
Learning Stronger Notions of
Equilibrium

Brian Zhang

1

Recap: CCEs in Normal-Form Games

2

Correlated strategy profile:

ҧ𝜇𝑇 ≔
1

𝑇
෍

𝑡=1

𝑇

𝜇1
𝑡 ⊗ 𝜇2

𝑡 ⊗ ⋯ 𝜇𝑛
𝑡 ∈ Δ(𝑋1 × ⋯ × 𝑋𝑛)

Regret guarantee: for all players 𝑖:

ҧ𝜇𝑇 is an 𝜖-“coarse-correlated equilibrium” (CCE) where 𝜖 = 𝑂𝑛 Τ1 𝑇

Note: not Δ 𝑋1 × ⋯ × Δ(𝑋𝑛)

max
𝑥𝑖

∗

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖

𝑡 − 𝑢𝑖 𝑥𝑖
𝑡 , 𝑥−𝑖

𝑡 ≤ 𝑂𝑛

1

𝑇

= max
𝑥𝑖

∗
𝔼

𝒙∼ഥ𝜇𝑇
𝑢𝑖 𝑥𝑖

∗, 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖

the product distribution in Δ 𝑋1 × ⋯ × Δ(𝑋𝑛)

whose marginal on 𝑋𝑖 is 𝜇𝑖
𝑡 ∈ Δ(𝑋𝑖)

Works for extensive-form games too: use CFR!

𝑋𝑖 = set of pure strategies of player 𝑖

Coarse-Correlated Equilibria

3

“Correlation device”
“Mediator”

I will commit to playing
your sampled strategy,

whatever it is.

CCE:
Player 𝑖

Def: 𝜇 ∈ Δ(𝑋1 × ⋯ × 𝑋𝑛) is a coarse-correlated equilibrium (CCE) if

𝔼
𝒙∼𝜇

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 ≤ 0

for all players 𝑖 and all strategies 𝑥𝑖
∗ ∈ 𝑋𝑖

I will sample 𝒙 ∼ 𝜇. You can either
commit to playing the strategy I sample, or

play a strategy of your choice

Coarse-Correlated Equilibria

4

“Correlation device”
“Mediator”

I will sample 𝒙 ∼ 𝜇. You can either
commit to playing the strategy I sample, or

play a strategy of your choice

Fairly weak notion: Player must commit before seeing the sampled strategy
e.g., CCEs can include dominated strategies (HW1)

Player 𝑖
I think 𝒙𝑖

∗ is a unilaterally
profitable deviation, and

I’ll play that instead

Not CCE:

Def: 𝜇 ∈ Δ(𝑋1 × ⋯ × 𝑋𝑛) is a coarse-correlated equilibrium (CCE) if

𝔼
𝒙∼𝜇

𝑢𝑖 𝑥𝑖
∗, 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 ≤ 0

for all players 𝑖 and all strategies 𝑥𝑖
∗ ∈ 𝑋𝑖

Correlated Equilibria

5

Def: 𝜇 ∈ Δ(𝑋1 × ⋯ × 𝑋𝑛) is a correlated equilibrium (CE) if

𝔼
𝒙∼𝜇

𝑢𝑖 𝜙𝑖(𝑥𝑖), 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 ≤ 0

for all players 𝑖 and all functions 𝜙𝑖 ∶ 𝑋𝑖 → 𝑋𝑖

“Correlation device”
“Mediator”

I will sample 𝒙 ∼ 𝜇, and tell you 𝑥𝑖. Then you can
choose what action you want to play.

Okay, I will play 𝑥𝑖

CE:

𝑥𝑖 Player 𝑖

Correlated Equilibria

6

“Correlation device”
“Mediator”

Given your recommendation 𝑥𝑖,
I think 𝑥𝑖

′ ≔ 𝜙𝑖(𝑥𝑖) is a better
action, so I’ll play that instead.

Not CE:

Player 𝑖

Def: 𝜇 ∈ Δ(𝑋1 × ⋯ × 𝑋𝑛) is a correlated equilibrium (CE) if

𝔼
𝒙∼𝜇

𝑢𝑖 𝜙𝑖(𝑥𝑖), 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 ≤ 0

for all players 𝑖 and all functions 𝜙𝑖 ∶ 𝑋𝑖 → 𝑋𝑖

I will sample 𝒙 ∼ 𝜇, and tell you 𝑥𝑖. Then you can
choose what action you want to play.

𝑥𝑖

Stop Go

Stop

Go

Correlated Equilibria
in Normal-Form Games

7

Chicken

Stop Go

Stop

Go
-5, -5

Correlated Equilibria
in Normal-Form Games

8

Chicken

Stop Go

Stop
0, 1

Go
-5, -5

Correlated Equilibria
in Normal-Form Games

9

Chicken

Stop Go

Stop
0, 1

Go
1, 0 -5, -5

Correlated Equilibria
in Normal-Form Games

10

Chicken

Stop Go

Stop
0, 0 0, 1

Go
1, 0 -5, -5

Correlated Equilibria
in Normal-Form Games

11

Chicken

Correlated Equilibria
in Normal-Form Games

12

Stop Go

Stop
0, 0

0
0, 1

p

Go
1, 0
1-p

-5, -5
0

Chicken

Correlated Equilibria
in Normal-Form Games

13

Chicken

Stop Go

Stop
0, 0

0
0, 1

p

Go
1, 0
1-p

-5, -5
0

𝜇 =
1

2
Stop, Go +

1

2
(Go, Stop)

is a CE (and a CCE)

CCEs can be learned using any
no-regret algorithm.

