Solving Normal-Form Games

Brian Zhang

Recap: Normal-Form Games

(No turns)

Strategy for a player is just a probability distribution over actions

Two-Player Zero-Sum Normal-Form Games

- NE doesn't have problems as in general-sum or multiplayer games
- In a sense, NE is optimal in that no opponent can exploit you
	- If I were to play any other strategy than ⅓, ⅓, ⅓ in rock paper scissors, you could exploit me
- NE can leave utility on the table against imperfect opponents
	- If you always play Rock, NE will still just play ⅓, ⅓, ⅓
- But this is a price usually worth paying when playing experts or other AI programs

Computing NE in Two-Player Zero-Sum Normal-Form Games (This Lecture)

- 1. LP for small games
- 2. Iterative Approaches
	- Best-Response Dynamics (doesn't converge)
	- Fictitious Play aka Follow the Leader (FTL)
- 3. No-Regret Algorithms
	- Follow the Regularized Leader (FTRL)
	- Regret Matching
- 4. Optimistic regret minimization

Running example: Weighted RPS

LP Approach

max $x \in \Delta^{m}$ min $y \in \Delta^n$ $x^{\top}Ay$

LP Approach

LP Approach

- Solving our game results in the following
- We maximize the value that the opponent can get against us
- Any deviation would allow the opponent to exploit us more

For **P2's** strategy: take dual values of constraint $\boldsymbol{A}^\top \boldsymbol{x} \geq \boldsymbol{1} \nu$, or solve min $y \in \Delta^n$ max $x \in \Delta^{n}$ $x^{\top}Ay$

Iterative Approaches

- Only relatively small games can be solved via LP
- For larger games we need iterative approaches
- Most iterative approaches *approach* a NE *on average*
	- Can be stopped any time
- What we'll cover
	- Best Response Dynamics (doesn't converge to NE)
	- Fictitious Play aka Follow the Leader (isn't no-regret)
	- Follow the Regularized Leader (*e.g.,* gradient descent, multiplicative weights)
	- Regret Matching
	- Regret Matching Plus
	- Optimistic regret minimization

We'll make this precise soon

Best Reponse Dynamics

$$
x_i^{t+1} = \arg\max_{x_i} u_i(x_i, x_{-i}^t)
$$

Best respond to the opponent's last strategy

$x_i^{t+1} = \arg\max_{x_i}$ x_i 1 \bar{t} \sum $\tau=1$ \boldsymbol{t} $u_i(x_i, x_{-i}^{\tau})$ Fictitious Play (Follow the Leader)

Best respond to the opponent's average strategy

Question: Does 1 \overline{T} \sum $t=1$ \overline{T} x_i^t $T\rightarrow\infty$ NE?

Yes! (for zero-sum games) [Robinson 1951]

...but possibly with very slow rate $T^{-1/n}$ if the tiebreaking is done adversarially [Daskalakis & Pan 2014]

Open question ["Karlin's weak conjecture", Karlin 1959]: Does FP *with non-adversarial tiebreaking* converge with rate $O_n(T^{-1/2})$ in all zero-sum normal-form games?

No-Regret Algorithms

- What if I'm playing a repeated game against someone who knows I am playing fictitious play?
- Then they would know exactly what my next move will be and could choose a best response every time
- Can we find iterative algorithms that will not be *too bad* even when the opponent knows the algorithm?
- No-regret algorithms do exactly this
	- And achieve faster convergence than FP as well!

Regret Minimization

for $t = 1, ..., T$:

- Agent chooses an *action distribution* $x^t \in X \coloneqq \Delta^n$
- Environment chooses a *utility vector* $\boldsymbol{u}^t \in [0,1]^n$
- Agent observes \boldsymbol{u}^t and gets utility $\langle \boldsymbol{u}^t, \boldsymbol{x}^t \rangle$

Agent goal: Minimize *regret.*

"How well do we do against best, fixed strategy in hindsight?"

Maximum utility that was achievable by the **best fixed** action in hindsight

Utility that was actually accumulated

 $\mathbf{\hat{F}}$ Goal: have R^T grow sublinearly with respect to time T, e.g., $R^T = O_n(\sqrt{T})$

No assumption on utilities! Must be able to handle adversarial environments

 $\Delta^n =$ set of distributions on n things $= \{x \in \mathbb{R}^n : x \ge 0, \sum x_i = 1\}$

What does regret minimization have to do with zero-sum games?

