
Algorithms for solving

sequential (zero-sum)

complete-information

games

Tuomas Sandholm

CHESS,

MINIMAX SEARCH,

AND IMPROVEMENTS TO

MINIMAX SEARCH

1996

Rich history of cumulative ideas

Chess game tree

Opening books (available electronically too)
Example opening where the book goes 16 moves (32 plies) deep

Minimax algorithm (not all branches are shown)

Search depth pathology

(although in practice in games deeper search yields stronger play)

• Beal (1980) and Nau (1982, 83) analyzed whether values backed up by minimax search are

more trustworthy than the heuristic values themselves. The analyses of the model showed

that backed-up values are somewhat less trustworthy

• Anomaly goes away if sibling nodes’ values are highly correlated [Beal 1982, Bratko &

Gams 1982, Nau 1982]

• Pearl (1984) partly disagreed with this conclusion, and claimed that while strong

dependencies between sibling nodes can eliminate the pathology, practical games like chess

don’t possess dependencies of sufficient strength
– He pointed out that few chess positions are so strong that they cannot be spoiled abruptly if one really tries hard to

do so

– He concluded that success of minimax is “based on the fact that common games do not possess a uniform structure

but are riddled with early terminal positions, colloquially named blunders, pitfalls or traps. Close ancestors of such

traps carry more reliable evaluations than the rest of the nodes, and when more of these ancestors are exposed by the

search, the decisions become more valid.”

• Still not fully understood. For newer results, see:
– Sadikov, Bratko, Kononenko. (2003) Search versus Knowledge: An Empirical Study of Minimax on KRK, In: van

den Herik, Iida and Heinz (eds.) Advances in Computer Games: Many Games, Many Challenges, Kluwer Academic

Publishers, pp. 33-44

– Understanding Sampling Style Adversarial Search Methods [PDF]. Raghuram Ramanujan, Ashish Sabharwal, Bart

Selman. UAI-2010, pp 474-483.

– On Adversarial Search Spaces and Sampling-Based Planning [PDF]. Raghuram Ramanujan, Ashish Sabharwal, Bart

Selman. ICAPS-2010, pp 242-245.

• Also present in imperfect-information games when one party has limited lookahead

[Kroer & Sandholm IJCAI-15; Kroer, Farina & Sandholm AAAI-18]

http://ai.fri.uni-lj.si/sasha/acg2003.pdf
http://event.cwi.nl/uai2010/papers/UAI2010_0287.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1458/1571

α-β -pruning

α-β -search on ongoing example

α-β -search

Complexity of α-β -search

Evaluation function

• Difference (between

player and opponent) of

– Material

– Mobility

– King position

– Bishop pair

– Rook pair

– Open rook files

– Control of center

(piecewise)

– Others

Values of knight’s position in Deep Blue

Evaluation function...

• Deep Blue used ~6,000 different features in its evaluation function (in
hardware)

• A different weighting of these features is downloaded to the chips after
every real world move (based on current situation on the board)

– Contributed to strong positional play

• Acquiring the weights for Deep Blue

– Weight learning based on a database of 900 grand master games (~120
features)

• Alter weight of one feature => 5-6 ply search => if matches better with grand master
play, then alter that parameter in the same direction further

• Least-squares with no search

– Manually: Grand master Joel Benjamin played take-back chess. At possible
errors, the evaluation was broken down, visualized, and weighting possibly
changed

– Other learning is possible, e.g., Tesauro’s Backgammon programs

• Neurogammon [1989]
– Taught using supervised learning on 400 games

– Level: intermediate human player

• TD-Gammon [1992]: Reinforcement learning; Level: world-class human tournament
player

Deep Blue is brute force Smart search and knowledge
engineered evaluation

Horizon problem

Ways to tame the horizon problem

• Quiescence search

– Evaluation function (domain specific) returns another
number in addition to evaluation: stability

• Threats

• Other

– Continue search (beyond normal horizon) if position is
unstable

– Introduces variance in search time

• Singular extension

– Domain independent

– A node is searched deeper if its value is much better
than its siblings’

