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Two-Player Zero-Sum Normal-
Form Games

- NE doesn’t have problems as in general-sum 
or multiplayer games

- In a sense, NE is optimal in that no opponent 
can exploit you

- If I were to play any other strategy than 
⅓, ⅓, ⅓ in rock paper scissors, you could 
exploit me

- NE can leave utility on the table against 
imperfect opponents

- If you always play Rock, NE will still just 
play ⅓, ⅓, ⅓

- But this is a price usually worth paying when 
playing experts or other AI programs
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Computing NE in Two-Player 
Zero-Sum Normal-Form Games 

(This Lecture)
1. LP for small games

2. Iterative Approaches

○ Best-Response Dynamics (doesn’t converge)

○ Fictitious Play aka Follow the Leader (FTL)

3. No-Regret Algorithms

○ Follow the Regularized Leader (FTRL)

○ Regret Matching
4. Optimistic regret minimization
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Running example: 
Weighted RPS



LP Approach
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LP Approach
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LP Approach

find the largest value 𝑣 s.t.

for some 𝒙

𝒙 is a valid mixed strategy

every strategy of the 
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- Solving our game results in the 
following

- We maximize the value that the 
opponent can get against us

- Any deviation would allow the 
opponent to exploit us more
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For P2’s strategy: take dual values 
of constraint 𝑨⊤𝒙 ≥ 𝟏𝑣, or solve
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𝒙∈Δ𝑚

𝒙⊤𝑨𝒚

LP Approach



Iterative Approaches

- Only relatively small games can be solved via LP
- For larger games we need iterative approaches
- Most iterative approaches approach a NE on average

- Can be stopped any time
- What we’ll cover

- Best Response Dynamics (doesn’t converge to NE)
- Fictitious Play aka Follow the Leader (isn’t no-regret)
- Follow the Regularized Leader (e.g., gradient descent, 

multiplicative weights)
- Regret Matching

- Regret Matching Plus

- Optimistic regret minimization

We’ll make this 
precise soon 



Best Reponse Dynamics

𝑥𝑖
𝑡+1 = arg max

𝑥𝑖
𝑢𝑖 𝑥𝑖 , 𝑥−𝑖

𝑡
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𝑇→∞
NE?

Best respond to the opponent’s last strategy



𝑥𝑖
𝑡+1 = arg max

𝑥𝑖

1

𝑡
෍

𝜏=1

𝑡

𝑢𝑖 𝑥𝑖 , 𝑥−𝑖
𝜏

Fictitious Play (Follow the Leader)

Best respond to the opponent’s average strategy

Question: Does 

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑖
𝑡

𝑇→∞
NE?

Yes! (for zero-sum games)
[Robinson 1951]

…but possibly with very slow rate 𝑇−1/𝑛

if the tiebreaking is done adversarially
[Daskalakis & Pan 2014]

Open question [“Karlin’s weak conjecture”, Karlin 1959]:
Does FP with non-adversarial tiebreaking converge with 

rate 𝑂𝑛(𝑇
−1/2) in all zero-sum normal-form games?



No-Regret Algorithms

- What if I’m playing a repeated game against someone 
who knows I am playing fictitious play?

- Then they would know exactly what my next move will 
be and could choose a best response every time

- Can we find iterative algorithms that will not be too bad
even when the opponent knows the algorithm?

- No-regret algorithms do exactly this

- And achieve faster convergence than FP as well!



Regret Minimization

for 𝑡 = 1,… , 𝑇:

• Agent chooses an action distribution 𝒙𝑡 ∈ 𝑋 ≔ Δ𝑛

• Environment chooses a utility vector 𝒖𝑡 ∈ 0, 1 𝑛

• Agent observes 𝒖𝑡 and gets utility 𝒖𝑡, 𝒙𝑡

Agent goal: Minimize regret. 

“How well do we do against best, fixed strategy in hindsight?”

𝑅𝑇 ≔ max
ෝ𝒙∈𝑋

෍

𝑡=1

𝑇

〈𝒖𝑡 , ෝ𝒙〉 −෍

𝑡=1

𝑇

〈𝒖𝑡, 𝒙𝑡〉

🌟 Goal: have 𝑅𝑇 grow sublinearly with respect to time 𝑇, e.g., 𝑅𝑇 = 𝑂𝑛 𝑇

Δ𝑛 = set of distributions on 𝑛 things
= {𝒙 ∈ ℝ𝑛: 𝒙 ≥ 0, ∑𝒙𝑖 = 1}

Utility that was 
actually 
accumulated

Maximum utility that was 
achievable by the best 
fixed action in hindsight

No assumption on utilities!
Must be able to handle adversarial environments



What does regret minimization 
have to do with zero-sum games?

🌟 IDEA: Self-play. Make two regret minimizers play each other

𝑅1
𝑇 ≔ max

ෝ𝒙∈Δ𝑚
෍

𝑡=1

𝑇

〈𝑨𝒚𝑡 , ෝ𝒙 〉 −෍

𝑡=1

𝑇

𝑨𝒚𝑡 , 𝒙𝑡 ≤ 𝑂𝑚 𝑇

Nash equilibrium in a 

2-player 0-sum 

normal-form game 

with payoff matrix 𝐴:

max
𝒙∈Δ𝑚

min
𝒚∈Δ𝑛

𝒙⊤𝑨𝒚

𝑅2
𝑇 ≔ max

ෝ𝒚∈Δ𝑛
෍

𝑡=1

𝑇

−𝑨⊤𝒙𝑡 , ෝ𝒚 −෍

𝑡=1

𝑇

〈−𝑨⊤𝒙𝑡 , 𝒚𝑡〉 ≤ 𝑂𝑛 𝑇

max
ෝ𝒙∈Δ𝑚

ෝ𝒙⊤𝑨ഥ𝒚 − min
ෝ𝒚∈Δ𝑛

ഥ𝒙⊤𝑨ෝ𝒚 ≤ 𝑂𝑚,𝑛

1

𝑇

where ഥ𝒙 =
1

𝑇
∑𝑡=1
𝑇 𝒙𝑡 and ഥ𝒚 =

1

𝑇
∑𝑡=1
𝑇 𝒚𝑡

🌟 TAKEAWAY

The average strategies 
converge to a Nash 

equilibrium!

Add these two lines and 
divide by T to get the average

for 𝑡 = 1, … , 𝑇:

• 𝒙𝑡 ← request strategy from P1’s regret minimizer

• 𝒚𝑡 ← request strategy from P2’s regret minimizer

• Pass utility 𝑨𝒚𝑡 to P1’s regret minimizer

• Pass utility −𝑨⊤𝒙𝑡 to P2’s regret minimizer



Regret Minimization: Follow 
the Leader (Fictitious Play)

First attempt: Follow the leader. That is, play the best action in hindsight 

so far:

This does not work!

Counterexample: 𝑛 = 2 actions, 

𝒖𝑡 = ൞
ൗ1 2 , 0 𝑡 = 1

[0, 1] 𝑡 > 1, even
[1, 0] 𝑡 > 1, odd

Best action in hindsight has utility ≈ 𝑇/2
Follow-the-leader always plays the wrong action and therefore gets utility ≈ 0

More generally: No algorithm outputting only pure actions can have no regret

𝒙𝑡+1 = arg max
𝒙∈𝑋

෍

𝜏≤𝑡

𝒖𝜏, 𝒙



Follow the Regularized Leader

- This prevents each iterate from 
being deterministic

- The resulting algorithm is no-regret 

(for 𝜂 ∝ 1/ 𝑇)

- Intuitively, updates toward high-
regret actions, but not too much

𝒙𝑡+1 = arg max
𝒙∈𝑋

෍

𝜏≤𝑡

𝒖𝜏, 𝒙 −
1

𝜂
𝑅(𝒙)

Idea: Add a strictly convex regularizer 𝑅 ∶ 𝑋 → ℝ

0 1
Follow the leader will 

always play 
deterministic actions

0 1
Follow the regularized 

leader will mix



Follow the Regularized Leader

Idea: Add a strictly convex regularizer 𝑅 ∶ 𝑋 → ℝ

0 1
Follow the leader will 

always play 
deterministic actions

0 1
Follow the regularized 

leader will mix

Example 1: quadratic

𝑅 𝒙 =
1

2
𝒙 2

2

Closed-form optimization:

𝒙𝑡+1 = Π𝑋 𝜂 ⋅෍

𝜏=1

𝑡

𝒖𝜏

a.k.a. gradient descent!

𝒙𝑡+1 = arg max
𝒙∈𝑋

෍

𝜏≤𝑡

𝒖𝜏, 𝒙 −
1

𝜂
𝑅(𝒙)

Π𝑋 = projection onto 𝑋



Follow the Regularized Leader

Idea: Add a strictly convex regularizer 𝑅 ∶ 𝑋 → ℝ

0 1
Follow the leader will 

always play 
deterministic actions

0 1
Follow the regularized 

leader will mix

Example 2: negative entropy

𝑅 𝒙 =෍

𝑎

𝑥[𝑎] log 𝑥[𝑎]

Closed-form optimization:

𝒙𝑡+1 ∝ exp 𝜂 ⋅෍

𝜏=1

𝑡

𝒖𝜏

a.k.a. multiplicative weights update (MWU), 

hedge, (discrete-time) replicator dynamics, 

randomized weighted majority, ...

𝒙𝑡+1 = arg max
𝒙∈𝑋

෍

𝜏≤𝑡

𝒖𝜏, 𝒙 −
1

𝜂
𝑅(𝒙)



A Common Template for 
Regret Minimizers

• Given utility vectors 𝒖1, … , 𝒖𝑡, we compute the empirical regrets up 
to time t of each action:

𝑟𝑡 𝑎 ≔෍

𝜏=1

𝑡

𝑢𝜏 𝑎 − 𝒖𝜏, 𝒙𝜏

• Then, intuitively the next strategy 𝒙𝑡+1 gives mass to actions in a 
manner related to how much regret they have accumulated



Empirical regret:

𝑟𝑡 𝑎 ≔෍

𝜏=1

𝑡

𝑢𝜏 𝑎 − 𝒖𝜏, 𝒙𝜏

Algorithm Rule

Gradient descent 𝒙𝑡+1 = Π𝑋 𝜂 ⋅ 𝒓𝑡

Multiplicative weights update (MWU)
(aka Hedge, Randomized Weighted Majority, …)

𝒙𝑡+1 ∝ exp 𝜂 ⋅ 𝒓𝑡

Hyperparameter
(“learning rate”)

No learning rate. 
Scale-invariant!

A Common Template for 
Regret Minimizers

Regret matching (RM) 
[Hart & Mas-Collel 2000]

𝒙𝑡+1 ∝ max 0, 𝒓𝑡



= 𝒓𝑡 +
2
2 + 𝒈𝑡+1 2

2 + 2 𝒈𝑡+1 ⊤ 𝒓𝑡 +

𝐱𝑡+1 ∝ 𝒓𝑡 + where

𝒓𝑡+1 +
2
2 ≤ 𝒓𝑡 + + 𝒈𝑡+1 2

2

𝒓𝑡 ≔ 𝒓𝑡−1 + 𝒈𝑡

𝒈𝑡 ≔ 𝒖𝑡 − 𝒖𝑡 , 𝒙𝑡 ⋅ 𝟏

using inequality 𝑥 + 𝑦 + ≤ 𝑥 + + 𝑦 for 𝑥, 𝑦 ∈ ℝ

0

induction

𝒓𝑇 +
2
2 ≤෍

𝑡=1

𝑇

𝒈𝑡 2
2 ≤ 𝑛𝑇 since 𝒈𝑡 ∈ −1,1 𝑛

𝑅𝑇 ≔ max
𝑎

𝑟𝑇 𝑎 ≤ 𝒓𝑇 +
2 ≤ 𝑛𝑇 □

Note:   𝒈𝑡 , 𝒙𝑡 = 0

RM Regret Bound Proof



Algorithm Rule

Gradient descent 𝒙𝑡+1 = Π𝑋 𝜂 ⋅ 𝒓𝑡

Multiplicative weights update (MWU)
(aka Hedge, aka Randomized Weighted Majority)

𝒙𝑡+1 ∝ exp 𝜂 ⋅ 𝒓𝑡

Regret matching (RM) 
[Hart & Mas-Collel 2000]

𝒙𝑡+1 ∝ 𝒓𝑡 +

A Common Template for 
Regret Minimizers
Empirical regret: 𝒓𝑡 ≔ 𝒓𝑡−1 + 𝒈𝑡

Simple modification:  𝒓+
𝑡 ≔ 𝒓+

𝑡−1 + 𝒈𝑡 +

(Floor regrets at 0 after every iteration)

Regret matching plus (RM+)
[Tammelin 2014]

𝒙𝑡+1 ∝ 𝒓+
𝑡 +

(Regret bound proof is identical)



All of these algorithms guarantee that after seeing any number T of utilities 

𝒖1, … , 𝒖𝑇 , the regret cumulated by the algorithm satisfies

Constant that depends on number of actions

MWU: 𝐶 = log 𝑛

RM, RM+, GD: 𝐶 = 𝑛

𝑅𝑇 ≤ 𝐶 𝑇

Consequence: when using these 

algorithms in self-play in 2-player 

0-sum games, the average 

strategy converges to a Nash 

equilibrium at a rate of Τ𝐶 𝑇

Remember:

This holds without any 

assumption about the way the 

utilities are selected by the 

environment!

for 𝑡 = 1,… , 𝑇:

• 𝒙𝑡 ← request strategy from P1’s regret minimizer

• 𝒚𝑡 ← request strategy from P2’s regret minimizer

• Pass utility 𝑨𝒚𝑡 to P1’s regret minimizer

• Pass utility −𝑨⊤𝒙𝑡 to P2’s regret minimizer

Reminder: Self-play

A Common Template for 
Regret Minimizers



State-of-the-art variant in practice: 
Discounted RM (DRM)

• Linear RM (LRM)
• Weight iteration t by t (in regrets and averaging)

• RM+ floors regrets at 0. Can we combine this with linear RM? Theory: 
Yes. Practice: No! Does very poorly.

