Learning Stronger Notions of
Equilibrium

Recap: CCEs in Normal-Form Games

X; = set of pure strategies of player i

Correlated strategy profile
Note: not A(Xy) X -+ X A(X;,)

Z(lﬁ Qu; - .Un) € A(Xy X -+ X Xp)

|
the product distribution in A(X;) X -+ X A(X},)

whose marginal on X; is uit € A(X;)

Regret guarantee: for all players i:
T

rrylc?x%;[ui(xf,xf —w;(xf, L)) < (\/_>

= m*X]E—T [ui(xgk, x_i) - ui(xi; x—i)]
xl X~U

i’ is an e-“coarse-correlated equilibrium” (CCE) where € = On(l /NT)

Works for extensive-form games too: use CFR!

Coarse-Correlated Equilibria

Def: 1 € A(X; X --- X X,,) is a coarse-correlated equilibrium (CCE) if

E [u;Co,xo) —ui(x,x-)] <0

~

for all players i and all strategies x; € X;

| will sample x ~ 1. You can either

“Correlation device” commit to playing the strategy | sample, or
“Mediator” play a strategy of your choice
m CCE:
| will commit to playing Player i

your sampled strategy,
whatever it is.

&

Coarse-Correlated Equilibria

Def: 1 € A(X; X --- X X,,) is a coarse-correlated equilibrium (CCE) if

E [u;Co,xo) —ui(x,x-)] <0

~

for all players i and all strategies x; € X;

| will sample x ~ 1. You can either
“Correlation device” commit to playing the strategy | sample, or
“Mediator” play a strategy of your choice

m Not CCE:
. .. _ Player i
0 | think x; is a unilaterally

profitable deviation, and
I’ll play that instead
Fairly weak notion: Player must commit before seeing the sampled strategy
e.g., CCEs can include dominated strategies (HW1)

Correlated Equilibria

Def: u € A(X; X --- X X,,) is a correlated equilibrium (CE) if
xIEH [y (i (i), 0-) —ui e, 2)] < 0

for all players i and all functions ¢; : X; — X;

“Correlation device” | will sample x ~ 1, and tell you x;. Then you can
“Mediator” choose what action you want to play.

Xi

Player i

>

CE:

[Okay, | will play x; F

Correlated Equilibria

Def: u € A(X; X --- X X,,) is a correlated equilibrium (CE) if
xIEH [y (i (i), 0-) —ui e, 2)] < 0

for all players i and all functions ¢; : X; — X;

“Correlation device” | will sample x ~ 1, and tell you x;. Then you can
“Mediator” choose what action you want to play.

Xi

%

Player i

>

Not CE:

r
Given your recommendation X;,

| think x; :== ¢;(x;) is a better
action, so I'll play that instead.

\

Correlated Equilibria

in Normal-Form Games
Chicken

Correlated Equilibria

in Normal-Form Games
Chicken

Correlated Equilibria

in Normal-Form Games
Chicken

Chicken

1,

Correlated Equilibria
in Normal-Form Games

10

Chicken

Correlated Equilibria
in Normal-Form Games

11

Chicken

Correlated Equilibria
in Normal-Form Games

12

13

Correlated Equilibria
in Normal-Form Games

Chicken
0 0,
0 p
1, -5,
1-p 0

1 1
n=3 (Stop, Go) + > (Go, Stop)

is a CE (and a CCE)

CCEs can be learned using any
no-regret algorithm.

Question: Can CEs?

Normal-Form Strategy Maps

Amap ¢ : X - X, where X = {eq, ...,e,} € R", is
given by a matrix M € R™*™ whose ith column
specifies ¢(e;) € X.

e.g.,

S

|
S O
S O
_ O O

d(x) = Mx

Normal-Form Strategy Maps

A randomized map ¢ : X - conv(X), where X :=
{eq,...,e,} € R™, is given by a matrix M € R"*"
whose ith column specifies ¢p(e;) € conv(X).

e.g.,
0.7 1 0.2

M=]03 0 0.6
L0 0 0.2

d(x) = Mx

No-(External-)Regret Learning

Pure strategy set X = {eq, ...,e,,} € R"
On each iteration:

* player outputs mixed strategy x* € conv(X)
« environment outputs (possibly adversarial) utility vector ut € [—1,1]"
* player observes u! and gets reward (ut, xt) € [—1,1]

Goal: minimize regret after T timesteps

x*eX

T
Ry (T) := max Z(ut,x* — xt)
t=1

18

No-Swap-Regret Learning

Pure strategy set X = {e, ...,e,,} € R"
On each iteration:

* player outputs mixed strategy x* € conv(X)
* environment outputs (possibly adversarial) utility vector ut € [—1,1]"
* player observes ut and gets reward (uf, xt) € [-1,1]

Goal: minimize swap regret after T timesteps

RV (T) == max Z(u Maxt — xt)

MEeS
n S, = set of n X n stochastic matrices

Proposition:

If all players in a game achieve swap regret €T, then the average
strategy profile [t is an e-correlated equilibrium.

19

The GGM Framework

Blum, Mansour (JMLR 2007); Gordon, Greenwald, Marks (/ICML 2008)

Idea: Use
* aregret minimizer Rg on S, (stochastic matrices) with regret R, (T), and
* fixed points

T we’ll discuss how to

Algorithm: For each iterationt =1, ..., . :
do this in a minute

1. Obtain matrix Mt from R
2. Compute xt € conv(X) such that Mtxt = xt
3. Play xt, observe utility ut

4. Feedto Ry the utility M » (ut, Mxt)

Regret analysis: stap(T) = max Z(u Mxt — xt)
n

20

The GGM Framework

Blum, Mansour (JMLR 2007); Gordon, Greenwald, Marks (/ICML 2008)

Idea: Use
* aregret minimizer Rg on S, (stochastic matrices) with regret R, (T), and
* fixed points

T we’ll discuss how to

Algorithm: For each iterationt =1, ..., . :
do this in a minute

1. Obtain matrix Mt from R
2. Compute xt € conv(X) such that Mtxt = xt
3. Play xt, observe utility ut

4. Feedto Ry the utility M » (ut, Mxt)

Regret analysis: stap(T) = max Z(u Mxt — Mtxt) = R (T)

21

Regret Minimization Over n X n
Stochastic Matrices

H
{ Sequence-form strategies in this

tree-form decision problem }

~y

{ 4Xx4 stochastic matrices }
gy uuuuuuuuuuw

Use CFR!
Ry (T) = Ro(T) € 0(nyTlogn) [

Tighter analysis is possible: Blum-Mansour shows /Tnlogn

Theorem [Blum & Mansour JMLR 2007]
There exists an algorithm for learning CE in normal-

form games with convergence rate \/(nlogn) /T .

More Generally: ®-Equilibria

Def: Given a tuple of subsets ® = {®;};c,,) where ®; C XiXi, correlated
distribution p € A(X; X -+ X X)) is a ®-equilibrium if

E [u;(¢; (), x—i) —ui(x,x-;)] <0

X~

for all players i and all functions ¢; € ®;

Special cases:

* CCE (constant functions): ®; = {qu; ;

* CE (all functions): ®; = Xl.Xi

x* € X;} where ¢, (x;) = x; for all x;

22

No-(External-)Regret Learning in
Extensive-Form Games

Pure strategy set X € {0,1}"
On each iteration:

* player outputs tree-form strategy x* € conv(X)
* environment outputs (possibly adversarial) utility vector ut € R"
* player observes u! and gets reward (ut, xt) € [—1,1]

Goal: minimize regret after T timesteps

x*eX

T
Ry (T) := max Z(ut, x* — xt)
t=1

No-(External-)Regret Learning in
Extensive-Form Games

Pure strategy set X € {0,1}"
On each iteration:

* player outputs mixed strategy ut € A(X)
* environment outputs (possibly adversarial) utility vector ut € R"
 player observes ut and gets reward E t(ut, xt) € [-1,1]

xt~p
Goal: minimize regret after T timesteps
T

Ry (T) := max E (ut, x* —xt
X() v EX xt~ut<))
t=1

No-d-Regret Learning

Pure strategy set X € {0,1}",set of deviations ® € X*
On each iteration:

* player outputs mixed strategy ut € A(X)
 environment outputs (possibly adversarial) utility vector ut € R"
 player observes ut and gets reward E t(ut, xt) € [-1,1]
xt~p
Goal: minimize ®-regret after T timesteps
T

D — t LY __ At
RECT) = o) B, (0 90x) =2
t=

25

Notion of Regret Corresponding Notion of Equilibrium

®ry = {constant functions} External Coarse-Correlated

Pswap = X* (all functions) Swap Correlated

No-d-Regret Learning

Pure strategy set X € {0,1}",set of deviations ® € X*
On each iteration:

* player outputs mixed strategy ut € A(X)
 environment outputs (possibly adversarial) utility vector ut € R"
 player observes ut and gets reward E t(ut, xt)y € [-1,1]

xt~p

Goal: minimize ®-regret after T timesteps

Ry (T) :== max E t(ut, d(xt) — xt)

Proposition

If all players in a game run ®-regret minimizers that achieve ®-regret €T, then the
average strategy profile [t is an e-approximate ®-equilibrium.

26

Swap Regret in Extensive-Form Games

Q: Can swap regret be efficiently minimized in extensive-form games?

Theorem Theorem
[Corollary of Blum-Mansour] [Special case of Peng & Rubinstein STOC 24;
Dagan, Daskalakis, Fishelson, Golowich STOC 24]
There exists a swap regret minimizer There exists a swap regret minimizer
for tree-form strategy sets whose for tree-form strategy sets™ whose
swap regret is €T after swap regret is €T after

O(n - 2"/€?) iterations. n°1/6 jterations.

. . . *or, indeed, any set X c R™ for which external regret is minimizable
Bad per-iteration complexity and

convergence rate = For constant ¢, an ¢-CE can be
computed in polynomial time!

Theorem
[Daskalakis, Farina, Golowich, Sandholm, Zhang arXiv’'24]

There is a constant ¢ > 0 such that achieving swap regret €T in tree-form
strategy sets requires exp(ﬂ(min{n, 1/ E}C)) iterations.

Open question: Can ¢-CE be computed in time poly(n, 1/€) or even poly(n,log(1/€))?

(using something other than adversarial no-swap-regret learning)

27

Digression: Nonlinear strategy maps

Pure strategy set X € {0,1}", set of deviations ® € X*

External regret minimizer on X outputs points in conv(X)

Q: For x* € conv(X) and ¢ : X — X, what does ¢(x*) mean?

A2: Take any distribution u € A(X) with x* = E x, and define
X~

¢(x") = E ¢p(x).
X~
Warning: When ¢ is nonlinear, this depends on the choice of u

= “Kuhn’s theorem fails when considering nonlinear deviations”

A3: When @ consists only of linear maps, this doesn’t matter (we can use sequence-
form strategies + set ¢p(x) = Mx

28

29

No-Linear-Swap-Regret Learning

Pure strategy set X < {0,1}",
On each iteration:

* player outputs mixed strategy ut € A(X)
 environment outputs (possibly adversarial) utility vector ut € R"

 player observes ut and gets reward E t(ut, xt) € [-1,1]
xt~p

Goal: minimize ®-regret after T timesteps
T

Dy . t Myl _ ot
Ry (T) : Mrenqe)lEiN xt[ﬁ]ﬂt(u , Mx" — x*)

Oy ={M : Mx € conv(X) Vx € conv(X)}
Advantages:

* Natural generalization of stochastic matrices for normal-form games
* GGM applies verbatim, and fixed points are easy (linear program: Mx = x, x € conv(X))

30

No-Linear-Swap-Regret Learning

Pure strategy set X < {0,1}",
On each iteration:

* player outputs tree-form strategy x° € conv(X)
* environment outputs (possibly adversarial) utility vector ut € R"
* player observes u! and gets reward (ut, xt) € [—1,1]

Goal: minimize ®-regret after T timesteps

T

(0] —_ t Lt __ At

RY(T) = max Zm Mxt — xt)
t=1

Oy ={M : Mx € conv(X) Vx € conv(X)}
Advantages:

* Natural generalization of stochastic matrices for normal-form games
* GGM applies verbatim, and fixed points are easy (linear program: Mx = x, x € conv(X))
* We can still work with tree-form strategies (linearity of expectation)

The GGM Framework

Gordon, Greenwald, Marks (/CML 2008)

GGM requires two things.

fixed point oracle fix : &y — conv(X), i.e., Mx = x if x = fix(M), and
Still easy! Use linear programming or power iteration

a regret minimizer Ry on @y 1y
How to characterize @1y ?

31

So what does @y look like?

Warm-up (Special case): What are the affine maps
¢ :10,1]" = [0,1]?

e Constant functions:

¢(x) =0, ¢x) =1

* Functions that depend on one input coordinate:

p(x) =%, Px)=1—x

Claim: Every affine ¢ : [0,1]™ — [0, 1] is a convex
combination of these!

So what does @y look like?

Warm-up (Special case): What are the affine maps
¢ :10,1]" - [0,1]"?

Each coordinate j is an affine map ¢; : [0, 1]" — [0, 1]
= Each ¢; makes < 1 query to the input

environment
selects j

agent selects
query index i

environment
reveals x;

agent plays ¢;(x)

0 1 0 1

Pn(x) =1—x

33

So what does @y look like?

Insight:

Affine maps __ Tree-form strategies
¢ :10,1]" - [0,1]" — with one query

environment
selects j

agent selects
guery index i

environment
reveals x;

agent plays ¢;(x)

0 1 0 1

34

35

Does this generalize?

What is the generalization of a "query" to an
arbitrary tree-form strategy space?

Mediator (holds x) Real game (play Mx)
0

| didn't query C...

1 2
{ } too late now
3 4 5 6

36

Does this generalize?

What is the generalization of a "query" to an
arbitrary tree-form strategy space?

Mediator (holds x) Real game (play Mx) These are the
0

}1{2>
3 4 5 6

untimed communication
(UTC) deviations

Communication: Player has two-
way communication with mediator
to gain information

Untimed: Player can send zero,
one, or multiple queries between
real game actions

Untimed communication deviations as
tree-form decision problems

]
A
1
v
Mediator (holds x) Real game (play Mx)

o ‘e

&
AN

38

Untimed communication deviations as

tree-form decision problems
DAG 0

Size of DAG:
0(n?)

0

Untimed communication deviations as

tree-form decision problems
DAG 0

AT 12 2
“ 0(n*)

d@o] =) Mool xlo] 5

L]| ; 1

Y o Y Y ¥
¢ (x) plays to o ¢(x)playstoa xplaystod’

if x plays to ¢’ B C1 2
d(x) = Mx 3 4§ &
= Oyrc € PN 12 B

THEOREM
[Zhang, Farina, Sandholm ICLR'24]

Pytc = PLin-

A

* Size of DAG:
1
v

39

The UTC functions are

exactly the linear functions
[Zhang, Farina, Sandholm ICLR'24]

Regret minimization on DAGs of size m = n?

is possible with regret m+/T using CFR + scaled extensions
[Zhang, Farina, Sandholm ICML'23]

Fixed-point solving using LP or power iteration

lGGM

COROLLARY
[Zhang, Farina, Sandholm ICLR'24]

@, n-regret minimization on tree-form decision
problems is possible with regret n?/T

40

41

Beyond Linear Deviations

Pure strategy set X € {0,1}",set of deviations ® € X*
On each iteration:

* player outputs mixed strategy ut € A(X)
* environment outputs (possibly adversarial) utility vector ut € R"

* player observes u! and gets reward E (u xt) € [-1,1]
~ut

Goal: minimize ®-regret after T timesteps
T

Ry (T) = gl ax L, xtIEu (ut, p(xt) — xt)

42

The GGM Framework

Gordon, Greenwald, Marks (/CML 2008)

Pure strategy set X € {0,1}", set of deviations ® € X*
GGM requires two things.

* Fixed point oracle fix : ® — conv(X), i.e., p(x) = x if x = fix(¢)
Problem: ¢ : X — X is a discrete function!
* |t may not have a fixed point

* Even if we make some assumption like ¢ being continuous, fixed
points are PPAD-hard to compute

* Regret minimizer Ry on @

Problem: if X = {0,1}" then |®| > 2™2". How can we hope to
minimize regret efficiently?

The GGM Framework: Upgraded

Zhang, Anagnostides, Farina, Sandholm (arXiv 2024)

Pure strategy set X € {0,1}", set of deviations ® € X*

GGM requires two things.

* Expected fixed point oracle fix : ® - A(X), ie., E x = E ¢(x) if u = fix(¢)
xX~U xX~U

— Always exist

— Easy to compute! u == Unif{x d(x), p?(x), .. qu_l(x)} satisfies
E oG -2 = Z [641(0) — ¢ ()] = 7 [94(x) — 2] > 0

* Regret minimizer Rg on CID

When ® = {degree-k polynomials} and the game tree is balanced, regret
minimizers with regret exp(poly(k, log n)) VT exist

Theorem: There exist efficient regret minimizers with regret exp(poly(k, log n)) VT

against the set @, of degree-k polynomials.

43

Swap Regret in Extensive-Form Games

Q: Can swap regret be efficiently minimized in extensive-form games?

Theorem Theorem
[Corollary of Blum-Mansour] [Special case of Peng & Rubinstein STOC 24;
Dagan, Daskalakis, Fishelson, Golowich STOC 24]
There exists a swap regret minimizer There exists a swap regret minimizer
for tree-form strategy sets whose for tree-form strategy sets™ whose
swap regret is €T after swap regret is €T after

O(n - 2"/€?) iterations. n°1/6 jterations.

. . . *or, indeed, any set X c R™ for which external regret is minimizable
Bad per-iteration complexity and

convergence rate = For constant ¢, an ¢-CE can be
computed in polynomial time!

Theorem
[Daskalakis, Farina, Golowich, Sandholm, Zhang arXiv’'24]

There is a constant ¢ > 0 such that achieving swap regret €T in tree-form
strategy sets requires exp(ﬂ(min{n, 1/ E}C)) iterations.

Open question: Can ¢-CE be computed in time poly(n, 1/€) or even poly(n,log(1/€))?

(using something other than adversarial no-swap-regret learning)

44

45

TreeSwap

Peng & Rubinstein (STOC' 24); Dagan, Daskalakis, Fishelson, Golowich (STOC 24)

Given: External regret minimizer Ry on X c [0,1]™ achieving €K regret after
K steps (e.g., for extensive-form games, CFR gives K = n?/e?)

Goal: Build a swap regret minimizer on X

Idea:

P depth=D =1/¢

(here D = 3)

branching factor = K

46

TreeSwap

Peng & Rubinstein (STOC' 24); Dagan, Daskalakis, Fishelson, Golowich (STOC 24)

Given: External regret minimizer Ry on X c [0,1]™ achieving €K regret after
K steps (e.g., for extensive-form games, CFR gives K = n?/e?)

Goal: Build a swap regret minimizer on X

Idea: Time:t =1
P|ay 'ul = Unif{x%, ey x%—lrx%}

(Mixed strategy!)

47

TreeSwap

Peng & Rubinstein (STOC' 24); Dagan, Daskalakis, Fishelson, Golowich (STOC 24)

Given: External regret minimizer Ry on X c [0,1]™ achieving €K regret after
K steps (e.g., for extensive-form games, CFR gives K = n?/e?)

Goal: Build a swap regret minimizer on X

Idea: Time:t =K
P|ay 'uK = Unif{x%, ey x%—lrxg}

(Mixed strategy!)

48

TreeSwap

Peng & Rubinstein (STOC' 24); Dagan, Daskalakis, Fishelson, Golowich (STOC 24)

Given: External regret minimizer Ry on X c [0,1]™ achieving €K regret after
K steps (e.g., for extensive-form games, CFR gives K = n?/e?)

