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Extensive-Form Games

▸ Game represented by a tree

▸ Can capture sequential and simultaneous moves

▸ Private information

▸ We assume perfect recall: no player forgets what the player knew earlier
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Perfect Recall and Sequences

✔ Perfect recall!

P1 now learns the action of P2
if P1 played left

Defn: At a history ℎ, the sequence 𝜎𝑖(ℎ) (or player history) of player 𝑖 is the 
ordered list of previous infosets encountered by that player and actions 
played at those infosets (conventionally, not including the infoset at ℎ itself)

Player 𝑖 has perfect recall if 𝜎𝑖 ℎ = 𝜎𝑖(ℎ′) whenever ℎ, ℎ′ share an infoset

P1 doesn't know the action of P21 1
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Perfect Recall and Sequences

P1 knows the action of P2

P1 has forgotten the 
action of P2❌

Defn: At a history ℎ, the sequence 𝜎𝑖(ℎ) (or player history) of player 𝑖 is the 
ordered list of previous infosets encountered by that player and actions 
played at those infosets (conventionally, not including the infoset at ℎ itself)

Player 𝑖 has perfect recall if 𝜎𝑖 ℎ = 𝜎𝑖(ℎ′) whenever ℎ, ℎ′ share an infoset
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Perfect Recall and Sequences

P1 has forgotten P1's 
own action❌

Defn: At a history ℎ, the sequence 𝜎𝑖(ℎ) (or player history) of player 𝑖 is the 
ordered list of previous infosets encountered by that player and actions 
played at those infosets (conventionally, not including the infoset at ℎ itself)

Player 𝑖 has perfect recall if 𝜎𝑖 ℎ = 𝜎𝑖(ℎ′) whenever ℎ, ℎ′ share an infoset

P1 does not know 
the action of P2
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Strategies and Kuhn's Theorem

for all 𝜇𝑖 ∈ Δ Π𝑖 ,   exists 𝜋𝑖 ∶  𝒥𝑖 → Δ 𝐴    s.t.   𝑢𝑖 𝜋𝑖 , 𝜋−𝑖 = 𝑢𝑖 𝜇𝑖 , 𝜋−𝑖  ∀𝜋−𝑖 ∈ ×
𝑗≠𝑖 

Π𝑗
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Pure strategy 𝜋𝑖 ∈ Π𝑖 of player 𝑖 = map  𝜋𝑖 ∶  𝒥𝑖 → 𝐴
Mixed strategy = distribution 𝜇𝑖 ∈ Δ(Πi)
Behavioral strategy = a mixed strategy that mixes independently at every infoset
 map  𝜋𝑖 ∶  𝒥𝑖 → Δ(𝐴)

Q: Are behavioral strategies as expressive as mixed strategies?
A: ("Kuhn's theorem", Contrib. Theory of Games 1950) Yes, but only for players w/ perfect recall

1          0    0        0    0         0     0         1

P1 has forgotten P1's 
own action❌

P1 does not know 
the action of P2



Strategies and Kuhn's Theorem

Pure strategy 𝜋𝑖 ∈ Π𝑖 of player 𝑖 = map  𝜋𝑖 ∶  𝒥𝑖 → 𝐴
Mixed strategy = distribution 𝜇𝑖 ∈ Δ(Πi)
Behavioral strategy = a mixed strategy that mixes independently at every infoset
 map  𝜋𝑖 ∶  𝒥𝑖 → Δ(𝐴)

Q: Are behavioral strategies as expressive as mixed strategies?
A: ("Kuhn's theorem", Contrib. Theory of Games 1950) Yes, but only for players w/ perfect recall

for all 𝜇𝑖 ∈ Δ Π𝑖 ,   exists 𝜋𝑖 ∶  𝒥𝑖 → Δ 𝐴    s.t.   𝑢𝑖 𝜋𝑖 , 𝜋−𝑖 = 𝑢𝑖 𝜇𝑖 , 𝜋−𝑖  ∀𝜋−𝑖 ∈ ×
𝑗≠𝑖 

Π𝑗

1          0    0        0    0         0     0         1
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Mixed strategy

𝜇1 =
1

2
𝐿, 𝐿 +

1

2
(𝑅, 𝑅)

has 𝑢1 𝜇1, 𝜋2 =
1

2
 ∀𝜋2

but no behavioral strategy has this



Digression: Why trees?