• But less-aggressive combinations do well: Discounted RM
• On each iteration, multiply positive regrets by 𝑡𝛼 / (𝑡𝛼+1)

• On each iteration, multiply negative regrets by 𝑡𝛽 / (𝑡𝛽+1)

• Weight contributions toward average strategy on iteration 𝑡 by 𝑡𝛾

• Worst-case convergence bound only a small constant worse than 
that of RM

• RM: 𝛼 = 𝛽 = +∞

• RM+: 𝛼 = +∞, 𝛽 = −∞

• For 𝛼 = 1.5, 𝛽 = 0, 𝛾 = 2, consistently outperforms RM+ in practice

Brown & Sandholm (AAAI 2019), “Solving Imperfect-Information Games via Discounted Regret Minimization”



What Regret Minimizers are 
Used in Practice?

Follow the Regularized Leader (FTRL) 

(e.g., gradient descent, multiplicative weights)

✔ Works for general convex sets

✔ Widely used & understood

❌ Slow in practice

❌ Has hyperparameters (stepsize)

✔ Can incorporate optimism 
about future losses to 
converge faster in 2-player 0-sum
games

❌ Only for simplex domains

❌ Not as well studied theoretically

✔ Fast in practice

✔ No hyperparameters

❓ Unknown

…until recently ✔

Regret Matching (RM)

& Regret Matching+ (RM+)

🌟Modern variants of this, such as DCFR, are 
the standard in extensive-form game solving!



Algorithm Standard (non-optimistic) rule Optimistitic (aka Predictive) rule

GD 𝒙𝑡+1 = Π𝑋 𝜂 ⋅ 𝒓𝑡

Replace 𝒓𝑡

with 𝒓𝑡 + 𝒈𝑡
MWU 𝒙𝑡+1 ∝ exp 𝜂 ⋅ 𝒓𝑡

RM 𝒙𝑡+1 ∝ 𝒓𝑡 +

RM+ 𝒙𝑡+1 ∝ 𝒓+
𝑡 +

Optimistic (Predictive)
Regret Minimizers

All of these algorithms guarantee that after seeing any number 𝑇 of utilities 

𝒖1, … , 𝒖𝑇 , the regret cumulated by the algorithm satisfies

Takeaway message: still ≈ 𝑇 regret, but much smaller 

when there is little change to the utilities over time

𝑅𝑇 ≤ 𝐶 ෍

𝑡=1

𝑇

𝒈𝑡 − 𝒈𝑡−1 2
2

Typically, one-line change in implementation

Remember:

This holds without any 

assumption about the way 

the utilities are selected by 

the environment!

(where 𝒈0 ≔ 𝟎)



Self-play iterations
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RM+

Green dashed: Linear RM
Violet dotted: Discounted RM

(RM was omitted as it is typically much slower than RM+)

Empirical Performance

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI 2021]



Practical State-of-the-Art

• In general, Discounted RM and Optimistic RM+ are 
the fastest in practice
• For some games, like poker, Discounted RM is 

empirically consistently faster than Optimistic RM+

• For many other games, Optimistic RM+ is significantly 
faster

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI 2021]



Beyond Zero-Sum Games

Correlated strategy profile:

𝜇𝑇 ≔
1

𝑇
෍

𝑡=1

𝑇

𝑥1
𝑡 ⊗𝑥2

𝑡 ⊗⋯𝑥𝑛
𝑡 ∈ Δ(𝐴1 ×⋯× 𝐴𝑛)

Regret guarantee: for all players 𝑖:

𝜇𝑇 is an 𝜖-“coarse-correlated equilibrium” (CCE) where 𝜖 = 𝑂𝑛 Τ1 𝑇

Note: A CCE that happens to be a product distribution (𝜇𝑇 ∈ Δ 𝐴1 ×⋯× Δ(𝐴𝑛)) is a 
Nash equilibrium

Note: not  Δ 𝐴1 ×⋯× Δ(𝐴𝑛)

max
𝑥𝑖
∗

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖

𝑡 − 𝑢𝑖 𝑥𝑖
𝑡 , 𝑥−𝑖

𝑡 ≤ 𝑂𝑛
1

𝑇

= max
𝑥𝑖
∗

𝔼
𝑥∼𝜇𝑇

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖

the product distribution in Δ 𝐴1 ×⋯× Δ(𝐴𝑛)

whose marginal on 𝐴𝑖 is 𝑥𝑖
𝑡 ∈ Δ(𝐴𝑖)
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