
Monte Carlo Tree Search (MCTS)

















UCB in Bandits



Upper Confidence bounds applied to Trees (UCT) Algorithm

- Selecting child node: multi-armed bandit problem
- UCB for child selection

- UCT

- v: value estimate

- C: exploration parameter

- N: number of parent node visits

- n: number of visits



UCT Algorithm

- n = 0 means infinite weight
- Guarantees we explore each child at least once

- Each child has non-zero probability of selection

- Adjust C to change explore-exploit tradeoff

Theorem. MCTS with UCT action selection in the Selection phase finds an 

optimal policy [Kocsis and Szepesvári. ECML ‘06]



















AlphaGo





AlphaGo

Uses a value network and policy network to augment MCTS

1. Policy network first trained on professional Go games and then trained further 

using reinforcement learning

2. Value network trained using self-play using the policy network

3. Then MCTS is run leveraging the two networks







High-level idea 1:



High-level idea 2:



AlphaGo’s MCTS

u depends on policy network’s P and visit count

Once search is complete, the algorithm selects 

the most visited move from the root.



AlphaGo Zero



AlphaGo Zero

- No human data besides rules of the game

- The value and policy network are trained in self-play in the context of MCTS 

instead of human data or without search
- MCTS as a policy improvement operator!

- Trained on 4 TPUs for 70 days 
- Compared to tens of thousands of TPUs for Gemini





Neural Network Loss Function

Value error

Maximise similarity of the 

neural network move 

probabilities p to the search 

probabilities π

Regularizer



Search Algorithm

Once the search is 

complete, search 

probabilities π are returned 

proportional to N1/μ, where 

N is the visit count of each 

move from the root state 

and μ is a parameter 

controlling temperature



Search Algorithm

- Each node s in the search tree contains edges (s, a) for all legal actions

- Each edge stores a set of statistics, {N(s, a), W(s, a), Q(s, a), P(s, a)}
- N: number of visits to that edge

- W: Total value 

- Q: Average value

- P: Policy output



Expand and Evaluate

- When we reach a leaf node, we run the state through the neural network to 

get a value estimate and policy estimate

- Each edge (N, W, Q) is initialized to 0

- Backup value



Backup

- We update N, W, Q with the value that the neural network proposes

- N(s, a) = N(s, a) +1

- W(s,a) = W(s,a) + v

- Q(s, a) = W(s, a) / N(s, a)



These Techniques are Useful Also in Single-Agent Settings

E.g.1: Rubik’s cube

McAleer et al. "Solving the Rubik's cube with approximate policy iteration." ICLR. 2018.

Agostinelli et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence. 2019

E.g.2: Edge test selection in kidney exchange 

McElfresh, Curry, Sandholm, Dickerson, “Improving Policy-Constrained Kidney Exchange via Pre-Screening”, NeurIPS-20]


	Slide 1: Monte Carlo Tree Search (MCTS)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: UCB in Bandits
	Slide 10: Upper Confidence bounds applied to Trees (UCT) Algorithm
	Slide 11: UCT Algorithm
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: AlphaGo
	Slide 21
	Slide 22: AlphaGo
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: AlphaGo’s MCTS
	Slide 28: AlphaGo Zero
	Slide 29: AlphaGo Zero
	Slide 30
	Slide 31: Neural Network Loss Function
	Slide 32: Search Algorithm
	Slide 33: Search Algorithm
	Slide 34: Expand and Evaluate
	Slide 35: Backup
	Slide 36: These Techniques are Useful Also in Single-Agent Settings