Question: Can CEs?

14

Normal-Form Strategy Maps

A map 𝜙 ∶ 𝑋 → 𝑋, where 𝑋 ≔ 𝒆1, … , 𝒆𝑛 ⊂ ℝ𝑛, is
given by a matrix 𝑴 ∈ ℝ𝑛×𝑛 whose 𝑖th column
specifies 𝜙 𝒆𝑖 ∈ 𝑋.

e.g.,

𝑴 =
1 1 0
0 0 0
0 0 1

15

𝜙 𝒙 = 𝑴𝒙

Normal-Form Strategy Maps

A randomized map 𝜙 ∶ 𝑋 → conv(𝑋), where 𝑋 ≔
𝒆1, … , 𝒆𝑛 ⊂ ℝ𝑛, is given by a matrix 𝑴 ∈ ℝ𝑛×𝑛

whose 𝑖th column specifies 𝜙 𝒆𝑖 ∈ conv(𝑋).

e.g.,

𝑴 =
0.7 1 0.2
0.3 0 0.6
0 0 0.2

16

𝜙 𝒙 = 𝑴𝒙

No-(External-)Regret Learning

17

Pure strategy set 𝑋 ≔ 𝒆1, … , 𝒆𝑛 ⊂ ℝ𝑛

On each iteration:

• player outputs mixed strategy 𝒙𝑡 ∈ conv(𝑋)
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ −1,1 𝑛

• player observes 𝒖𝑡 and gets reward 𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize regret after 𝑇 timesteps

𝑅𝑋 𝑇 ≔ max
𝒙∗∈𝑋

 ෍

𝑡=1

𝑇

𝒖𝑡 , 𝒙∗ − 𝒙𝑡

No-Swap-Regret Learning

18

Pure strategy set 𝑋 ≔ 𝒆1, … , 𝒆𝑛 ⊂ ℝ𝑛

On each iteration:

• player outputs mixed strategy 𝒙𝑡 ∈ conv(𝑋)
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ −1,1 𝑛

• player observes 𝒖𝑡 and gets reward 𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize swap regret after 𝑇 timesteps

𝑅𝑋
Swap

𝑇 ≔ max
𝑴∈𝑆𝑛

෍

𝑡=1

𝑇

𝒖𝑡, 𝑴𝒙𝑡 − 𝒙𝑡

Proposition:
If all players in a game achieve swap regret 𝜖𝑇, then the average

strategy profile ҧ𝜇 is an 𝜖-correlated equilibrium.

𝑆𝑛 = set of 𝑛 × 𝑛 stochastic matrices

The GGM Framework

Idea: Use
• a regret minimizer ℛΦ on 𝑆𝑛 (stochastic matrices) with regret 𝑅Φ(𝑇), and
• fixed points

Algorithm: For each iteration 𝑡 = 1, … , 𝑇:
1. Obtain matrix 𝑴𝑡 from ℛΦ

2. Compute 𝒙𝑡 ∈ conv 𝑋 such that 𝑴𝑡𝒙𝑡 = 𝒙𝑡

3. Play 𝒙𝑡, observe utility 𝒖𝑡

4. Feed to ℛΦ the utility 𝑴 ↦ 𝒖𝑡, 𝑴𝒙𝑡

Regret analysis:

19

Blum, Mansour (JMLR 2007); Gordon, Greenwald, Marks (ICML 2008)

𝑅𝑋
Swap

𝑇 = max
𝑴∈𝑆𝑛

෍

𝑡=1

𝑇

𝒖𝑡, 𝑴𝒙𝑡 − 𝒙𝑡

we’ll discuss how to
do this in a minute

Idea: Use
• a regret minimizer ℛΦ on 𝑆𝑛 (stochastic matrices) with regret 𝑅Φ(𝑇), and
• fixed points

Algorithm: For each iteration 𝑡 = 1, … , 𝑇:
1. Obtain matrix 𝑴𝑡 from ℛΦ

2. Compute 𝒙𝑡 ∈ conv 𝑋 such that 𝑴𝑡𝒙𝑡 = 𝒙𝑡

3. Play 𝒙𝑡, observe utility 𝒖𝑡

4. Feed to ℛΦ the utility 𝑴 ↦ 𝒖𝑡, 𝑴𝒙𝑡

Regret analysis: 𝑅𝑋
Swap

𝑇 = max
𝑴∈𝑆𝑛

෍

𝑡=1

𝑇

𝒖𝑡, 𝑴𝒙𝑡 − 𝑴𝑡𝒙𝑡

The GGM Framework

20

Blum, Mansour (JMLR 2007); Gordon, Greenwald, Marks (ICML 2008)

= 𝑅Φ 𝑇

we’ll discuss how to
do this in a minute

Regret Minimization Over 𝑛 × 𝑛
Stochastic Matrices

21

{ Sequence-form strategies in this
tree-form decision problem }

≅
{ 4×4 stochastic matrices }

Use CFR!

𝑅𝑋
Swap

𝑇 = 𝑅Φ 𝑇 ∈ 𝒪 𝑛 𝑇 log 𝑛

Tighter analysis is possible: Blum-Mansour shows 𝑇𝑛 log 𝑛

Theorem [Blum & Mansour JMLR 2007]
There exists an algorithm for learning CE in normal-

form games with convergence rate Τ𝑛 log 𝑛 𝑇 .

with MWU at every
decision point

More Generally: Φ-Equilibria

22

Def: Given a tuple of subsets Φ = Φ𝑖 𝑖∈[𝑛] where Φ𝑖 ⊆ 𝑋𝑖
𝑋𝑖, correlated

distribution 𝜇 ∈ Δ(𝑋1 × ⋯ × 𝑋𝑛) is a Φ-equilibrium if

𝔼
𝒙∼𝜇

𝑢𝑖 𝜙𝑖(𝑥𝑖), 𝑥−𝑖 − 𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 ≤ 0

for all players 𝑖 and all functions 𝜙𝑖 ∈ Φ𝑖

Special cases:

• CCE (constant functions): Φ𝑖 = {𝜙𝑥𝑖
∗ ∶ 𝑥∗ ∈ 𝑋𝑖} where 𝜙𝑥𝑖

∗ 𝑥𝑖 = 𝑥𝑖
∗ for all 𝑥𝑖

• CE (all functions): Φ𝑖 = 𝑋𝑖
𝑋𝑖

No-(External-)Regret Learning in
Extensive-Form Games

23

Pure strategy set 𝑋 ⊆ 0,1 𝑛

On each iteration:

• player outputs tree-form strategy 𝒙𝑡 ∈ conv 𝑋
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize regret after 𝑇 timesteps

𝑅𝑋 𝑇 ≔ max
𝒙∗∈𝑋

 ෍

𝑡=1

𝑇

𝒖𝑡, 𝒙∗ − 𝒙𝑡

No-(External-)Regret Learning in
Extensive-Form Games

24

Pure strategy set 𝑋 ⊆ 0,1 𝑛

On each iteration:

• player outputs mixed strategy 𝜇𝑡 ∈ Δ 𝑋
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize regret after 𝑇 timesteps

𝑅𝑋(𝑇) ≔ max
𝒙∗∈𝑋

 ෍

𝑡=1

𝑇

𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝒙∗ − 𝒙𝑡

No-Φ-Regret Learning

25

Pure strategy set 𝑋 ⊆ 0,1 𝑛
 , set of deviations Φ ⊆ 𝑋𝑋

On each iteration:

• player outputs mixed strategy 𝜇𝑡 ∈ Δ 𝑋
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize Φ-regret after 𝑇 timesteps

 𝑅𝑋
Φ(𝑇) ≔ max

𝜙∈Φ
 ෍

𝑡=1

𝑇

𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝜙 𝒙𝑡 − 𝒙𝑡

Φ Notion of Regret Corresponding Notion of Equilibrium

ΦExt = {constant functions} External Coarse-Correlated

ΦSwap = 𝑋𝑋 (all functions) Swap Correlated

No-Φ-Regret Learning

26

Pure strategy set 𝑋 ⊆ 0,1 𝑛
 , set of deviations Φ ⊆ 𝑋𝑋

On each iteration:

• player outputs mixed strategy 𝜇𝑡 ∈ Δ 𝑋
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize Φ-regret after 𝑇 timesteps

 𝑅𝑋
Φ(𝑇) ≔ max

𝜙∈Φ
 ෍

𝑡=1

𝑇

𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝜙 𝒙𝑡 − 𝒙𝑡

Proposition
If all players in a game run Φ-regret minimizers that achieve Φ-regret 𝜖𝑇, then the

average strategy profile ҧ𝜇 is an 𝜖-approximate Φ-equilibrium.

Swap Regret in Extensive-Form Games
Q: Can swap regret be efficiently minimized in extensive-form games?

27

Theorem
[Daskalakis, Farina, Golowich, Sandholm, Zhang arXiv’24]

There is a constant 𝑐 > 0 such that achieving swap regret 𝜖𝑇 in tree-form

strategy sets requires 𝐞𝐱𝐩 𝛀 𝐦𝐢𝐧 𝒏, Τ𝟏 𝝐 𝒄 iterations.

⇒ For constant 𝜖, an 𝜖-CE can be
computed in polynomial time!

Open question: Can 𝜖-CE be computed in time poly(𝑛, 1/𝜖) or even poly 𝑛, log(Τ1 𝜖)?

 (using something other than adversarial no-swap-regret learning)

Theorem
[Corollary of Blum-Mansour]

There exists a swap regret minimizer
for tree-form strategy sets whose

swap regret is 𝜖𝑇 after

𝓞 𝒏 ⋅ Τ𝟐𝒏 𝝐𝟐 iterations.

Theorem
[Special case of Peng & Rubinstein STOC’24;

Dagan, Daskalakis, Fishelson, Golowich STOC’24]

There exists a swap regret minimizer
for tree-form strategy sets* whose

swap regret is 𝜖𝑇 after

𝒏
෩𝓞(Τ𝟏 𝝐) iterations.