Goal: Build a swap regret minimizer on X

Idea: Time:t =K + 1

Play uX+1 := Unif{xl, ..., x3_,, x5t}

(Mixed strategy!)

TreeSwap

Peng & Rubinstein (STOC' 24); Dagan, Daskalakis, Fishelson, Golowich (STOC 24)

Given: External regret minimizer Ry on X c [0,1]™ achieving €K regret after
K steps (e.g., for extensive-form games, CFR gives K = n?/e?)

Goal: Build a swap regret minimizer on X
Time:t =T = K¢
K4 o0 K K4-1 K4
Play u* := Unif{x7, ..., Xp_1 , Xp

(Mixed strategy!)

Intuition: In the GGM framework, if
put = Unif{xy, ..., xp} let ¢! be the
“map” that takes x; » x, » -+ > Xxp

« utis an expected fixed point of ¢¢
 each value of ¢! is being picked by
regret minimizer = ®-regret is small!

49

TreeSwap

Peng & Rubinstein (STOC' 24); Dagan, Daskalakis, Fishelson, Golowich (STOC 24)

Given: External regret minimizer Ry on X c [0,1]™ achieving €K regret after
K steps (e.g., for extensive-form games, CFR gives K = n?/e?)

Goal: Build a swap regret minimizer on X

Theorem:

1
R)S(W‘ap(T) <T|le+ 5) < 2eT

from regret of each Ry

from expected fixed point error

|

f

Time:t =T = K¢

P|ay ‘uKd = Unif{xlf, ey xgd—_f» xgd
(Mixed strategy!)

Intuition: In the GGM framework, if
put = Unif{xy, ..., xp} let ¢! be the
“map” that takes x; » x, » -+ > Xxp

« utis an expected fixed point of ¢!
 each value of ¢! is being picked by
regret minimizer = ®-regret is small!

51

Summary + some further references

What equilibrium concepts can be reached by efficient learning algorithms?

Correlated equilibrium Normal-form Extensive-form

Previously believed to be

the limit of GGM
Linear-swap |

Low-degree

Normal-form

concept coarse-correlated correlated correlated ! swap correlated correlated
Constant "Tri " Li i D -)
Set of deviations ® ons.an rlgger mgar 1 ceree .k All functions
functions functions functions I polynomials
. . |
iterations 2 2 4.2 I ..0(kd log b)3 3
gb) 2 0(1/e)
for €T regret n/e nbd/e /e 1 /€ n
Per-iterati i
er-iteration I 0(kdlog b)?
Best- complexity n FP(n) EP(n) : n /€ n/e
known I . .
. Peng & Rubinstein
algorithm Farina, Lee, Luo, Farina, Celli, igfi:g’ : AnaZhnaons%;des STOC'24;
Citation Kroer Marchesi, Gatti o) 8 Dagan, Daskalakis,
, , Sandholm | Farina, Sandholm .
ICML'22 JACM'22 clR2a | arXiv'24 Fishelson,
| Golowich STOC'24
1
>
Notation:

b = branching factor of game

d = depth of game

FP(n) = time complexity of computing a fixed point of an n X n matrix
QP(n) = time complexity of solving an n-variable convex quadratic program

Tighter equilibrium concepts
Larger sets &
Harder to learn

52

Summary + some further references

What equilibrium concepts can be reached by efficient learning algorithms?

Previously believed to be
the limit of GGM

Correlated equilibrium Normal-form Extensive-form Linear-swap | Low-degree Normal-form
concept coarse-correlated correlated correlated ! swap correlated correlated
. Trgger Lmear | - .
Set of deviations ® Cons"ca nt rlgger mgar 1 Degree .k All functions
functions functions functions I polynomials
. . |
f# |te;at|onst n/e n*/e? : nOkd log b)3/62 no/e
or €T regre
g One UTC ;
Per-iteration " mediator Qe FP(n) : nOGkd log b)° /¢ n/e
Best- complexity 1
known I . .
. Peng & Rubinstein
algorithm Farina, Lee, Luo, Farina, Celli, Zha.ng, ! Zhang, STOC'24;
Citation Kroer > kalakis,
ICML'22 0(kdlog b)3 UTC mediators +
“expected fixed points” to
_ circumvent PPAD-hard computation
Notation:

2

arger sets @
Harder to learn

b = branching factor of game
d = depth of game

FP(n) = time complexity of computing a fixed point of an n X n matrix
QP(n) = time complexity of solving an n-variable convex quadratic program

53

References

A Blum, Y Mansour (JMLR 2007), “From external to internal regret”

GJ Gordon, A Greenwald, C Marks (ICML 2008), “No-regret learning in convex
games”

BH Zhang, G Farina, T Sandholm (/ICML 2023), “Team belief DAG: generalizing the
sequence form to team games for fast computation of correlated team max-min
equilibria via regret minimization”

BH Zhang, G Farina, T Sandholm (/CLR 2024), “Mediator Interpretation and Faster
Learning Algorithms for Linear Correlated Equilibria in General Extensive-Form
Games”

BH Zhang, | Anagnostides, G Farina, T Sandholm (arXiv 2024), “Efficient ®-Regret
Minimization with Low-Degree Swap Deviations in Extensive-Form Games”

C Daskalakis, G Farina, N Golowich, T Sandholm, BH Zhang (arXiv 2024), “A Lower
Bound on Swap Regret in Extensive-Form Games”

	Slide 1: Learning Stronger Notions of Equilibrium
	Slide 2: Recap: CCEs in Normal-Form Games
	Slide 3: Coarse-Correlated Equilibria
	Slide 4: Coarse-Correlated Equilibria
	Slide 5: Correlated Equilibria
	Slide 6: Correlated Equilibria
	Slide 7: Correlated Equilibria in Normal-Form Games
	Slide 8: Correlated Equilibria in Normal-Form Games
	Slide 9: Correlated Equilibria in Normal-Form Games
	Slide 10: Correlated Equilibria in Normal-Form Games
	Slide 11: Correlated Equilibria in Normal-Form Games
	Slide 12: Correlated Equilibria in Normal-Form Games
	Slide 13: Correlated Equilibria in Normal-Form Games
	Slide 14: CCEs can be learned using any no-regret algorithm. Question: Can CEs?
	Slide 15: Normal-Form Strategy Maps
	Slide 16: Normal-Form Strategy Maps
	Slide 17: No-(External-)Regret Learning
	Slide 18: No-Swap-Regret Learning
	Slide 19: The GGM Framework
	Slide 20: The GGM Framework
	Slide 21: Regret Minimization Over n times n Stochastic Matrices
	Slide 22: More Generally: cap phi-Equilibria
	Slide 23: No-(External-)Regret Learning in Extensive-Form Games
	Slide 24: No-(External-)Regret Learning in Extensive-Form Games
	Slide 25: No-cap phi-Regret Learning
	Slide 26: No-cap phi-Regret Learning
	Slide 27: Swap Regret in Extensive-Form Games
	Slide 28: Digression: Nonlinear strategy maps
	Slide 29: No-Linear-Swap-Regret Learning
	Slide 30: No-Linear-Swap-Regret Learning
	Slide 31: The GGM Framework
	Slide 32: So what does cap phi sub LIN look like?
	Slide 33: So what does cap phi sub LIN look like?
	Slide 34: So what does cap phi sub LIN look like?
	Slide 35: Does this generalize?
	Slide 36: Does this generalize?
	Slide 37: Untimed communication deviations as tree-form decision problems
	Slide 38: Untimed communication deviations as tree-form decision problems
	Slide 39: Untimed communication deviations as tree-form decision problems
	Slide 40
	Slide 41: Beyond Linear Deviations
	Slide 42: The GGM Framework
	Slide 43: The GGM Framework: Upgraded
	Slide 44: Swap Regret in Extensive-Form Games
	Slide 45: TreeSwap
	Slide 46: TreeSwap
	Slide 47: TreeSwap
	Slide 48: TreeSwap
	Slide 49: TreeSwap
	Slide 50: TreeSwap
	Slide 51: Summary + some further references
	Slide 52: Summary + some further references
	Slide 53: References