Nash equilibrium in a 2-player 0-sum normal-form game with payoff matrix A : max $x \in \Delta^{m}$ min $y \in \Delta^n$ $x^{\top}Ay$

IDEA: Self-play. Make two regret minimizers play each other

for $t = 1, ..., T$:

- $x^t \leftarrow$ request strategy from P1's regret minimizer
- $\mathbf{y}^t \leftarrow$ request strategy from P2's regret minimizer
- Pass utility Ay^t to P1's regret minimizer
- Pass utility $-A^\top x^t$ to P2's regret minimizer

$$
R_1^T := \max_{\hat{x} \in \Delta^m} \left\{ \sum_{t=1}^T \langle Ay^t, \hat{x} \rangle \right\} - \sum_{t=1}^T \langle Ay^t, x^t \rangle \le O_m(\sqrt{T})
$$

\n
$$
R_2^T := \max_{\hat{y} \in \Delta^n} \left\{ \sum_{t=1}^T \langle -A^\top x^t, \hat{y} \rangle \right\} - \sum_{t=1}^T \langle -A^\top x^t, y^t \rangle \le O_n(\sqrt{T})
$$

\n
$$
\max_{\hat{x} \in \Delta^m} \{ \hat{x}^\top A \bar{y} \} - \min_{\hat{y} \in \Delta^n} \{ \bar{x}^\top A \hat{y} \} \le O_{m,n}(\frac{1}{\sqrt{T}})
$$

\nwhere $\bar{x} = \frac{1}{T} \sum_{t=1}^T x^t$ and $\bar{y} = \frac{1}{T} \sum_{t=1}^T y^t$

Add these two lines and divide by *T* to get the average

TAKEAWAY

The average strategies converge to a Nash equilibrium!

Regret Minimization: Follow the Leader (Fictitious Play)

First attempt: Follow the leader. That is, play the best action in hindsight so far:

$$
x^{t+1} = \arg\max_{x \in X} \sum_{\tau \leq t} \langle u^{\tau}, x \rangle
$$

This does not work!

Counterexample: $n = 2$ actions,

$$
u^{t} = \begin{cases} \begin{bmatrix} 1/2, 0 \end{bmatrix} & t = 1\\ \begin{bmatrix} 0, 1 \end{bmatrix} & t > 1, \text{even} \\ \begin{bmatrix} 1, 0 \end{bmatrix} & t > 1, \text{odd} \end{cases}
$$

Best action in hindsight has utility $\approx T/2$

Follow-the-leader always plays the wrong action and therefore gets utility ≈ 0

More generally: No algorithm outputting only pure actions can have no regret

Follow the *Regularized* Leader

Idea: Add a strictly convex *regularizer* $R: X \to \mathbb{R}$

$$
x^{t+1} = \arg\max_{x \in X} \sum_{\tau \leq t} \langle u^{\tau}, x \rangle - \frac{1}{\eta} R(x)
$$

- This prevents each iterate from being deterministic
- The resulting algorithm **is** no-regret (for $\eta \propto 1/\sqrt{T}$)
- Intuitively, **updates toward highregret actions, but not too much**

Follow the *Regularized* Leader

Idea: Add a strictly convex *regularizer* $R: X \to \mathbb{R}$

$$
x^{t+1} = \arg\max_{x \in X} \sum_{\tau \leq t} \langle u^{\tau}, x \rangle - \frac{1}{\eta} R(x)
$$

Example 1: *quadratic*

$$
R(x) = \frac{1}{2} ||x||_2^2
$$

Closed-form optimization: Π_X = projection onto X

$$
x^{t+1} = \Pi_X \left(\eta \cdot \sum_{\tau=1}^t u^{\tau} \right)
$$

a.k.a. gradient descent!

 0 \ldots \ldots \ldots 1 Follow the leader will always play deterministic actions

0 1 Follow the regularized leader will mix

Follow the *Regularized* Leader

Idea: Add a strictly convex *regularizer* $R: X \to \mathbb{R}$

$$
x^{t+1} = \arg\max_{x \in X} \sum_{\tau \leq t} \langle u^{\tau}, x \rangle - \frac{1}{\eta} R(x)
$$

Example 2: *negative entropy*

$$
R(x) = \sum_{a} x[a] \log x[a]
$$

Closed-form optimization:

$$
x^{t+1} \propto \exp\left(\eta \cdot \sum_{\tau=1}^t u^{\tau}\right)
$$

a.k.a. multiplicative weights update (MWU), hedge, (discrete-time) replicator dynamics, randomized weighted majority, ...