– Even 30-40 ply

– A variant is used by Deep Blue

Transpositions

Transpositions are important

Transposition table

• Store millions of positions in a hash table to avoid searching them again

– Position

– Hash code

– Score

– Exact / upper bound / lower bound

– Depth of searched tree rooted at the position

– Best move to make at the position

• Algorithm

– When a position P is arrived at, the hash table is probed

– If there is a match, and

• new_depth(P) ≥ stored_depth(P), and

• score in the table is exact, or the bound on the score is sufficient to cause the move

leading to P to be inferior to some other choice

– then P is assigned the attributes from the table

– else computer scores (by direct evaluation or search (old best move searched

first)) P and stores the new attributes in the table

• Fills up => replacement strategies

– Keep positions with greater searched tree depth under them

– Keep positions with more searched nodes under them

End game databases

Generating endgame databases automatically

• State space = {WTM, BTM} x {all possible configurations of
remaining pieces}

• BTM table, WTM table, legal moves connect states between
these

• Start at terminal positions: mate, stalemate, immediate
capture without compensation (=reduction). Mark white’s
wins by won-in-0

• Mark unclassified WTM positions that allow a move to a won-
in-0 by won-in-1 (store the associated move)

• Mark unclassified BTM positions as won-in-2 if forced moved
to won-in-1 position

• Repeat this until no more labelings occurred

• Do the same for black

• Remaining positions are draws

Compact representation methods to help endgame

database representation & generation

Endgame databases…

When playing against a computer with an endgame DB, don’t exchange pieces when

the exchange would bring the game to a position that is in the DB!

Endgame databases…

How end game databases changed chess

• All 5 piece endgames solved (can have > 108 states) &

many 6 piece

– KRBKNN (~1011 states): longest path-to-reduction 223

• Rule changes

– Max number of moves from capture/pawn move to

completion

• Chess knowledge

– Splitting rook from king in KRKQ

– KRKN game was thought to be a draw, but

• White wins in 51% of WTM

• White wins in 87% of BTM

Deep Blue’s search

• ~200 million moves / second = 3.6 * 1010 moves in 3 minutes

• 3 min corresponds to

– ~7 plies of uniform depth minimax search

– 10-14 plies of uniform depth alpha-beta search

• 1 sec corresponds to 380 years of human thinking time

• Software searches first

– Selective and singular extensions

• Specialized hardware searches last 5 ply

Deep Blue’s hardware

• 32-node RS6000 SP multicomputer

• Each node had

– 1 IBM Power2 Super Chip (P2SC)

– 16 chess chips

• Move generation (often takes 40-50% of time)

• Evaluation

• Some endgame heuristics & small endgame databases

• 32 Gbyte opening & endgame database

Role of computing power

Interestingly… “Freestyle Chess”

= centaurs

• Hybrid human-AI chess players were

stronger for a while than humans or AI

alone

	Slide 1: Algorithms for solving sequential (zero-sum) complete-information games
	Slide 2: ChESS, MINIMAX SEARCH, AND IMPROVEMENTS TO MINIMAX SEARCH
	Slide 3
	Slide 4
	Slide 5: Rich history of cumulative ideas
	Slide 7: Chess game tree
	Slide 8: Opening books (available electronically too)
	Slide 9: Minimax algorithm (not all branches are shown)
	Slide 12: Search depth pathology (although in practice in games deeper search yields stronger play)
	Slide 13: α-β -pruning
	Slide 14: α-β -search on ongoing example
	Slide 15: α-β -search
	Slide 16: Complexity of α-β -search
	Slide 17: Evaluation function
	Slide 18: Evaluation function...
	Slide 19
	Slide 20: Horizon problem
	Slide 21: Ways to tame the horizon problem
	Slide 22: Transpositions
	Slide 23: Transpositions are important
	Slide 24: Transposition table
	Slide 26: End game databases
	Slide 27: Generating endgame databases automatically
	Slide 28: Compact representation methods to help endgame database representation & generation
	Slide 29: Endgame databases…
	Slide 30: Endgame databases…
	Slide 31: How end game databases changed chess
	Slide 33: Deep Blue’s search
	Slide 34: Deep Blue’s hardware
	Slide 35: Role of computing power
	Slide 38: Interestingly… “Freestyle Chess” = centaurs

