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Rich history of cumulative ideas



Chess game tree



Opening books (available electronically too)
Example opening where the book goes 16 moves (32 plies) deep



Minimax algorithm (not all branches are shown)



Search depth pathology 

(although in practice in games deeper search yields stronger play)

• Beal (1980) and Nau (1982, 83) analyzed whether values backed up by minimax search are 

more trustworthy than the heuristic values themselves. The analyses of the model showed 

that backed-up values are somewhat less trustworthy

• Anomaly goes away if sibling nodes’ values are highly correlated [Beal 1982, Bratko & 

Gams 1982, Nau 1982]

• Pearl (1984) partly disagreed with this conclusion, and claimed that while strong 

dependencies between sibling nodes can eliminate the pathology, practical games like chess 

don’t possess dependencies of sufficient strength
– He pointed out that few chess positions are so strong that they cannot be spoiled abruptly if one really tries hard to 

do so

– He concluded that success of minimax is “based on the fact that common games do not possess a uniform structure 

but are riddled with early terminal positions, colloquially named blunders, pitfalls or traps. Close ancestors of such 

traps carry more reliable evaluations than the rest of the nodes, and when more of these ancestors are exposed by the 

search, the decisions become more valid.”

• Still not fully understood.  For newer results, see:
– Sadikov, Bratko, Kononenko. (2003)  Search versus Knowledge: An Empirical Study of Minimax on KRK, In: van 

den Herik, Iida and Heinz (eds.) Advances in Computer Games: Many Games, Many Challenges, Kluwer Academic 

Publishers, pp. 33-44 

– Understanding Sampling Style Adversarial Search Methods [PDF]. Raghuram Ramanujan, Ashish Sabharwal, Bart 

Selman.  UAI-2010, pp 474-483. 

– On Adversarial Search Spaces and Sampling-Based Planning [PDF]. Raghuram Ramanujan, Ashish Sabharwal, Bart 

Selman. ICAPS-2010, pp 242-245.

• Also present in imperfect-information games when one party has limited lookahead 

[Kroer & Sandholm IJCAI-15; Kroer, Farina & Sandholm AAAI-18]

http://ai.fri.uni-lj.si/sasha/acg2003.pdf
http://event.cwi.nl/uai2010/papers/UAI2010_0287.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1458/1571


α-β -pruning



α-β -search on ongoing example



α-β -search



Complexity of α-β -search



Evaluation function

• Difference (between 

player and opponent) of

– Material

– Mobility

– King position

– Bishop pair

– Rook pair

– Open rook files

– Control of center 

(piecewise)

– Others

Values of knight’s position in Deep Blue



Evaluation function...

• Deep Blue used ~6,000 different features in its evaluation function (in 
hardware)

• A different weighting of these features is downloaded to the chips after 
every real world move (based on current situation on the board)

– Contributed to strong positional play

• Acquiring the weights for Deep Blue

– Weight learning based on a database of 900 grand master games (~120 
features)

• Alter weight of one feature => 5-6 ply search => if matches better with grand master 
play, then alter that parameter in the same direction further

• Least-squares with no search

– Manually: Grand master Joel Benjamin played take-back chess.  At possible 
errors, the evaluation was broken down, visualized, and weighting possibly 
changed

– Other learning is possible, e.g., Tesauro’s Backgammon programs

• Neurogammon [1989]
– Taught using supervised learning on 400 games

– Level: intermediate human player

• TD-Gammon [1992]: Reinforcement learning; Level: world-class human tournament 
player

Deep Blue is brute force Smart search and knowledge
engineered evaluation





Horizon problem



Ways to tame the horizon problem

• Quiescence search

– Evaluation function (domain specific) returns another 
number in addition to evaluation: stability

• Threats

• Other

– Continue search (beyond normal horizon) if position is 
unstable

– Introduces variance in search time

• Singular extension

– Domain independent

– A node is searched deeper if its value is much better 
than its siblings’

– Even 30-40 ply

– A variant is used by Deep Blue



Transpositions



Transpositions are important



Transposition table

• Store millions of positions in a hash table to avoid searching them again

– Position

– Hash code

– Score

– Exact / upper bound / lower bound

– Depth of searched tree rooted at the position

– Best move to make at the position

• Algorithm

– When a position P is arrived at, the hash table is probed

– If there is a match, and

• new_depth(P) ≥ stored_depth(P), and

• score in the table is exact, or the bound on the score is sufficient to cause the move 

leading to P to be inferior to some other choice

– then P is assigned the attributes from the table

– else computer scores (by direct evaluation or search (old best move searched 

first)) P and stores the new attributes in the table

• Fills up => replacement strategies

– Keep positions with greater searched tree depth under them

– Keep positions with more searched nodes under them



End game databases



Generating endgame databases automatically

• State space = {WTM, BTM} x {all possible configurations of 
remaining pieces}

• BTM table, WTM table, legal moves connect states between 
these

• Start at terminal positions: mate, stalemate, immediate 
capture without compensation (=reduction).  Mark white’s 
wins by won-in-0

• Mark unclassified WTM positions that allow a move to a won-
in-0 by won-in-1 (store the associated move)

• Mark unclassified BTM positions as won-in-2 if forced moved 
to won-in-1 position

• Repeat this until no more labelings occurred

• Do the same for black

• Remaining positions are draws



Compact representation methods to help endgame 

database representation & generation



Endgame databases…

When playing against a computer with an endgame DB, don’t exchange pieces when 

the exchange would bring the game to a position that is in the DB!



Endgame databases…



How end game databases changed chess

• All 5 piece endgames solved (can have > 108 states) & 

many 6 piece

– KRBKNN (~1011 states): longest path-to-reduction 223

• Rule changes

– Max number of moves from capture/pawn move to 

completion

• Chess knowledge

– Splitting rook from king in KRKQ

– KRKN game was thought to be a draw, but

• White wins in 51% of WTM

• White wins in 87% of BTM



Deep Blue’s search

• ~200 million moves / second = 3.6 * 1010 moves in 3 minutes

• 3 min corresponds to

– ~7 plies of uniform depth minimax search

– 10-14 plies of uniform depth alpha-beta search

• 1 sec corresponds to 380 years of human thinking time

• Software searches first

– Selective and singular extensions

• Specialized hardware searches last 5 ply 



Deep Blue’s hardware

• 32-node RS6000 SP multicomputer

• Each node had

– 1 IBM Power2 Super Chip (P2SC)

– 16 chess chips

• Move generation (often takes 40-50% of time)

• Evaluation

• Some endgame heuristics & small endgame databases

• 32 Gbyte opening & endgame database



Role of computing power



Interestingly… “Freestyle Chess” 

= centaurs

• Hybrid human-AI chess players were 

stronger for a while than humans or AI 

alone
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