 0 \ldots \ldots \ldots 1 Follow the leader will always play deterministic actions 0 \ldots 1 Follow the regularized leader will mix

A Common Template for Regret Minimizers

• Given utility vectors $\boldsymbol{u}^1, ..., \boldsymbol{u}^t$, we compute the empirical regrets up to time t of each action:

$$
r^{t}[a] \coloneqq \sum_{\tau=1}^{t} (u^{\tau}[a] - \langle u^{\tau}, x^{\tau} \rangle)
$$

• Then, intuitively the next strategy x^{t+1} gives mass to actions in a manner related to how much regret they have accumulated

A Common Template for Regret Minimizers

RM Regret Bound Proof

 $\mathbf{x}^{t+1} \propto [\boldsymbol{r}^t]^+ \quad$ where

$$
\begin{array}{c} \boldsymbol{r}^t\coloneqq \boldsymbol{r}^{t-1}+\boldsymbol{g}^t \\ \boldsymbol{g}^t\coloneqq \boldsymbol{u}^t-\langle \boldsymbol{u}^t,\boldsymbol{x}^t\rangle\cdot \boldsymbol{1} \end{array}
$$

Note: $\langle g^t, x^t \rangle = 0$

 $= ||[r^t]^+$ $2^2 + ||g^{t+1}$ $2^2 + 2(g^{t+1})^T [r^t]^+$ $r^{t+1}]^+$ $2\leq ||[r^t]^+ + g^{t+1}$ 2 2 using inequality $[x + y]^+ \leq |[x]^+ + y|$ for $x, y \in \mathbb{R}$ **0** | induction $\bm{r}^T]^+$ $\frac{2}{2} \leq$ > $t=1$ \overline{T} \boldsymbol{g}^t 2 $\frac{2}{2} \leq nT$ since $g^t \in [-1,1]^n$

$$
R^T \coloneqq \max_{a} r^T[a] \le ||[\mathbf{r}^T]^+||_2 \le \sqrt{n} \quad \Box
$$

A Common Template for Regret Minimizers

Empirical regret: $\boldsymbol{r}^t \coloneqq \boldsymbol{r}^{t-1} + \boldsymbol{g}^t$

Simple modification: $r_+^t \coloneqq [r_+^{t-1} + g_-^t]^+$

(Floor regrets at 0 after every iteration)

(Regret bound proof is identical)

A Common Template for Regret Minimizers

All of these algorithms guarantee that after seeing any number T of utilities $\boldsymbol{u}^1, ..., \boldsymbol{u}^T$, the regret cumulated by the algorithm satisfies

Constant that depends on number of actions MWU: $C = \sqrt{\log n}$ RM, RM+, GD: $C = \sqrt{n}$ $R^T \leq C \sqrt{T}$

Remember:

This holds without any assumption about the way the utilities are selected by the environment!

• $x^t \leftarrow$ request strategy from P1's regret minimizer • \mathbf{y}^t \leftarrow request strategy from P2's regret minimizer

Reminder: Self-play

• Pass utility Ay^t to P1's regret minimizer • Pass utility $-A^{\top}x^t$ to P2's regret minimizer

for $t = 1, ..., T$:

Consequence: when using these algorithms in self-play in 2-player 0-sum games, the **average strategy** converges to a Nash equilibrium at a rate of C/\sqrt{T}

State-of-the-art variant in practice: Discounted RM (DRM)

- Linear RM (LRM)
	- Weight iteration t by t (in regrets and averaging)
	- RM+ floors regrets at 0. Can we combine this with linear RM? Theory: Yes. Practice: No! Does very poorly.
- But less-aggressive combinations do well: **Discounted RM**
	- On each iteration, multiply positive regrets by t^{α} / (t^{α} +1)
	- On each iteration, multiply negative regrets by t^{β} / (t^{β} +1)
	- Weight contributions toward average strategy on iteration t by t^{γ}
	- Worst-case convergence bound only a small constant worse than that of RM
	- RM: $\alpha = \beta = +\infty$
	- RM+: $\alpha = +\infty$, $\beta = -\infty$
	- For $\alpha = 1.5$, $\beta = 0$, $\gamma = 2$, consistently outperforms RM+ in practice

What Regret Minimizers are Used in Practice?