A: Because even computing the optimal strategy in a one-player 

DAG-form games with perfect recall ("finite-horizon POMDPs") is 

PSPACE-hard [Papadimitriou & Tsitsiklis, Math of OR 1987]

(#histories can be exponentially larger than #states; optimal 

strategy can be history dependent)

Extensive-form games are

• expressive enough to capture real-world settings (usually 

sequential & imperfect-information), and yet

• "simple" enough to allow positive results



Normal ⟷ Extensive Form
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Tree-Form Decision Making

Isolate players'
decision problems

A

B D C

Game tree

Each node belongs to a specific 

player (or chance, not pictured)

Tree-form (Sequential) decision problems

aka. sequence-form decision problems

aka. treeplexes

Represents the game from viewpoint of one 

player

This is the representation for this lecture 

1 1

1 1 1 1
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C



Tree-Form Decision Making

A

B D C
1/2         1/2        1/4         3/4        1/5         4/5 

1/3                2/3

✔ Set of strategies is convex

❌ Expected utility of game is

      not bilinear

🌟 First attempt:

Assign local probabilities at 

each decision point

෍

𝑧∈𝑍

𝑢1 𝑧  𝑐(𝑧) ෑ

𝑖∈[𝑛]

ෑ
ℎ𝑎≼𝑧

ℎ belongs to 𝑖

𝜋𝑖 𝑎 ℎ

set of terminal 
nodes (tree leaves)

probability that chance (nature) 
plays all actions on the path to 𝑧

probability that Player 𝑖 plays all 
actions on the path to 𝑧



Sequence Form: A Way to Generate a 

Polynomial-Sized LP in the Size of the Tree

Given 𝜋𝑖 ∶  𝒥𝑖 → Δ(𝐴), the sequence form 𝒙𝑖 ∈ ℝΣi of 𝜋𝑖 is

𝑥𝑖 𝜎 = ෑ

𝐼,𝑎 ∈𝜎

𝜋𝑖(𝑎|𝐼)

𝑥1 𝐴ℓ = ൗ1
3 ,  𝑥1 𝐴𝑟 = ൗ2

3

𝑥1 𝐵ℓ = 𝑥1 𝐵𝑟 = ൗ1
3 ⋅ ൗ1

2 = ൗ1
6

𝑥1 𝐷ℓ = ൗ1
3 ⋅ ൗ1

4 = ൗ1
12

𝑥1 𝐷𝑟 = ൗ1
3 ⋅ ൗ3

4 = ൗ1
4

𝑥1 𝐶ℓ = ൗ2
3 ⋅ ൗ1

5 = ൗ2
15

𝑥1 𝐶𝑟 = ൗ2
3 ⋅ ൗ4

5 = ൗ8
15

1/2         1/2        1/4         3/4        1/5         4/5 

1/3                2/3

A

B D C

set of sequences



The set of sequence-form strategies is a convex polytope!

𝑋𝑖 ≔ 𝒙𝑖 ∈ ℝ≥0
Σ𝑖  ∶  𝑥𝑖 ∅ = 1, ෍

𝑎∈𝐴

𝑥𝑖 𝐼𝑎 = 𝑥𝑖 𝜎𝑖 𝐼  ∀𝐼 ∈ 𝒥

= 𝒙𝑖 ∈ ℝ≥0
Σ𝑖  ∶  𝑭𝑖𝒙𝑖 = 𝒇𝑖  

The utility of player 𝑖 is linear in 𝑖's sequence-form strategy!

𝑢𝑖 𝑥 = ෍

𝑧∈𝑍

𝑢𝑖 𝑧 ⋅ 𝑐 𝑧 ⋅ ෑ

𝑖∈ 𝑛

𝑥𝑖[𝜎𝑖(𝑧)]

common sequence of 
all histories in 𝐼  

set of terminal nodes (tree leaves) probability that chance (nature) 
plays all actions on the path to 𝑧

Two-player zero-sum case: 

𝑢𝑖 𝑥, 𝑦 = ෍

𝑧∈𝑍

𝑢𝑖 𝑧 ⋅ 𝑐 𝑧 ⋅ 𝑥 𝜎1 𝑧 ⋅ 𝑦 𝜎2 𝑧 = 𝒙⊤𝑨𝒚 

Sequence Form: A Way to Generate a 

Polynomial-Sized LP in the Size of the Tree



Sequence Form LP

max
𝒙∈𝑋

 min
𝒚∈𝑌

 𝒙⊤𝑨𝒚

Two-player zero-sum case: 

𝑢𝑖 𝑥, 𝑦 = ෍

𝑧∈𝑍

𝑢𝑖 𝑧 ⋅ 𝑐 𝑧 ⋅ 𝑥 𝜎1 𝑧 ⋅ 𝑦 𝜎2 𝑧 = 𝒙⊤𝑨𝒚 



Sequence Form LP

max
𝒙

s. t.  𝑭1𝒙 = 𝒇1, 
 𝒙 ≥ 𝟎

{
min

𝒚
 𝒙⊤𝑨𝒚

s. t.  𝑭2𝒚 = 𝒇2, 
 𝒚 ≥ 𝟎

LP duality

max
𝒗

 𝒇2
⊤𝒗

s. t.  𝑨⊤𝒙 ≥ 𝑭2
⊤𝒗

Two-player zero-sum case: 

𝑢𝑖 𝑥, 𝑦 = ෍

𝑧∈𝑍

𝑢𝑖 𝑧 ⋅ 𝑐 𝑧 ⋅ 𝑥 𝜎1 𝑧 ⋅ 𝑦 𝜎2 𝑧 = 𝒙⊤𝑨𝒚 



Sequence Form LP

max
𝒙,𝒗

𝒇2
⊤𝒗

s. t.  𝑭1𝒙 = 𝒇1, 
 𝒙 ≥ 𝟎

 𝑨⊤𝒙 ≥ 𝑭2
⊤𝒗

Two-player zero-sum 
extensive-form games can be 

solved in polynomial time!

Two-player zero-sum case: 

𝑢𝑖 𝑥, 𝑦 = ෍

𝑧∈𝑍

𝑢𝑖 𝑧 ⋅ 𝑐 𝑧 ⋅ 𝑥 𝜎1 𝑧 ⋅ 𝑦 𝜎2 𝑧 = 𝒙⊤𝑨𝒚 

max
𝒗

 𝒇2
⊤𝒗

s. t.  𝑨⊤𝒙 ≥ 𝑭2
⊤𝒗



Regret Minimization on 
Sequence-Form Strategy Sets



Recall: Regret Minimization

for 𝑡 = 1, … , 𝑇:

• Agent chooses a sequence-form strategy 𝒙𝑡 ∈ 𝑋 ⊂ ℝ𝑛

• Environment chooses a utility vector 𝒖𝑡 ∈ 0, 1 𝑛

• Agent observes 𝒖𝑡 and gets utility 𝒖𝑡, 𝒙𝑡

Agent goal: Minimize regret. 

“How well do we do against best, fixed strategy in hindsight?”

𝑅𝑇  ≔  max
ෝ𝒙∈𝑋

෍

𝑡=1

𝑇

〈𝒖𝑡, ෝ𝒙〉  −  ෍

𝑡=1

𝑇

〈𝒖𝑡, 𝒙𝒕〉 

🌟 Goal: have 𝑅𝑇 grow sublinearly with respect to time 𝑇, e.g., 𝑅𝑇 = poly 𝑛 ⋅ 𝑇

If we can do this, we can learn equilibria!

Utility that was 
actually 
accumulated

Maximum utility that was 
achievable by the best 
fixed strategy in hindsight



Counterfactual Regret Minimization 

(CFR): The Gist
🌟 IDEA: Run one regret minimizer at each information set!

