Extensive-Form Games
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Extensive-Form Games

Game represented by a tree
Can capture sequential and simultaneous moves
Private information

We assume perfect recall: no player forgets what the player knew earlier




Perfect Recall and Sequences

P1 doesn't know the action of P2

P1 now learns the action of P2
if P1 played left

V Perfect recall!

Defn: At a history h, the sequence o;(h) (or player history) of player i is the
ordered list of previous infosets encountered by that player and actions
pIayed at those infosets (conventionally, not including the infoset at h itself)

Player i has perfect recall if o;(h) = g;(h") whenever h, h’ share an infoset



Perfect Recall and Sequences

P1 knows the action of P2

x P1 has forgotten the
action of P2

Defn: At a history h, the sequence o;(h) (or player history) of player i is the
ordered list of previous infosets encountered by that player and actions
pIayed at those infosets (conventionally, not including the infoset at h itself)

Player i has perfect recall if o;(h) = g;(h") whenever h, h’ share an infoset



Perfect Recall and Sequences

P1 does not know
the action of P2

x P1 has forgotten P1's
own action

Defn: At a history h, the sequence o;(h) (or player history) of player i is the
ordered list of previous infosets encountered by that player and actions
pIayed at those infosets (conventionally, not including the infoset at h itself)

Player i has perfect recall if o;(h) = g;(h") whenever h, h’ share an infoset



Strategies and Kuhn's Theorem

P1 does not know
the action of P2

x P1 has forgotten P1's
own action

Pure strategy ; € Il; of playeri=map m; : J; - A

Mixed strategy = distribution y; € A(II;)

Behavioral strategy = a mixed strategy that mixes independently at every infoset
map 7; ¢ J; = A(A)

Q: Are behavioral strategies as expressive as mixed strategies?
A: ("Kuhn's theorem", Contrib. Theory of Games 1950) Yes, but only for players w/ perfect recall



Strategies and Kuhn's Theorem

Mixed strategy

1 1
==(,L)+=(R,R
p =51 +5(RR)

1
has uq (g, 72) = 5 VT2

but no behavioral strategy has this

Pure strategy ; € Il; of playeri=map m; : J; - A

Mixed strategy = distribution y; € A(II;)

Behavioral strategy = a mixed strategy that mixes independently at every infoset
map 7; ¢ J; = A(A)

Q: Are behavioral strategies as expressive as mixed strategies?
A: ("Kuhn's theorem", Contrib. Theory of Games 1950) Yes, but only for players w/ perfect recall



Digression: Why trees?

A: Because even computing the optimal strategy in a one-player
DAG-form games with perfect recall ("finite-horizon POMDPs") is
PSPACE-hard [Papadimitriou & Tsitsiklis, Math of OR 1987]

(#histories can be exponentially larger than #states; optimal
strategy can be history dependent)

Extensive-form games are

« expressive enough to capture real-world settings (usually
sequential & imperfect-information), and yet

« "simple" enough to allow positive results



Normal <« Extensive Form

—

Combinatorial
explosion!




Tree-Form Decision Making

Tree-form (Sequential) decision problems
Game tree aka. sequence-form decision problems

aka. treeplexes
Each node belongs to a specific

player (or chance, not pictured) Represents the game from viewpoint of one
player

This is the representation for this lecture

Isolate players'
decision problems

SEEN
......




Tree-Form Decision Making

3% First attempt: v Set of strategies is convex

Assign local probabilities at X Expected utility of game is
each decision point / not bilinear

Du@ed || || m@mw

Z€E€Z i€[n] ha<z
7 h belongs to i

set of terminal

nodes (tree leaves) probability that Player i plays all
actions on the path to z

probability that chance (nature)
plays all actions on the path to z

1/2




Sequence Form: A Way to Generate a
Polynomial-Sized LP in the Size of the Tree

Given mr; : J; = A(A), the sequence form x; € R*i of m; is

xilol= | | mcan f

(a)eo set of sequences

x,[A€] = 1/3 x,[Ar] = 2/3

x1[B¥] = x,[Br] 1/3 / = /

X1 [D'f — 1/3.1/4: 1/12

alDrl=1/3-3/, =1/,

x, [CP] = 2/3 . 1/5 — 2/15

x [Cr] = 2/3 . 4/5 — 8/15

1/2

1/2 1/4 3/4 1/5 4/5




Sequence Form: A Way to Generate a
Polynomial-Sized LP in the Size of the Tree

The set of sequence-form strategies is a convex polytope!