*or, indeed, any set 𝑋 ⊂ ℝ𝑛 for which external regret is minimizable
Bad per-iteration complexity and

convergence rate

Digression: Nonlinear strategy maps

28

Pure strategy set 𝑋 ⊆ 0,1 𝑛 , set of deviations Φ ⊆ 𝑋𝑋

External regret minimizer on 𝑋 outputs points in conv(𝑋)

Q: For 𝒙∗ ∈ conv 𝑋 and 𝜙 ∶ 𝑋 → 𝑋, what does 𝜙(𝒙∗) mean?

A1: When 𝑋 = {𝒆1, … , 𝒆𝑛} is a normal-form strategy set, conv 𝑋 = Δ(𝑋) and
𝜙 𝒙 = 𝑴𝒙 for some 𝑴, so we can set 𝜙 𝒙∗ = σ𝑖 𝒙𝑖

∗ 𝜙 𝒆𝑖 = 𝑴𝒙∗.

A2: Take any distribution 𝜇 ∈ Δ(𝑋) with 𝒙∗ = 𝔼
𝒙∼𝜇

𝒙, and define

𝜙 𝒙∗ = 𝔼
𝒙∼𝜇

𝜙 𝒙 .

Warning: When 𝜙 is nonlinear, this depends on the choice of 𝜇

⇒ “Kuhn’s theorem fails when considering nonlinear deviations”

A3: When Φ consists only of linear maps, this doesn’t matter (we can use sequence-
form strategies + set 𝜙 𝒙 = 𝑴𝒙

No-Linear-Swap-Regret Learning

29

Pure strategy set 𝑋 ⊆ 0,1 𝑛
 ,

On each iteration:

• player outputs mixed strategy 𝜇𝑡 ∈ Δ 𝑋
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize Φ-regret after 𝑇 timesteps

 𝑅𝑋
Φ(𝑇) ≔ max

𝑴∈ΦLIN

 ෍

𝑡=1

𝑇

𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝑴𝒙𝑡 − 𝒙𝑡

ΦLIN = 𝑴 ∶ 𝑴𝒙 ∈ conv(𝑋) ∀𝒙 ∈ conv 𝑋
Advantages:
• Natural generalization of stochastic matrices for normal-form games
• GGM applies verbatim, and fixed points are easy (linear program: 𝑴𝒙 = 𝒙, 𝒙 ∈ conv 𝑋)

No-Linear-Swap-Regret Learning

30

Pure strategy set 𝑋 ⊆ 0,1 𝑛
 ,

On each iteration:

• player outputs tree-form strategy 𝒙𝑡 ∈ conv(𝑋)
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize Φ-regret after 𝑇 timesteps

 𝑅𝑋
Φ 𝑇 ≔ max

𝑴∈ΦLIN

 ෍

𝑡=1

𝑇

𝒖𝑡, 𝑴𝒙𝑡 − 𝒙𝑡

Advantages:
• Natural generalization of stochastic matrices for normal-form games
• GGM applies verbatim, and fixed points are easy (linear program: 𝑴𝒙 = 𝒙, 𝒙 ∈ conv 𝑋)
• We can still work with tree-form strategies (linearity of expectation)

ΦLIN = 𝑴 ∶ 𝑴𝒙 ∈ conv(𝑋) ∀𝒙 ∈ conv 𝑋

GGM requires two things.

• fixed point oracle fix ∶ ΦLIN → conv 𝑋 , i.e., 𝑴𝒙 = 𝒙 if 𝒙 = fix(𝑴), and
 Still easy! Use linear programming or power iteration

• a regret minimizer ℛΦ on ΦLIN

 How to characterize ΦLIN?

The GGM Framework

31

Gordon, Greenwald, Marks (ICML 2008)

So what does ΦLIN look like?

Warm-up (Special case): What are the affine maps

𝜙 ∶ 0, 1 𝑛 → 0, 1 ?

• Constant functions:

𝜙 𝒙 = 0, 𝜙 𝒙 = 1

• Functions that depend on one input coordinate:

𝜙 𝒙 = 𝑥𝑖 , 𝜙 𝒙 = 1 − 𝑥𝑖

Claim: Every affine 𝜙 ∶ 0, 1 𝑛 → 0, 1 is a convex
combination of these!

32

So what does ΦLIN look like?

Warm-up (Special case): What are the affine maps
𝜙 ∶ 0, 1 𝑛 → 0, 1 𝑛?

Each coordinate 𝑗 is an affine map 𝜙𝑗 ∶ 0, 1 𝑛 → [0, 1]

⇒ Each 𝜙𝑗 makes ≤ 1 query to the input

33

… 𝑖 = 𝑛𝑖 = 1

𝑥1 = 0 𝑥1 = 1

0 1 0 1

𝑗 = 𝑛𝑗 = 1
…

environment
selects 𝑗

agent selects
query index 𝑖

environment
reveals 𝑥𝑖

agent plays 𝜙𝑗(𝒙)

𝜙𝑛 𝒙 = 1 − 𝑥1

So what does ΦLIN look like?

Warm-up (Special case): What are the affine maps
𝜙 ∶ 0, 1 𝑛 → 0, 1 𝑛?