Attempt 1: Use "Q-values" (conditional values 
upon reaching the information set)

Question: What utility should we give to each infoset's regret 
minimizer at each time step?

Problem: Opponent's strategy can change!

Consider this infoset for P2, and suppose 
that P1 plays 
    (Exit, Rock) on 90% of timesteps
    (Play, Paper) on 10% of timesteps

Regret minimizer receiving Q-value losses would 
play Paper, but it should play Scissors instead.

We should use some sort of "weighted" value!

1

2

Exit
Play

0.5

1

0    +1    -1

R    P        S

1

-1    0    +1

R    P        S

1

+1    -1    0

R    P        S

R               P                  S



Counterfactual Regret Minimization 

(CFR): The Gist
🌟 IDEA: Run one regret minimizer at each information set!

Attempt 2: Use reach-weighted values: 
     utility of playing 𝑎 at infoset 𝐼 

= conditional value of 𝑎 at 𝐼
* probability of reaching 𝐼

Question: What utility should we give to each infoset's regret 
minimizer at each time step?

Problem: Our strategy can change before 𝐼

Suppose that P2 always plays Rock
and P1 is currently playing (Exit, Scissors)

This infoset isn't reached 
⇒ its regret minimizer observes utility 0
⇒ P1 never learns to play the correct best 
response (Play, Paper)!

1

2

Exit
Play

0.5

1

0    +1    -1

R    P        S

1

-1    0    +1

R    P        S

1

+1    -1    0

R    P        S

R               P                  S



Counterfactual Regret Minimization 

(CFR): The Gist
🌟 IDEA: Run one regret minimizer at each information set!

Attempt 3: Use "counterfactual values":
    utility of playing 𝑎 at infoset 𝐼 

= conditional value of 𝐼 
* probability of all other players 
   (including chance) reaching 𝐼

Question: What utility should we give to each infoset's regret 
minimizer at each time step?

🌟 THIS WORKS!

This is the algorithm called counterfactual regret minimization (CFR)

1

2

Exit
Play

0.5

1

0    +1    -1

R    P        S

1

-1    0    +1

R    P        S

1

+1    -1    0

R    P        S

R               P                  S

= ෍

𝑧≽𝐼𝑎

𝑥𝑖 𝜎𝑖 𝑧 𝐼𝑎 ⋅ 𝑥−𝑖 𝜎−𝑖 𝑧 ⋅ 𝑐 𝑧 ⋅ 𝑢𝑖(𝑧)

Pr[𝑖 plays all actions on 𝐼𝑎 → 𝜎𝑖(𝑧) path]



Proving the Correctness of CFR

Simple proof in this lecture due to G Farina, CK Ling, F Fang, T Sandholm (NeurIPS 2019), 
“Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium”



Theorem: when using CFR in self-play in a 2p0s EFG with any 

regret minimizers whose regrets are bounded by 𝐴 𝑇, the 

average strategy profile after 𝑇 rounds is an 𝜖-NE, where

𝜖 =
Σ1 + Σ2

𝑇

set of sequences

e.g., FTRL, RM, RM+, …



Scaled Extensions

B D C

Idea: Construct a sequence-form 
strategy set recursively

Def: Given 
• set 𝑋 ⊆ ℝ≥0

𝑛

• vector 𝒇 ∈ ℝ≥0
𝑛    with 0 ≤ 𝒇, 𝒙 ≤ 1 for all 𝒙 ∈ 𝑋

• integer 𝑚 > 0
the scaled extension of 𝑋 by the 𝑚-simplex under 𝒇 is

𝑋 ⊲ 𝒇, 𝑚 ≔
𝒙
𝒔

∈ 𝑋 × ℝ≥0
𝑚  ∶ 𝟏, 𝒔 = 𝒇, 𝒙

A

𝑋 = 1

 ℝ

∈

⊲ 𝒆∅, 2 ⊲ 𝒆Aℓ, 2 ⊲ 𝒆A𝑟 , 2 ⊲ 𝒆Aℓ, 2

Suffices (by induction) to construct regret minimizer 
on 𝑋 ⊲ (𝑓, 𝑚) given regret minimizer on 𝑋

𝒆𝜎 = basis vector at coordinate 𝜎



CFR via Scaled Extensions

ℛ𝑋 : regret minimizer on 𝑋 ⊆ ℝ≥0
𝑛

ℛΔ : regret minimizer on Δ𝑚 (e.g., MWU, RM, RM+, …)

Goal: Construct regret minimizer for 𝑌 ≔  𝑋 ⊲ 𝑓, 𝑚

at each timestep 𝑡:

𝒙𝑡 ← next strategy from ℛ𝑋

𝒔𝑡 ← next strategy from ℛΔ 

play 𝒚𝑡 ≔ 𝒙𝑡, 𝒇, 𝒙𝑡 ⋅ 𝒔𝑡 ∈ 𝑌

receive utility 𝒖𝑡 ≔ 𝒖𝑋
𝑡 , 𝒖Δ

𝑡 ∈ ℝ𝑛+𝑚

pass utility 𝒖Δ
𝑡  to ℛΔ

pass utility 𝒖𝑋
𝑡 + 𝒖Δ

𝑡 , 𝒔𝑡 ⋅ 𝒇 to ℛ𝑋

𝑋 ⊲ 𝒇, 𝑚 ≔
𝒙
𝒔

∈ 𝑋 × ℝ≥0
𝑚  ∶  𝟏, 𝒔 = 𝒇, 𝒙

Exercise: Check that this is 
equivalent to using counterfactual 

values (defined earlier). 



CFR via Scaled Extensions
at each timestep 𝑡:

𝒙𝑡 ← next strategy from ℛ𝑋

𝒔𝑡 ← next strategy from ℛΔ 
play 𝒚𝑡 ≔ 𝒙𝑡 , 𝒇, 𝒙𝑡 ⋅ 𝒔𝑡 ∈ 𝑌

receive utility 𝒖𝑡 ≔ 𝒖𝑋
𝑡 , 𝒖Δ

𝑡 ∈ ℝ𝑛+𝑚

pass utility 𝒖Δ
𝑡  to ℛΔ

pass utility 𝒖𝑋
𝑡 + 𝒖Δ

𝑡 , 𝒔𝑡 ⋅ 𝒇 to ℛ𝑋

𝑅𝑌
𝑇 = max

𝒙∈𝑋
𝒔∈Δ𝑚

෍

𝑡=1

𝑇

𝒖𝑋
𝑡 , 𝒙 + 𝒖Δ

𝑡 , 𝒇, 𝒙 ⋅ 𝒔 − 𝒖𝑋
𝑡 , 𝒙𝑡 − 𝒖Δ

𝑡 , 𝒇, 𝒙𝑡 ⋅ 𝒔𝑡

= max
𝒙∈𝑋

෍

𝑡=1

𝑇

𝒖𝑋
𝑡 , 𝒙 − 𝒖𝑋

𝑡 , 𝒙𝑡 − 𝒖Δ
𝑡 , 𝒔𝑡 𝒇, 𝒙𝑡 + 𝒇, 𝒙  max

𝒔∈Δ𝑚
෍

𝑡=1

𝑇

𝒖Δ
𝑡 , 𝒔

𝑋 ⊲ 𝒇, 𝑚 ≔
𝒙
𝒔

∈ 𝑋 × ℝ≥0
𝑚  ∶  𝟏, 𝒔 = 𝒇, 𝒙

= max
𝒙∈𝑋

෍

𝑡=1

𝑇

𝒖𝑋
𝑡 , 𝒙 − 𝒖𝑋

𝑡 , 𝒙𝑡 − 𝒖Δ
𝑡 , 𝒔𝑡 𝒇, 𝒙𝑡 + 𝒇, 𝒙 𝑅Δ

𝑇 + ෍

𝑡=1

𝑇

𝒖Δ
𝑡 , 𝒔𝒕

= max
𝒙∈𝑋

෍

𝑡=1

𝑇

𝒖𝑋
𝑡 , 𝒙 + 𝒖Δ

𝑡 , 𝒔𝒕 𝒇, 𝒙 − 𝒖𝑋
𝑡 , 𝒙𝑡 − 𝒖Δ

𝑡 , 𝒔𝑡 𝒇, 𝒙𝑡 + 𝒇, 𝒙 𝑅Δ
𝑇

≤  𝑅𝑋
𝑇  + max

𝒙∈𝑋
𝒇, 𝒙 𝑅Δ

𝑇 ≤ 𝑅𝑋
𝑇 + 𝑅Δ

𝑇 +
 



CFR via Scaled Extensions
at each timestep 𝑡:

𝒙𝑡 ← next strategy from ℛ𝑋

𝒔𝑡 ← next strategy from ℛΔ 
play 𝒚𝑡 ≔ 𝒙𝑡 , 𝒇, 𝒙𝑡 ⋅ 𝒔𝑡 ∈ 𝑌

receive utility 𝒖𝑡 ≔ 𝒖𝑋
𝑡 , 𝒖Δ

𝑡 ∈ ℝ𝑛+𝑚

pass utility 𝒖Δ
𝑡  to ℛΔ

pass utility 𝒖𝑋
𝑡 + 𝒖Δ

𝑡 , 𝒔𝑡 ⋅ 𝒇 to ℛ𝑋

𝑋 ⊲ 𝒇, 𝑚 ≔
𝒙
𝒔

∈ 𝑋 × ℝ≥0
𝑚  ∶  𝟏, 𝒔 = 𝒇, 𝒙

CFR Regret Bound:

𝑅𝑋𝑖

𝑇 ≤ ෍

𝐼∈𝒥𝑖

𝑅𝐼
𝑇 + ≤ 𝒥𝑖 ⋅ 𝐴 𝑇 ≤ |Σ𝑖| 𝑇

with RM or RM+

𝑅𝑌
𝑇 ≤ 𝑅𝑋

𝑇 + 𝑅Δ
𝑇 +

induction

set of sequences

Theorem: when using CFR in self-play in a 2p0s EFG with 

any regret minimizers whose regrets are bounded by 𝐴 𝑇, 

the average strategy profile after 𝑇 rounds is an 𝜖-NE, where

𝜖 =
Σ1 + Σ2

𝑇



.5                      .5

1

.2               .3                 .1                     .4

Efficient Implementation

B D

A

.5        .5

.4      .6                             .2       .8

1. Query all local regret minimizers to get 
behavioral strategies 𝜋1

𝑡 , 𝜋2
𝑡

2. Multiply down the tree to get
 sequence-form strategies 𝒙𝑡

3. Compute utility vector 𝒖𝒕 ≔ 𝑨𝒚𝑡

4. Compute counterfactual values
 (and pass them to local regret minimizers)

.2                       1

0

0               .5                 .5                      0

.2 + .4*0+.6*.5
    + .2*.5+.8*0 = .6                            1

0 + .5*.6+.5*1 = .8

0               .5                 .5                      0

Time per iteration: 
𝑂 mul 𝐴 + Σ1 + |Σ2|

time complexity of computing 𝑨𝒚𝑡. 
Trivially bounded by game tree size.

Exercise: Check that this actually implements 
CFR, i.e., check that the values in Step 4 are 

actually the counterfactual values 



Why is CFR Superior in Practice?
🌟 … to second-order methods 

 (which can offer convergence rate 𝑒−Ω(𝑇))?
– Does not require solving large linear systems

– Second-order methods (interior point, …) don’t fit in memory 
for large games

🌟 … to general-purpose regret minimizers (e.g., FTRL)?

– CFR uses an approach local to each decision point (easier to 
parallelize, warm-start, etc.) (more on this next lecture!)

• [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
• [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]

– No need for expensive projections onto feasible strategy 
polytope (think projected gradient descent)

– Scale-invariant! (with RM/RM+)

http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf


CFR Framework + Predictivity (aka optimism)



Important Takeaways

🌟You can construct a regret minimizer for

      sequential decision making problems by

      combining regret minimizers for individual

     decision points

⇒ Improvements on simplex domains carry over to   

 extensive-form domains!

🌟Predictivity works well also in extensive-form

     domains
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