Xi = {xi € Rib : xl'[@] =1, le-[la] - xi[ai(l)] VI €

acA \

Fix; = fi} common sequence of
all histories in I

Z.
= {xi € RZB :

The utility of player i is linear in i's sequence-form strategy!

(@ = Y w@ - c@- | [xlae)]
i€[n]

ZEZ

/

set of terminal nodes (tree leaves) orobability that chance (nature)

plays all actions on the path to z
Two-player zero-sum case:

() = ) w@) - c(@) 2o (D] yloy@)] = x4y

ZEZ



Sequence Form LP

max min x'Ay
XeX yeY

Two-player zero-sum case:

() = ) w@) - c(@) 2o (D] yloy@)] = x4y

ZEZ



Sequence Form LP

min x'Ay
y
m;iX {St Fzy :fz,

y >0

S. t. le — fl: LP duality
x=0

max f,v
v

s.t. ATx >F)v

Two-player zero-sum case:

() = ) w@) - c(@) 2o (D] yloy@)] = x4y

ZEZ



Sequence Form LP

Two-player zero-sum
extensive-form games can be
solved in polynomial time!

max [, v
X,V

S. t. le :fl'
x=>0 -
ATx > Flv max f2v

v
s.t. ATx>F,v

Two-player zero-sum case:

() = ) w(@)- @ - xloy @] - ylo,(2)] = x" Ay

ZEZ



Regret Minimization on
Sequence-Form Strategy Sets



Recall: Regret Minimization

fort=1,..,T:

« Agent chooses a sequence-form strategy x* € X c R"
« Environment chooses a utility vector ut € [0, 1]"

« Agent observes ut and gets utility (uf, x*)

Agent goal: Minimize regret.
"How well do we do against best, fixed strategy in hindsight?”

T T
RT :=| max Z(ut,@ _ Z(ut,xt)
xeX
t=1 t=1

Maximum utility that was Utility that was
achievable by the best actually
fixed strategy in hindsight accumulated

$% Goal: have RT grow sublinearly with respect to time T, e.g., RT = poly(n) - VT

If we can do this, we can learn equilibria!



Counterfactual Regret Minimization
(CFR): The Gist

3% IDEA: Run one regret minimizer at each information set!

Question: What utility should we give to each infoset's regret
minimizer at each time step?

— e

Exit

Play

AttemptI™ refONal values

that P1 plays
(Exit, Rock) on 90% of timesteps
(Play, Paper) on 10% of timesteps

Regret minimizer receiving Q-value losses would
0 +1 -1 -1 0 +#1 +1 -1 0 play Paper, but it should play Scissors instead.

We should use some sort of "weighted" value!



Counterfactual Regret Minimization
(CFR): The Gist

3% IDEA: Run one regret minimizer at each information set!

Question: What utility should we give to each infoset's regret
minimizer at each time step?

Exit Play

robability of reaching

Suppose that P2 always plays Rock

R/ P S and P1 is currently playing (Exit, Scissors)
0 +1 -1 1 0 +1 +1 -1 0 This infoset isn't reached

= its regret minimizer observes utility 0

= P1 never learns to play the correct best
response (Play, Paper)!



Counterfactual Regret Minimization
(CFR): The Gist

3% IDEA: Run one regret minimizer at each information set!

Question: What utility should we give to each infoset's regret
minimizer at each time step?

Exit Play
Attempt 3: Use "counterfactual values":
utility of playing a at infoset [
= conditional value of I
* probability of all other players

(including chance) reaching I

D x(@@a) - xi(0-4(2) - €(2) - wi(2)

= /p S zzla \
0 +1 -1 -1 0 +#1 +1 -1 O Pr[i plays all actions on Ia — 0;(z) path]

3% THIS WORKS!
This is the algorithm called counterfactual regret minimization (CFR)



Proving the Correctness of CFR

Simple proof in this lecture due to G Farina, CK Ling, F Fang, T Sandholm (NeurlPS 2019),
“Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium”



e.g., FTRL, RM, RM+, ...