Each coordinate 𝑗 is an affine map 𝜙𝑗 ∶ 0, 1 𝑛 → [0, 1]

⇒ Each 𝜙𝑗 makes ≤ 1 query to the input

34

environment
selects 𝑗

agent selects
query index 𝑖

environment
reveals 𝑥𝑖

agent plays 𝜙𝑗(𝒙)

𝜙𝑛 𝒙 = 1 − 𝑥1

Insight:

Affine maps
𝜙 ∶ 0,1 𝑛 → 0,1 𝑛 ≡

Tree-form strategies
with one query

… 𝑖 = 𝑛𝑖 = 1

𝑥1 = 0 𝑥1 = 1

0 1 0 1

𝑗 = 𝑛𝑗 = 1
…

Does this generalize?

35

What is the generalization of a "query" to an
arbitrary tree-form strategy space?

A

2

B

1

3 4

C

5 6

0

Mediator (holds 𝒙)

A

2

B

1

3 4

C

5 6

0

I didn't query C…
too late now

Real game (play 𝑴𝒙)

Does this generalize?

36

What is the generalization of a "query" to an
arbitrary tree-form strategy space?

These are the
untimed communication

(UTC) deviations

Communication: Player has two-
way communication with mediator
to gain information

Untimed: Player can send zero,
one, or multiple queries between
real game actions

A

2

B

1

3 4

C

5 6

0

Mediator (holds 𝒙)

A

2

B

1

3 4

C

5 6

0

Real game (play 𝑴𝒙)

Untimed communication deviations as
tree-form decision problems

37

A

2

B

1

3 4

C

5 6

0

A

2

B

1

3 4

C

5 6

0

1 2

B 1 2C

A 1 2

A

3 4

1 2

B C

5 6

C

B

4

Mediator (holds 𝒙) Real game (play 𝑴𝒙)

5 6

Untimed communication deviations as
tree-form decision problems

38

A

2

B

1

3 4

C

5 6

0

A

2

B

1

3 4

C

5 6

0

DAG (0, 0)

(2, 2)

(2, 4)

(5, 4)

Strategy in DAG ⇒ function 𝜙 ∶ 𝑋 → 𝑋 Size of DAG:
𝑂 𝑛2

Mediator (holds 𝒙) Real game (play 𝑴𝒙) 1 2

B 1 2C

A 1 2

A

3 4

1 2

B C

5 6

C

B

4

Untimed communication deviations as
tree-form decision problems

39

DAG

𝜙 𝒙 𝜎 = ෍

𝜎′

𝑀 𝜎, 𝜎′ 𝑥 𝜎′

𝜙 𝑥 plays to 𝜎 𝜙(𝑥) plays to 𝜎
if 𝑥 plays to 𝜎′

𝑥 plays to 𝜎′

𝜙 𝒙 = 𝑴𝒙

⇒ ΦUTC ⊆ ΦLIN

THEOREM
[Zhang, Farina, Sandholm ICLR'24]

ΦUTC = ΦLIN.

(0, 0)

(2, 2)

(2, 4)

(5, 4)

Size of DAG:
𝑂 𝑛2

1 2

B 1 2C

A 1 2

A

3 4

1 2

B C

5 6

C

B

4

40

The UTC functions are
exactly the linear functions

[Zhang, Farina, Sandholm ICLR'24]

Regret minimization on DAGs of size 𝑚 = 𝑛2

is possible with regret 𝑚 𝑇 using CFR + scaled extensions
[Zhang, Farina, Sandholm ICML'23]

+

Fixed-point solving using LP or power iteration

+

COROLLARY
[Zhang, Farina, Sandholm ICLR'24]

ΦLIN-regret minimization on tree-form decision

problems is possible with regret 𝑛2 𝑇

GGM

Beyond Linear Deviations

41

Pure strategy set 𝑋 ⊆ 0,1 𝑛
 , set of deviations Φ ⊆ 𝑋𝑋

On each iteration:

• player outputs mixed strategy 𝜇𝑡 ∈ Δ 𝑋
• environment outputs (possibly adversarial) utility vector 𝒖𝑡 ∈ ℝ𝑛

• player observes 𝒖𝑡 and gets reward 𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝒙𝑡 ∈ [−1,1]

Goal: minimize Φ-regret after 𝑇 timesteps

 𝑅𝑋
Φ(𝑇) ≔ max

𝜙∈Φ
 ෍

𝑡=1

𝑇

𝔼
𝒙𝑡∼𝜇𝑡

𝒖𝑡, 𝜙 𝒙𝑡 − 𝒙𝑡

Pure strategy set 𝑋 ⊆ 0,1 𝑛 , set of deviations Φ ⊆ 𝑋𝑋

GGM requires two things.

• Fixed point oracle fix ∶ Φ → conv 𝑋 , i.e., 𝜙(𝒙) = 𝒙 if 𝒙 = fix 𝜙

Problem: 𝜙 ∶ 𝑋 → 𝑋 is a discrete function!

• It may not have a fixed point

• Even if we make some assumption like 𝜙 being continuous, fixed
points are PPAD-hard to compute

The GGM Framework

42

Gordon, Greenwald, Marks (ICML 2008)

• Regret minimizer ℛΦ on Φ

Problem: if 𝑋 = 0,1 𝑛 then Φ > 2𝑛⋅2𝑛
. How can we hope to

minimize regret efficiently?

Pure strategy set 𝑋 ⊆ 0,1 𝑛 , set of deviations Φ ⊆ 𝑋𝑋

GGM requires two things.

• Expected fixed point oracle fix ∶ Φ → Δ(𝑋), i.e., 𝔼
𝒙∼𝜇

𝒙 = 𝔼
𝒙∼𝜇

𝜙 𝒙 if 𝜇 = fix(𝜙)

– Always exist

– Easy to compute! 𝜇 ≔ Unif 𝒙, 𝜙 𝒙 , 𝜙2 𝒙 , … , 𝜙𝐿−1 𝒙 satisfies

𝔼
𝒙∼𝜇

𝜙 𝒙 − 𝒙 =
1

𝐿
෍

ℓ=0

𝐿−1

𝜙ℓ+1 𝒙 − 𝜙ℓ 𝒙 =
1

𝐿
𝜙𝐿 𝒙 − 𝒙 → 0

The GGM Framework: Upgraded

43

Zhang, Anagnostides, Farina, Sandholm (arXiv 2024)

• Regret minimizer ℛΦ on Φ

When Φ = {degree-𝑘 polynomials} and the game tree is balanced, regret

minimizers with regret exp poly 𝑘, log 𝑛 𝑇 exist

Theorem: There exist efficient regret minimizers with regret exp poly 𝑘, log 𝑛 𝑇

against the set Φ𝑘 of degree-𝑘 polynomials.

Swap Regret in Extensive-Form Games
Q: Can swap regret be efficiently minimized in extensive-form games?

44

Theorem
[Daskalakis, Farina, Golowich, Sandholm, Zhang arXiv’24]

There is a constant 𝑐 > 0 such that achieving swap regret 𝜖𝑇 in tree-form

strategy sets requires 𝐞𝐱𝐩 𝛀 𝐦𝐢𝐧 𝒏, Τ𝟏 𝝐 𝒄 iterations.

⇒ For constant 𝜖, an 𝜖-CE can be
computed in polynomial time!

Open question: Can 𝜖-CE be computed in time poly(𝑛, 1/𝜖) or even poly 𝑛, log(Τ1 𝜖)?

 (using something other than adversarial no-swap-regret learning)

Theorem
[Corollary of Blum-Mansour]

There exists a swap regret minimizer
for tree-form strategy sets whose

swap regret is 𝜖𝑇 after

𝓞 𝒏 ⋅ Τ𝟐𝒏 𝝐𝟐 iterations.

Theorem
[Special case of Peng & Rubinstein STOC’24;

Dagan, Daskalakis, Fishelson, Golowich STOC’24]

There exists a swap regret minimizer
for tree-form strategy sets* whose

swap regret is 𝜖𝑇 after

𝒏
෩𝓞(Τ𝟏 𝝐) iterations.

*or, indeed, any set 𝑋 ⊂ ℝ𝑛 for which external regret is minimizable
Bad per-iteration complexity and

convergence rate

TreeSwap

45

Peng & Rubinstein (STOC’24); Dagan, Daskalakis, Fishelson, Golowich (STOC’24)

Given: External regret minimizer 𝑅𝑋 on 𝑋 ⊂ 0,1 𝑛 achieving 𝜖𝐾 regret after
𝐾 steps (e.g., for extensive-form games, CFR gives 𝐾 = 𝑛2/𝜖2)

Goal: Build a swap regret minimizer on 𝑋

Idea:

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋

branching factor = 𝐾

depth = 𝐷 = 1/𝜖

(here 𝐷 = 3)

TreeSwap

46

Peng & Rubinstein (STOC’24); Dagan, Daskalakis, Fishelson, Golowich (STOC’24)

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋𝒙1
1

𝒙2
1

𝒙3
1

(Mixed strategy!)

𝒖1

Play 𝜇1 ≔ Unif{𝒙1
1, … , 𝒙𝐷−1

1 , 𝒙𝐷
1 }

Time: 𝑡 = 1

Given: External regret minimizer 𝑅𝑋 on 𝑋 ⊂ 0,1 𝑛 achieving 𝜖𝐾 regret after
𝐾 steps (e.g., for extensive-form games, CFR gives 𝐾 = 𝑛2/𝜖2)

Goal: Build a swap regret minimizer on 𝑋

Idea:

Given: External regret minimizer 𝑅𝑋 on 𝑋 ⊂ 0,1 𝑛 achieving 𝜖𝐾 regret after
𝐾 steps (e.g., for extensive-form games, CFR gives 𝐾 = 𝑛2/𝜖2)

Goal: Build a swap regret minimizer on 𝑋

Idea:

TreeSwap

47

Peng & Rubinstein (STOC’24); Dagan, Daskalakis, Fishelson, Golowich (STOC’24)

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋𝒙1
1

𝒙2
1

𝒙3
𝐾

(Mixed strategy!)

𝒖𝐾

1

𝐾
𝒖1 + ⋯ + 𝒖𝐾

Play 𝜇𝐾 ≔ Unif{𝒙1
1, … , 𝒙𝐷−1

1 , 𝒙𝐷
𝐾}

Time: 𝑡 = 𝐾

Given: External regret minimizer 𝑅𝑋 on 𝑋 ⊂ 0,1 𝑛 achieving 𝜖𝐾 regret after
𝐾 steps (e.g., for extensive-form games, CFR gives 𝐾 = 𝑛2/𝜖2)

Goal: Build a swap regret minimizer on 𝑋

Idea:

TreeSwap

48

Peng & Rubinstein (STOC’24); Dagan, Daskalakis, Fishelson, Golowich (STOC’24)

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋𝒙1
1

𝒙2
2

𝒙3
𝐾+1

Play 𝜇𝐾+1 ≔ Unif{𝒙1
1, … , 𝒙𝐷−1

2 , 𝒙𝐷
𝐾+1}

(Mixed strategy!)

