y)=y?-x? is concave-convex.
flz,+) : ¥ — Ris convex for fixed &.

Then we have that

max min flz,y) = min max flz,y).

Example

it f(x,y) = «” Ay for a finite matrix A € R™™ , we have:

max minz’ Ay = min maxz’ Ay.
zeX yeY yEY zeX

* Amazing in multi-step imperfect-information games:

— By playing a non-equilibrium strategy, our opponent can cause our beliefs to be wrong, but not by so much that the opponent’s
expected value increases!

* Solvable in polynomial time in the size of the game tree using LP
—  But what if the tree has 10'% nodes?
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