Learning Stronger Notions of Equilibrium

Brian Zhang

Recap: CCEs in Normal-Form Games

 X_i = set of **pure** strategies of player *i*

Correlated strategy profile:

$$\bar{\mu}^T \coloneqq \frac{1}{T} \sum_{t=1}^T (\mu_1^t \otimes \mu_2^t \otimes \cdots \mu_n^t) \in \Delta(X_1 \times \cdots \times X_n)$$
Note: not $\Delta(X_1) \times \cdots \times \Delta(X_n)$

the product distribution in $\Delta(X_1) \times \cdots \times \Delta(X_n)$ whose marginal on X_i is $\mu_i^t \in \Delta(X_i)$

Regret guarantee: for all players *i*:

$$\max_{x_{i}^{*}} \frac{1}{T} \sum_{t=1}^{I} \left[u_{i} \left(x_{i}^{*}, x_{-i}^{t} \right) - u_{i} \left(x_{i}^{t}, x_{-i}^{t} \right) \right] \le O_{n} \left(\frac{1}{\sqrt{T}} \right)$$
$$= \max_{x_{i}^{*}} \sum_{x \sim \overline{\mu}^{T}} \left[u_{i} \left(x_{i}^{*}, x_{-i} \right) - u_{i} \left(x_{i}, x_{-i} \right) \right]$$

 $\bar{\mu}^{T}$ is an ϵ -"coarse-correlated equilibrium" (CCE) where $\epsilon = O_n(1/\sqrt{T})$

Works for extensive-form games too: use CFR!

Coarse-Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a coarse-correlated equilibrium (CCE) if

$$\mathbb{E}_{x \sim \mu} \left[u_i(x_i^*, x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0$$

for all players *i* and all strategies $x_i^* \in X_i$

Coarse-Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a coarse-correlated equilibrium (CCE) if

$$\mathbb{E}_{x \sim \mu} \left[u_i(x_i^*, x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0$$

for all players *i* and all strategies $x_i^* \in X_i$

Fairly weak notion: Player must commit before seeing the sampled strategy e.g., CCEs can include dominated strategies (HW1)

Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a correlated equilibrium (CE) if $\mathbb{E}_{\substack{x \sim u}} \left[u_i(\phi_i(x_i), x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0$

for all players *i* and all functions $\phi_i : X_i \to X_i$

Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a correlated equilibrium (CE) if $\mathbb{E}_{\substack{x \sim u}} \left[u_i(\phi_i(x_i), x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0$

for all players *i* and all functions $\phi_i : X_i \to X_i$

	Stop	Go
Stop		
Go		

	Stop	Go
Stop		0, 1
Go	1, 0	-5, -5

	Stop	Go
Stop	0, 0	0, 1
Go	1, 0	-5, -5

	Stop	Go
Stop	0, 0 0	0, 1 p
Go	1, 0 1-р	-5, -5 0

CCEs can be learned using any no-regret algorithm.

Question: Can CEs?

Normal-Form Strategy Maps

A map $\phi : X \to X$, where $X \coloneqq \{e_1, \dots, e_n\} \subset \mathbb{R}^n$, is given by a matrix $M \in \mathbb{R}^{n \times n}$ whose *i*th column specifies $\phi(e_i) \in X$.

e.g.,

$$\boldsymbol{M} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\phi(x) = Mx$$

Normal-Form Strategy Maps

A randomized map $\phi : X \to \operatorname{conv}(X)$, where $X \coloneqq \{e_1, \dots, e_n\} \subset \mathbb{R}^n$, is given by a matrix $M \in \mathbb{R}^{n \times n}$ whose *i*th column specifies $\phi(e_i) \in \operatorname{conv}(X)$.

e.g.,

$$\boldsymbol{M} = \begin{bmatrix} 0.7 & 1 & 0.2 \\ 0.3 & 0 & 0.6 \\ 0 & 0 & 0.2 \end{bmatrix}$$

 $\phi(\boldsymbol{x}) = \boldsymbol{M}\boldsymbol{x}$

No-(External-)Regret Learning

Pure strategy set $X \coloneqq \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\} \subset \mathbb{R}^n$

On each iteration:

- player outputs **mixed strategy** $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) utility vector $u^t \in [-1,1]^n$
- player observes u^t and gets reward $\langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize **regret** after *T* timesteps

$$R_X(T) \coloneqq \max_{\boldsymbol{x}^* \in X} \sum_{t=1}^T \langle \boldsymbol{u}^t, \boldsymbol{x}^* - \boldsymbol{x}^t \rangle$$

No-Swap-Regret Learning

Pure strategy set $X \coloneqq \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\} \subset \mathbb{R}^n$

On each iteration:

- player outputs **mixed strategy** $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) utility vector $u^t \in [-1,1]^n$
- player observes u^t and gets reward $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize **swap regret** after *T* timesteps

$$R_X^{\text{Swap}}(T) \coloneqq \max_{\boldsymbol{M} \in S_n} \sum_{t=1}^T \langle \boldsymbol{u}^t, \boldsymbol{M} \boldsymbol{x}^t - \boldsymbol{x}^t \rangle$$

$$S_n = \text{set of } n \times n \text{ stochastic matrices}$$

Proposition:

If all players in a game achieve swap regret ϵT , then the average strategy profile $\bar{\mu}$ is an ϵ -correlated equilibrium.

The GGM Framework

Blum, Mansour (JMLR 2007); Gordon, Greenwald, Marks (ICML 2008)

Idea: Use

- a regret minimizer \mathcal{R}_{Φ} on S_n (stochastic matrices) with regret $R_{\Phi}(T)$, and
- fixed points

Algorithm: For each iteration t = 1, ..., T:

- 1. Obtain matrix M^t from \mathcal{R}_{Φ}
- 2. Compute $x^t \in \text{conv}(X)$ such that $M^t x^t = x^t$
- 3. Play x^t , observe utility u^t
- 4. Feed to \mathcal{R}_{Φ} the utility $M \mapsto \langle u^t, Mx^t \rangle$

Regret analysis:
$$R_X^{\text{Swap}}(T) = \max_{M \in S_n} \sum_{t=1}^{I} \langle u^t, Mx^t - x^t \rangle$$

we'll discuss how to do this in a minute

The GGM Framework

Blum, Mansour (JMLR 2007); Gordon, Greenwald, Marks (ICML 2008)

Idea: Use

- a regret minimizer \mathcal{R}_{Φ} on S_n (stochastic matrices) with regret $R_{\Phi}(T)$, and
- fixed points

Algorithm: For each iteration t = 1, ..., T:

- 1. Obtain matrix M^t from \mathcal{R}_{Φ}
- 2. Compute $x^t \in \operatorname{conv}(X)$ such that $M^t x^t = x^t$
- 3. Play x^t , observe utility u^t
- 4. Feed to \mathcal{R}_{Φ} the utility $M \mapsto \langle u^t, Mx^t \rangle$

Regret analysis: $R_X^{\text{Swap}}(T) = \max_{M \in S_n} \sum_{t=1}^{r} \langle \boldsymbol{u}^t, \boldsymbol{M} \boldsymbol{x}^t - \boldsymbol{M}^t \boldsymbol{x}^t \rangle = R_{\Phi}(T)$

we'll discuss how to do this in a minute

Regret Minimization Over $n \times n$ Stochastic Matrices

Use CFR!

 $R_X^{\text{Swap}}(T) = R_{\Phi}(T) \in \mathcal{O}(n\sqrt{T\log n})$

with MWU at every decision point

Tighter analysis is possible: Blum-Mansour shows $\sqrt{Tn \log n}$

Theorem [Blum & Mansour *JMLR* 2007] There exists an algorithm for learning CE in normalform games with convergence rate $\sqrt{(n \log n)/T}$.

More Generally: Φ-Equilibria

Def: Given a tuple of subsets $\Phi = {\Phi_i}_{i \in [n]}$ where $\Phi_i \subseteq X_i^{X_i}$, correlated distribution $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a Φ -equilibrium if

$$\mathbb{E}_{\mathbf{x}\sim\mu}\left[u_i(\phi_i(x_i), x_{-i}) - u_i(x_i, x_{-i})\right] \le 0$$

for all players *i* and all functions $\phi_i \in \Phi_i$

Special cases:

- CCE (constant functions): $\Phi_i = \{\phi_{x_i^*} : x^* \in X_i\}$ where $\phi_{x_i^*}(x_i) = x_i^*$ for all x_i
- CE (all functions): $\Phi_i = X_i^{X_i}$

No-(External-)Regret Learning in Extensive-Form Games

Pure strategy set $X \subseteq \{0,1\}^n$

On each iteration:

- player outputs **tree-form strategy** $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize **regret** after T timesteps

$$R_X(T) \coloneqq \max_{\boldsymbol{x}^* \in X} \sum_{t=1}^T \langle \boldsymbol{u}^t, \boldsymbol{x}^* - \boldsymbol{x}^t \rangle$$

No-(External-)Regret Learning in Extensive-Form Games

Pure strategy set $X \subseteq \{0,1\}^n$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $u^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\mathbb{E}_{x^t \sim \mu^t} \langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize **regret** after T timesteps

$$R_X(T) \coloneqq \max_{\boldsymbol{x}^* \in X} \sum_{t=1}^T \mathbb{E}_{\boldsymbol{x}^t \sim \boldsymbol{\mu}^t} \langle \boldsymbol{u}^t, \boldsymbol{x}^* - \boldsymbol{x}^t \rangle$$

No-Φ-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $u^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\mathbb{E}_{x^t \sim u^t} \langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize Φ -regret after T timesteps

$$R_X^{\Phi}(T) \coloneqq \max_{\phi \in \Phi} \sum_{t=1}^T \mathbb{E}_{x^t \sim \mu^t} \langle u^t, \phi(x^t) - x^t \rangle$$

Φ	Notion of Regret	Corresponding Notion of Equilibrium
$\Phi_{\text{Ext}} = \{\text{constant functions}\}$	External	Coarse-Correlated
$\Phi_{Swap} = X^X$ (all functions)	Swap	Correlated

No-Φ-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $u^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\mathbb{E}_{x^t \sim u^t} \langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize Φ -regret after T timesteps

$$R_X^{\Phi}(T) \coloneqq \max_{\phi \in \Phi} \sum_{t=1}^T \mathbb{E}_{x^t \sim \mu^t} \langle u^t, \phi(x^t) - x^t \rangle$$

Proposition

If all players in a game run Φ -regret minimizers that achieve Φ -regret ϵT , then the average strategy profile $\bar{\mu}$ is an ϵ -approximate Φ -equilibrium.

Swap Regret in Extensive-Form Games

Q: Can **swap regret** be efficiently minimized in *extensive-form* games?

Theorem [Corollary of Blum-Mansour]

There exists a swap regret minimizer for tree-form strategy sets whose swap regret is ϵT after $\mathcal{O}(n \cdot 2^n / \epsilon^2)$ iterations.

Bad per-iteration complexity and convergence rate

Theorem

[Special case of Peng & Rubinstein STOC'24; Dagan, Daskalakis, Fishelson, Golowich STOC'24] There exists a swap regret minimizer for tree-form strategy sets* whose swap regret is ϵT after $n^{\tilde{\mathcal{O}}(1/\epsilon)}$ iterations.

*or, indeed, any set $X \subset \mathbb{R}^n$ for which *external* regret is minimizable

 \Rightarrow For **constant** ϵ , an ϵ -CE can be computed in **polynomial time!**

Theorem

[Daskalakis, Farina, Golowich, Sandholm, Zhang *arXiv*'24] There is a constant c > 0 such that achieving swap regret ϵT in tree-form strategy sets requires $\exp(\Omega(\min\{n, 1/\epsilon\}^c))$ iterations.

Open question: Can ϵ -CE be computed in time poly $(n, 1/\epsilon)$ or even poly $(n, \log(1/\epsilon))$?

(using something other than adversarial no-swap-regret learning)

Digression: Nonlinear strategy maps

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

External regret minimizer on X outputs points in conv(X)

Q: For $x^* \in \operatorname{conv}(X)$ and $\phi : X \to X$, what does $\phi(x^*)$ mean?

A1: When $X = \{e_1, ..., e_n\}$ is a normal-form strategy set, $conv(X) = \Delta(X)$ and $\phi(x) = Mx$ for some M, so we can set $\phi(x^*) = \sum_i x_i^* \phi(e_i) = Mx^*$.

A2: Take **any** distribution $\mu \in \Delta(X)$ with $x^* = \underset{x \sim \mu}{\mathbb{E}} x$, and define $\phi(x^*) = \underset{x \sim \mu}{\mathbb{E}} \phi(x)$.

Warning: When ϕ is nonlinear, this depends on the choice of μ

 \Rightarrow "Kuhn's theorem fails when considering nonlinear deviations"

A3: When Φ consists only of linear maps, this doesn't matter (we can use sequenceform strategies + set $\phi(x) = Mx$

No-Linear-Swap-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$,

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $u^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\mathbb{E}_{x^t \sim \mu^t} \langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize Φ -regret after T timesteps

$$R_X^{\Phi}(T) \coloneqq \max_{\boldsymbol{M} \in \Phi_{\text{LIN}}} \sum_{t=1}^T \mathbb{E}_{\boldsymbol{x}^t \sim \boldsymbol{\mu}^t} \langle \boldsymbol{u}^t, \boldsymbol{M} \boldsymbol{x}^t - \boldsymbol{x}^t \rangle$$

 $\Phi_{\text{LIN}} = \{ \boldsymbol{M} : \boldsymbol{M} \boldsymbol{x} \in \text{conv}(X) \ \forall \boldsymbol{x} \in \text{conv}(X) \}$

Advantages:

- Natural generalization of stochastic matrices for normal-form games
- GGM applies verbatim, and fixed points are easy (linear program: Mx = x, $x \in conv(X)$)

No-Linear-Swap-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$,

On each iteration:

- player outputs **tree-form strategy** $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize Φ -regret after T timesteps

$$R_X^{\Phi}(T) \coloneqq \max_{\boldsymbol{M} \in \Phi_{\text{LIN}}} \sum_{t=1}^T \langle \boldsymbol{u}^t, \boldsymbol{M} \boldsymbol{x}^t - \boldsymbol{x}^t \rangle$$

 $\Phi_{\text{LIN}} = \{ \boldsymbol{M} : \boldsymbol{M} \boldsymbol{x} \in \text{conv}(X) \ \forall \boldsymbol{x} \in \text{conv}(X) \}$

Advantages:

- Natural generalization of stochastic matrices for normal-form games
- GGM applies verbatim, and fixed points are easy (linear program: Mx = x, $x \in conv(X)$)
- We can still work with tree-form strategies (linearity of expectation)

The GGM Framework

Gordon, Greenwald, Marks (ICML 2008)

GGM requires two things.

• fixed point oracle fix : $\Phi_{\text{LIN}} \rightarrow \text{conv}(X)$, *i.e.*, Mx = x if x = fix(M), and *Still easy! Use linear programming or power iteration*

• a regret minimizer \mathcal{R}_{Φ} on Φ_{LIN} How to characterize Φ_{LIN} ?

So what does Φ_{LIN} look like?

Warm-up (Special case): What are the affine maps $\phi : [0, 1]^n \rightarrow [0, 1]$?

• Constant functions:

$$\phi(\boldsymbol{x}) = 0, \qquad \phi(\boldsymbol{x}) = 1$$

• Functions that depend on one input coordinate: $\phi(\mathbf{x}) = x_i, \quad \phi(\mathbf{x}) = 1 - x_i$

Claim: Every affine $\phi : [0, 1]^n \rightarrow [0, 1]$ is a convex combination of these!

So what does Φ_{LIN} look like?

Warm-up (Special case): What are the affine maps $\phi : [0, 1]^n \rightarrow [0, 1]^n$?

Each coordinate j is an affine map $\phi_j : [0, 1]^n \rightarrow [0, 1]$ \Rightarrow Each ϕ_j makes ≤ 1 query to the input

So what does Φ_{LIN} look like?

agent selects query index *i*

environment reveals x_i

agent plays $\phi_j(x)$

Does this generalize?

What is the generalization of a "query" to an arbitrary tree-form strategy space?

Does this generalize?

What is the generalization of a "query" to an arbitrary tree-form strategy space?

These are the untimed communication (UTC) deviations

Communication: Player has twoway communication with mediator to gain information

Untimed: Player can send zero, one, or multiple queries between real game actions

Untimed communication deviations as tree-form decision problems DAG

The UTC functions are exactly the linear functions [Zhang, Farina, Sandholm *ICLR*'24]

Regret minimization on DAGs of size $m = n^2$ is possible with regret $m\sqrt{T}$ using CFR + scaled extensions [Zhang, Farina, Sandholm *ICML*'23]

Fixed-point solving using LP or power iteration

↓GGM

COROLLARY

[Zhang, Farina, Sandholm *ICLR*'24] Φ_{LIN} -regret minimization on tree-form decision problems is possible with regret $n^2\sqrt{T}$

Beyond Linear Deviations

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $u^t \in \mathbb{R}^n$
- player observes u^t and gets reward $\mathbb{E}_{x^t \sim u^t} \langle u^t, x^t \rangle \in [-1, 1]$

Goal: minimize Φ -regret after T timesteps

$$R_X^{\Phi}(T) \coloneqq \max_{\phi \in \Phi} \sum_{t=1}^T \mathbb{E}_{x^t \sim \mu^t} \langle u^t, \phi(x^t) - x^t \rangle$$

The GGM Framework

Gordon, Greenwald, Marks (ICML 2008)

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

GGM requires two things.

- Fixed point oracle fix : $\Phi \to \operatorname{conv}(X)$, *i.e.*, $\phi(x) = x$ if $x = \operatorname{fix}(\phi)$ **Problem:** $\phi : X \to X$ is a discrete function!
 - It may not have a fixed point
 - Even if we make some assumption like ϕ being continuous, fixed points are PPAD-hard to compute

• Regret minimizer \mathcal{R}_{Φ} on Φ

Problem: *if* $X = \{0,1\}^n$ *then* $|\Phi| > 2^{n \cdot 2^n}$. *How can we hope to minimize regret efficiently?*

The GGM Framework: Upgraded

Zhang, Anagnostides, Farina, Sandholm (arXiv 2024)

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

GGM requires two things.

- **Expected** fixed point oracle fix : $\Phi \to \Delta(X)$, *i.e.*, $\mathbb{E}_{x \sim \mu} x = \mathbb{E}_{x \sim \mu} \phi(x)$ if $\mu = \text{fix}(\phi)$
 - Always exist
 - Easy to compute! $\mu \coloneqq \text{Unif}\{x, \phi(x), \phi^2(x), \dots, \phi^{L-1}(x)\}$ satisfies

$$\mathbb{E}_{x \sim \mu} \left[\phi(x) - x \right] = \frac{1}{L} \sum_{\ell=0}^{L-1} \left[\phi^{\ell+1}(x) - \phi^{\ell}(x) \right] = \frac{1}{L} \left[\phi^{L}(x) - x \right] \to 0$$

• Regret minimizer \mathcal{R}_{Φ} on Φ

When $\Phi = \{\text{degree-}k \text{ polynomials}\}\)$ and the game tree is balanced, regret minimizers with regret $\exp(\operatorname{poly}(k, \log n))\sqrt{T}$ exist

Theorem: There exist efficient regret minimizers with regret $\exp(\operatorname{poly}(k, \log n))\sqrt{T}$ against the set Φ_k of degree-k polynomials.

Swap Regret in Extensive-Form Games

Q: Can **swap regret** be efficiently minimized in *extensive-form* games?

Theorem [Corollary of Blum-Mansour] There exists a swap regret minimizer

for tree-form strategy sets whose swap regret is ϵT after $\mathcal{O}(n \cdot 2^n / \epsilon^2)$ iterations.

Bad per-iteration complexity and convergence rate

Theorem

[Special case of Peng & Rubinstein STOC'24; Dagan, Daskalakis, Fishelson, Golowich STOC'24] There exists a swap regret minimizer for tree-form strategy sets* whose swap regret is ϵT after $n^{\tilde{\mathcal{O}}(1/\epsilon)}$ iterations.

*or, indeed, any set $X \subset \mathbb{R}^n$ for which *external* regret is minimizable

 \Rightarrow For **constant** ϵ , an ϵ -CE can be computed in **polynomial time!**

Theorem

[Daskalakis, Farina, Golowich, Sandholm, Zhang *arXiv*'24] There is a constant c > 0 such that achieving swap regret ϵT in tree-form strategy sets requires $\exp(\Omega(\min\{n, 1/\epsilon\}^c))$ iterations.

Open question: Can ϵ -CE be computed in time poly $(n, 1/\epsilon)$ or even poly $(n, \log(1/\epsilon))$?

(using something other than adversarial no-swap-regret learning)

Peng & Rubinstein (STOC'24); Dagan, Daskalakis, Fishelson, Golowich (STOC'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (STOC'24); Dagan, Daskalakis, Fishelson, Golowich (STOC'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (STOC'24); Dagan, Daskalakis, Fishelson, Golowich (STOC'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (STOC'24); Dagan, Daskalakis, Fishelson, Golowich (STOC'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (STOC'24); Dagan, Daskalakis, Fishelson, Golowich (STOC'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Goal: Build a **swap regret minimizer** on X

Time:
$$t = T = K^d$$

Play $\mu^{K^d} \coloneqq \text{Unif}\{x_1^K, \dots, x_{D-1}^{K^{d-1}}, x_D^{K^d}\}$
(Mixed strategy!)

Intuition: In the GGM framework, if $\mu^t = \text{Unif}\{x_1, \dots, x_D\}$ let ϕ^t be the "map" that takes $x_1 \mapsto x_2 \mapsto \dots \mapsto x_D$

- μ^t is an expected fixed point of ϕ^t
- each value of ϕ^t is being picked by regret minimizer $\Rightarrow \Phi$ -regret is small!

Peng & Rubinstein (STOC'24); Dagan, Daskalakis, Fishelson, Golowich (STOC'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Goal: Build a **swap regret minimizer** on X

Time:
$$t = T = K^d$$

Play $\mu^{K^d} \coloneqq \text{Unif}\{x_1^K, \dots, x_{D-1}^{K^{d-1}}, x_D^{K^d}\}$
(Mixed strategy!)

Intuition: In the GGM framework, if $\mu^t = \text{Unif}\{x_1, \dots, x_D\}$ let ϕ^t be the "map" that takes $x_1 \mapsto x_2 \mapsto \dots \mapsto x_D$

- μ^t is an expected fixed point of ϕ^t
- each value of ϕ^t is being picked by regret minimizer $\Rightarrow \Phi$ -regret is small!

Summary + some further references

What equilibrium concepts can be reached by **efficient learning algorithms**?

Correlated equilibrium		Normal-form	Previously believed to be the limit of GGM Normal-form Extensive-form Linear-swap Low-degree Normal-form				
concept		coarse-correlated	correlated	correlated	swap correlated	correlated	
Set of deviations ${f \Phi}$		Constant functions	"Trigger" functions	Linear functions	Degree- <i>k</i> polynomials	All functions	
Best- known algorithm	# iterations for ϵT regret	n/ϵ^2	nbd/ϵ^2	n^4/ϵ^2	$n^{\mathcal{O}(kd\log b)^3}/\epsilon^2$	$n^{ ilde{\mathcal{O}}(1/\epsilon)}$	
	Per-iteration complexity	n	FP(n)	FP(n)	$n^{\mathcal{O}(kd\log b)^3}/\epsilon$	n/ϵ	
	Citation	Farina, Lee, Luo, Kroer <i>ICML</i> '22	Farina, Celli, Marchesi, Gatti <i>JACM</i> '22	Zhang, Farina, Sandholm <i>ICLR</i> '24	Zhang, Anagnostides Farina, Sandholm <i>arXiv</i> '24	Peng & Rubinstein <i>STOC</i> '24; Dagan, Daskalakis, Fishelson, Golowich <i>STOC</i> '24	
Notation: b = branching factor of game d = depth of game Larger sets Φ							

d = depth of game

FP(n) = time complexity of computing a fixed point of an $n \times n$ matrix

QP(n) = time complexity of solving an *n*-variable convex quadratic program

Tighter equilibrium concepts Larger sets Φ Harder to learn

Summary + some further references

What equilibrium concepts can be reached by **efficient learning algorithms**?

References

- A Blum, Y Mansour (JMLR 2007), "From external to internal regret"
- GJ Gordon, A Greenwald, C Marks (*ICML* 2008), "No-regret learning in convex games"
- BH Zhang, G Farina, T Sandholm (*ICML* 2023), "Team belief DAG: generalizing the sequence form to team games for fast computation of correlated team max-min equilibria via regret minimization"
- BH Zhang, G Farina, T Sandholm (*ICLR* 2024), "Mediator Interpretation and Faster Learning Algorithms for Linear Correlated Equilibria in General Extensive-Form Games"
- BH Zhang, I Anagnostides, G Farina, T Sandholm (*arXiv* 2024), "Efficient Φ-Regret Minimization with Low-Degree Swap Deviations in Extensive-Form Games"
- C Daskalakis, G Farina, N Golowich, T Sandholm, BH Zhang (*arXiv* 2024), "A Lower Bound on Swap Regret in Extensive-Form Games"