Theorem: when using CFR in self-play in a 2p0s EFG with any

regret minimizers whose regrets are bounded by |A|VT, the
average strategy profile after T rounds is an e-NE, where

. CEq ]+ 2]
VT

set of sequences



Scaled Extensions

Idea: Construct a sequence-form
strategy set recursively

Def: Given
« setX € RY,
« vector f € RE, with0 <(f,x) <1forallx e X

* integerm >0
the scaled extension of X by the m-simplex under f is

X< (f,m):= {(f:) EXXREI : (1,s)= (f,x)}

e, = basis vector at coordinate o

X=1{1} <(eg,2) <(ear2) <(ear2) <(easn?2)
m
R

Suffices (by induction) to construct regret minimizer
on X < (f, m) given regret minimizer on X




CFR via Scaled Extensions

X < (f,m) = {(’S‘) €XXRE : (1) =(f,x)}

Ry : regret minimizer on X € RZ,
R : regret minimizer on A™ (e.g., MWU, RM, RM+, ...)

Goal: Construct regret minimizer forY = X < (f,m)

at each timestep t:
xt « next strategy from Ry
st « next strategy from R,
play y* :== (x%, {f,x")-s") €Y
receive utility ut = (uf, u}) € R™*™
pass utility ug to Rx Exercise: Check that this is

ili ivalent to using counterfactual
ass utility ut + (uf,st)- ftoR equiva
P Vit ( . ) / X values (defined earlier).




CFR via Scaled Extensions

at each timestep t: X
xt « next strategy from Ry X< (f,m):= {(S) EXXRI, : (1,5)=(f, x)}
st « next strategy from R,
play y© == (2, (f,x)-s) €Y
receive utility ut := (uk, u}) € R**™
pass utility uk to R
pass utility uk + (uf, st) - f to Ry

T

RY = max D [(ub, 20+ (uh (£, 3) - 5) — (atf %) - ]
sEA™M t=1

[T T

= max |} [(u, x) — (uy x) - |+ (f,x) max > (uf, s)
t=1 t=1
i T T

= max | » [(uk, x) — (uk, x*) — |+ (f,x)| RL + ) (u,s*)

T
= max| > [(uf, x) + (up, SN, %) — (uf, x°) - | +{f, ©)R}
L t=1 ' | |
< RY + max(f, XRE < R} +[RE]"



CFR via Scaled Extensions

at each timestep t: X m
xt « next strategy from Ry X<(fm):= {(S) €EXXRZ : (Ls)=(f, x)}
st « next strategy from R,
play y* = (xf, (f,x*)-s") €Y
receive utility ut := (uk, u}) € R**™
pass utility uk to R
et T T Tt set of sequences
pass utility uk + (uf, st) - f to Ry Ry < Ry + [RA] q

induction‘ with RM or RM+

CFR Regret Bound:
RE, < ) IR <134 - VTAIT < [%,VT

1€

Theorem: when using CFR in self-play in a 2p0s EFG with

any regret minimizers whose regrets are bounded by |A|VT,
the average strategy profile after T rounds is an e-NE, where

TR
VT

€




Efficient Implementation

1. Query all local regret minimizers to get
behavioral strategies %, 5

1
0
0+ .5%.6+.5%*1=.8

2. Multiply down the tree to get
sequence-form strategies x*

3. Compute utility vector u® := Ayt

4. Compute counterfactual values
(and pass them to local regret minimizers)

.2 +.4*0+.6*.5 .2
+.2%.5+.8*0 = .6

Time per iteration:

O(mul(4) + [24] + |Z2])

time complexity of computing Ay*.
Trivially bounded by game tree size.

Exercise: Check that this actually implements

2 3 N | 4
0 .5 .5 0 CFR, i.e., check that the values in Step 4 are
0 .5 .5 0 actually the counterfactual values




Why is CFR Superior in Practice?

3% ... to second-order methods

(which can offer convergence rate e ~(T))?
— Does not require solving large linear systems

— Second-order methods (interior point, ...) don't fit in memory
for large games

$% ... to general-purpose regret minimizers (e.g., FTRL)?

— CFR uses an approach local to each decision point (easier to
parallelize, warm-start, etc.) (more on this next lecture!)

* [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
* [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]

— No need for expensive projections onto feasible strategy
polytope (think projected gradient descent)

— Scale-invariant! (with RM/RM+)


http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf

CFR Framework + Predictivity (aka optimism)

[A] Goofspiel [B] Liar’s dice [C] Battleship [D] River endgame
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Important Takeaways

$%You can construct a regret minimizer for
sequential decision making problems by
combining regret minimizers for individual
decision points

= Improvements on simplex domains carry over to
extensive-form domains!

$% Predictivity works well also in extensive-form
domains
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