Time: 𝑡 = 𝐾 + 1

𝒖𝐾+1

Given: External regret minimizer 𝑅𝑋 on 𝑋 ⊂ 0,1 𝑛 achieving 𝜖𝐾 regret after
𝐾 steps (e.g., for extensive-form games, CFR gives 𝐾 = 𝑛2/𝜖2)

Goal: Build a swap regret minimizer on 𝑋

Idea:

TreeSwap

49

Peng & Rubinstein (STOC’24); Dagan, Daskalakis, Fishelson, Golowich (STOC’24)

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋 𝑅𝑋 𝑅𝑋

𝑅𝑋

𝑅𝑋

Play 𝜇𝐾𝑑
≔ Unif{𝒙1

𝐾, … , 𝒙𝐷−1
𝐾𝑑−1

, 𝒙𝐷
𝐾𝑑

}
(Mixed strategy!)

Time: 𝑡 = 𝑇 = 𝐾𝑑

Intuition: In the GGM framework, if
𝜇𝑡 = Unif 𝒙1, … , 𝒙𝐷 let 𝜙𝑡 be the
“map” that takes 𝒙1 ↦ 𝒙2 ↦ ⋯ ↦ 𝒙𝐷

• 𝝁𝑡 is an expected fixed point of 𝜙𝑡
• each value of 𝜙𝑡 is being picked by

regret minimizer ⇒ Φ-regret is small!

Given: External regret minimizer 𝑅𝑋 on 𝑋 ⊂ 0,1 𝑛 achieving 𝜖𝐾 regret after
𝐾 steps (e.g., for extensive-form games, CFR gives 𝐾 = 𝑛2/𝜖2)

Goal: Build a swap regret minimizer on 𝑋

TreeSwap

50

Peng & Rubinstein (STOC’24); Dagan, Daskalakis, Fishelson, Golowich (STOC’24)

Play 𝜇𝐾𝑑
≔ Unif{𝒙1

𝐾, … , 𝒙𝐷−1
𝐾𝑑−1

, 𝒙𝐷
𝐾𝑑

}
(Mixed strategy!)

Time: 𝑡 = 𝑇 = 𝐾𝑑

Intuition: In the GGM framework, if
𝜇𝑡 = Unif 𝒙1, … , 𝒙𝐷 let 𝜙𝑡 be the
“map” that takes 𝒙1 ↦ 𝒙2 ↦ ⋯ ↦ 𝒙𝐷

• 𝜇𝑡 is an expected fixed point of 𝜙𝑡
• each value of 𝜙𝑡 is being picked by

regret minimizer ⇒ Φ-regret is small!

Theorem:

𝑅𝑋
Swap

𝑇 ≤ 𝑇 𝜖 +
1

𝐷
≤ 2𝜖𝑇

from regret of each 𝑅𝑋

from expected fixed point error

Correlated equilibrium
concept

Normal-form
coarse-correlated

Extensive-form
correlated

Linear-swap
correlated

Low-degree
swap correlated

Normal-form
correlated

Set of deviations 𝚽
Constant
functions

"Trigger"
functions

Linear
functions

Degree-𝑘
polynomials

All functions

Best-
known

algorithm

iterations
for 𝝐𝑻 regret

𝑛/𝜖2 𝑛𝑏𝑑/𝜖2 𝑛4/𝜖2 𝑛𝒪 𝑘𝑑 log 𝑏 3
/𝜖2 𝑛

෨𝒪(1/𝜖)

Per-iteration
complexity

𝑛 FP(𝑛) FP(𝑛) 𝑛𝒪 𝑘𝑑 log 𝑏 3
/𝜖 𝑛/𝜖

Citation
Farina, Lee, Luo,

Kroer
ICML'22

Farina, Celli,
Marchesi, Gatti

JACM'22

Zhang,
Farina,

Sandholm
ICLR'24

Zhang,
Anagnostides

Farina, Sandholm
arXiv'24

Peng & Rubinstein
STOC'24;

Dagan, Daskalakis,
Fishelson,

Golowich STOC'24

Previously believed to be
the limit of GGM

Summary + some further references

51

What equilibrium concepts can be reached by efficient learning algorithms?

Notation:
𝑏 = branching factor of game
𝑑 = depth of game
FP 𝑛 = time complexity of computing a fixed point of an 𝑛 × 𝑛 matrix
QP(𝑛) = time complexity of solving an 𝑛-variable convex quadratic program

Tighter equilibrium concepts
Larger sets Φ
Harder to learn

Correlated equilibrium
concept

Normal-form
coarse-correlated

Extensive-form
correlated

Linear-swap
correlated

Low-degree
swap correlated

Normal-form
correlated

Set of deviations 𝚽
Constant
functions

"Trigger"
functions

Linear
functions

Degree-𝑘
polynomials

All functions

Best-
known

algorithm

iterations
for 𝝐𝑻 regret

𝑛/𝜖2 𝑛𝑏𝑑/𝜖2 𝑛4/𝜖2 𝑛𝒪 𝑘𝑑 log 𝑏 3
/𝜖2 𝑛

෨𝒪(1/𝜖)

Per-iteration
complexity

𝑛 FP(𝑛) FP(𝑛) 𝑛𝒪 𝑘𝑑 log 𝑏 3
/𝜖 𝑛/𝜖

Citation
Farina, Lee, Luo,

Kroer
ICML'22

Farina, Celli,
Marchesi, Gatti

JACM'22

Zhang,
Farina,

Sandholm
ICLR'24

Zhang,
Anagnostides

Farina, Sandholm
arXiv'24

Peng & Rubinstein
STOC'24;

Dagan, Daskalakis,
Fishelson,

Golowich STOC'24

Previously believed to be
the limit of GGM

Summary + some further references

52

What equilibrium concepts can be reached by efficient learning algorithms?

Notation:
𝑏 = branching factor of game
𝑑 = depth of game
FP 𝑛 = time complexity of computing a fixed point of an 𝑛 × 𝑛 matrix
QP(𝑛) = time complexity of solving an 𝑛-variable convex quadratic program

Tighter equilibrium concepts
Larger sets Φ
Harder to learn

One UTC
mediator

𝑂 𝑘𝑑 log 𝑏 3 UTC mediators +
“expected fixed points” to

circumvent PPAD-hard computation

References

53

• A Blum, Y Mansour (JMLR 2007), “From external to internal regret”

• GJ Gordon, A Greenwald, C Marks (ICML 2008), “No-regret learning in convex
games”

• BH Zhang, G Farina, T Sandholm (ICML 2023), “Team belief DAG: generalizing the
sequence form to team games for fast computation of correlated team max-min
equilibria via regret minimization”

• BH Zhang, G Farina, T Sandholm (ICLR 2024), “Mediator Interpretation and Faster
Learning Algorithms for Linear Correlated Equilibria in General Extensive-Form
Games”

• BH Zhang, I Anagnostides, G Farina, T Sandholm (arXiv 2024), “Efficient Φ-Regret
Minimization with Low-Degree Swap Deviations in Extensive-Form Games”

• C Daskalakis, G Farina, N Golowich, T Sandholm, BH Zhang (arXiv 2024), “A Lower
Bound on Swap Regret in Extensive-Form Games”

	Slide 1: Learning Stronger Notions of Equilibrium
	Slide 2: Recap: CCEs in Normal-Form Games
	Slide 3: Coarse-Correlated Equilibria
	Slide 4: Coarse-Correlated Equilibria
	Slide 5: Correlated Equilibria
	Slide 6: Correlated Equilibria
	Slide 7: Correlated Equilibria in Normal-Form Games
	Slide 8: Correlated Equilibria in Normal-Form Games
	Slide 9: Correlated Equilibria in Normal-Form Games
	Slide 10: Correlated Equilibria in Normal-Form Games
	Slide 11: Correlated Equilibria in Normal-Form Games
	Slide 12: Correlated Equilibria in Normal-Form Games
	Slide 13: Correlated Equilibria in Normal-Form Games
	Slide 14: CCEs can be learned using any no-regret algorithm. Question: Can CEs?
	Slide 15: Normal-Form Strategy Maps
	Slide 16: Normal-Form Strategy Maps
	Slide 17: No-(External-)Regret Learning
	Slide 18: No-Swap-Regret Learning
	Slide 19: The GGM Framework
	Slide 20: The GGM Framework
	Slide 21: Regret Minimization Over n times n Stochastic Matrices
	Slide 22: More Generally: cap phi-Equilibria
	Slide 23: No-(External-)Regret Learning in Extensive-Form Games
	Slide 24: No-(External-)Regret Learning in Extensive-Form Games
	Slide 25: No-cap phi-Regret Learning
	Slide 26: No-cap phi-Regret Learning
	Slide 27: Swap Regret in Extensive-Form Games
	Slide 28: Digression: Nonlinear strategy maps
	Slide 29: No-Linear-Swap-Regret Learning
	Slide 30: No-Linear-Swap-Regret Learning
	Slide 31: The GGM Framework
	Slide 32: So what does cap phi sub LIN look like?
	Slide 33: So what does cap phi sub LIN look like?
	Slide 34: So what does cap phi sub LIN look like?
	Slide 35: Does this generalize?
	Slide 36: Does this generalize?
	Slide 37: Untimed communication deviations as tree-form decision problems
	Slide 38: Untimed communication deviations as tree-form decision problems
	Slide 39: Untimed communication deviations as tree-form decision problems
	Slide 40
	Slide 41: Beyond Linear Deviations
	Slide 42: The GGM Framework
	Slide 43: The GGM Framework: Upgraded
	Slide 44: Swap Regret in Extensive-Form Games
	Slide 45: TreeSwap
	Slide 46: TreeSwap
	Slide 47: TreeSwap
	Slide 48: TreeSwap
	Slide 49: TreeSwap
	Slide 50: TreeSwap
	Slide 51: Summary + some further references
	Slide 52: Summary + some further references
	Slide 53: References