Follow the Regularized Leader (FTRL) (*e.g.,* gradient descent, multiplicative weights)

- ✔ Works for general convex sets
- ◆ Widely used & understood
- X Slow in practice
- X Has hyperparameters (stepsize)

 \blacktriangleright Can incorporate optimism about future losses to converge faster in 2-player 0-sum games

Regret Matching (RM) & Regret Matching+ (RM+)

- ❌ Only for **simplex** domains
- X Not as well studied theoretically
- \blacktriangleright Fast in practice
- \blacktriangleright No hyperparameters

W: Modern variants of this, such as DCFR, are the standard in extensive-form game solving!

❓ Unknown ...until recently \blacktriangledown

Optimistic (Predictive) Regret Minimizers

Typically, one-line change in implementation

All of these algorithms guarantee that after seeing any number T of utilities \boldsymbol{u}^1 , … , \boldsymbol{u}^T , the regret cumulated by the algorithm satisfies

 $\frac{2}{2}$ (where $g^0 \coloneqq 0$)

 $R^T \leq C$ | \sum

 $t=1$

 $\boldsymbol{g}^{t} - \boldsymbol{g}^{t-1} \|_{2}^{2}$

 \overline{T}

Remember:

This holds without any assumption about the way the utilities are selected by the environment!

Takeaway message: still $\approx \sqrt{T}$ regret, but much smaller when there is little change to the utilities over time

Empirical Performance

(RM was omitted as it is typically much slower than RM+)

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent, AAAI 2021]

Practical State-of-the-Art

- In general, Discounted RM and Optimistic RM+ are the fastest in practice
	- For some games, like poker, Discounted RM is empirically consistently faster than Optimistic RM+
	- For many other games, Optimistic RM+ is significantly faster

Beyond Zero-Sum Games

Correlated strategy profile:

$$
\mu^T := \frac{1}{T} \sum_{t=1}^T (x_1^t \otimes x_2^t \otimes \cdots x_n^t) \in \Delta(A_1 \times \cdots \times A_n)
$$

 Note: not $\Delta(A_1) \times \cdots \times \Delta(A_n)$

the product distribution in $\Delta(A_1) \times \cdots \times \Delta(A_n)$ whose marginal on A_i is $x_i^t \in \Delta(A_i)$

Regret guarantee: for all players i :

$$
\max_{x_i^*} \frac{1}{T} \sum_{t=1}^T \left[u_i(x_i^*, x_{-i}^t) - u_i(x_i^t, x_{-i}^t) \right] \le O_n \left(\frac{1}{\sqrt{T}} \right)
$$

=
$$
\max_{x_i^*} \mathop{\mathbb{E}}_{x \sim \mu^T} \left[u_i(x_i^*, x_{-i}) - u_i(x_i, x_{-i}) \right]
$$

 μ^T is an ϵ -"coarse-correlated equilibrium" (CCE) where $\epsilon = O_n\big(1/\sqrt{T}\big)$

Note: A CCE that happens to be a product distribution $(\mu^T \in \Delta(A_1) \times \cdots \times \Delta(A_n))$ is a Nash equilibrium

References

Fictitious play:

- J Robinson (*Ann. Math.* 1951), "An iterative method of solving a game"
- C Daskalakis, Q Pan (*FOCS* 2014), "A Counter-Example to Karlin's Strong Conjecture for Fictitious Play"
- S Karlin (1959), *Mathematical Methods and Theory in Games, Programming, and Economics*

Blackwell Approachability (used in the original correctness proof of RM/RM+):

• D Blackwell (*Pacific J. of Math*. 1956), "An analog of the minmax theorem for vector payoffs"

Regret Matching and Regret Matching Plus:

- S Hart, A Mas-Colell (*Econometrica* 2000), "A Simple Adaptive Procedure Leading to Correlated Equilibrium"
- O Tammelin (*arXiv* 2014), "Solving large imperfect information games using CFR+"
- N Brown, T Sandholm (*AAAI* 2019), "Solving Imperfect-Information Games via Discounted Regret Minimization"
- **Simple proof of correctness presented in this lecture due to** G Farina (2023), https://www.mit.edu/~gfarina/2023/6S890f23_L05_learning_algorithms/L05.pdf

Predictivity:

- CK Chiang et al. (*COLT* 2012), "Online optimization with gradual variations"
- A Rakhlin, K Sridharan (*COLT* 2013), "Online Learning with Predictable Sequences"
- G Farina, C Kroer, T Sandholm (*AAAI* 2021), "Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent"