Learning Stronger Notions of Equilibrium

Brian Zhang

Recap: CCEs in Normal-Form Games

 X_i = set of **pure** strategies of player i

Correlated strategy profile:

$$
\bar{\mu}^T := \frac{1}{T} \sum_{t=1}^T (\mu_1^t \otimes \mu_2^t \otimes \cdots \mu_n^t) \in \Delta(X_1 \times \cdots \times X_n)
$$
\nNote: not

\n
$$
\Delta(X_1) \times \cdots \times \Delta(X_n)
$$

the product distribution in $\Delta(X_1) \times \cdots \times \Delta(X_n)$ whose marginal on X_i is $\mu_i^t \in \Delta(X_i)$

Regret guarantee: for all players i :

$$
\max_{x_i^*} \frac{1}{T} \sum_{t=1}^T \left[u_i(x_i^*, x_{-i}^t) - u_i(x_i^t, x_{-i}^t) \right] \le O_n \left(\frac{1}{\sqrt{T}} \right)
$$

=
$$
\max_{x_i^*} \mathop{\mathbb{E}}_{x \sim \overline{\mu}^T} \left[u_i(x_i^*, x_{-i}) - u_i(x_i, x_{-i}) \right]
$$

 $\bar{\mu}^T$ is an ϵ -"coarse-correlated equilibrium" (CCE) where $\epsilon = O_n\big(1/\sqrt{T}\big)$

Works for extensive-form games too: use CFR!

Coarse-Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a coarse-correlated equilibrium (CCE) if

$$
\mathop{\mathbb{E}}_{x \sim \mu} \left[u_i(x_i^*, x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0
$$

for all players i and all strategies $x_i^* \in X_i$

Coarse-Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a coarse-correlated equilibrium (CCE) if

$$
\mathop{\mathbb{E}}_{x \sim \mu} \left[u_i(x_i^*, x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0
$$

for all players i and all strategies $x_i^* \in X_i$

Fairly **weak notion**: Player must commit **before seeing the sampled strategy** e.g., CCEs can include **dominated strategies** (HW1)

Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a correlated equilibrium (CE) if \mathbb{E} $x^\perp \mu$ $u_i(\phi_i(x_i), x_{-i}) - u_i(x_i, x_{-i}) \leq 0$

for all players i and all functions $\phi_i: X_i \rightarrow X_i$

Correlated Equilibria

Def: $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a correlated equilibrium (CE) if \mathbb{E} $u_i(\phi_i(x_i), x_{-i}) - u_i(x_i, x_{-i}) \leq 0$

for all players i and all functions $\phi_i: X_i \rightarrow X_i$

 $x^\perp \mu$

CCEs can be learned using any no-regret algorithm.

Question: Can CEs?

Normal-Form Strategy Maps

A map $\phi: X \to X$, where $X \coloneqq \{e_1, ..., e_n\} \subset \mathbb{R}^n$, is given by a matrix $M \in \mathbb{R}^{n \times n}$ whose *i*th column specifies $\phi(e_i) \in X$.

e.g.,

$$
M = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
\phi(x)=Mx
$$

Normal-Form Strategy Maps

A randomized map $\phi : X \to conv(X)$, where $X \coloneqq$ $\boldsymbol{e}_1, ..., \boldsymbol{e}_n\} \subset \mathbb{R}^n$, is given by a matrix $\boldsymbol{M} \in \mathbb{R}^{n \times n}$ whose *i*th column specifies $\phi(e_i) \in \text{conv}(X)$.

e.g.,

$$
M = \begin{bmatrix} 0.7 & 1 & 0.2 \\ 0.3 & 0 & 0.6 \\ 0 & 0 & 0.2 \end{bmatrix}
$$

 $\phi(x) = Mx$

No-(External-)Regret Learning

Pure strategy set $X \coloneqq \{e_1, ..., e_n\} \subset \mathbb{R}^n$

On each iteration:

- player outputs **mixed strategy** $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in [-1,1]^n$
- player observes \boldsymbol{u}^t and gets reward $\langle \boldsymbol{u}^t, \boldsymbol{x}^t \rangle \in [-1,1]$

Goal: minimize **regret** after T timesteps

$$
R_X(T) := \max_{x^* \in X} \sum_{t=1}^T \langle u^t, x^* - x^t \rangle
$$

No-Swap-Regret Learning

Pure strategy set $X \coloneqq \{e_1, ..., e_n\} \subset \mathbb{R}^n$

On each iteration:

- player outputs **mixed strategy** $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in [-1,1]^n$
- player observes \boldsymbol{u}^t and gets reward $\langle \boldsymbol{u}^t, \boldsymbol{x}^t \rangle \in [-1,1]$

Goal: minimize **swap regret** after timesteps

$$
R_X^{\text{Swap}}(T) := \max_{M \in S_n} \sum_{t=1}^T \langle \boldsymbol{u}^t, \boldsymbol{M} \boldsymbol{x}^t - \boldsymbol{x}^t \rangle
$$

$$
S_n = \text{set of } n \times n \text{ stochastic matrices}
$$

Proposition:

If all players in a game achieve swap regret ϵT , then the average strategy profile $\bar{\mu}$ is an ϵ -correlated equilibrium.

The GGM Framework

Blum, Mansour (*JMLR* 2007); Gordon, Greenwald, Marks (*ICML* 2008)

Idea: Use

- a regret minimizer \mathcal{R}_{Φ} on \mathcal{S}_n (stochastic matrices) with regret $R_{\Phi}(T)$, and
- fixed points

Algorithm: For each iteration $t = 1, ..., T$:

- 1. Obtain matrix \bm{M}^t from $\mathcal{R}_{\bm{\Phi}}$
- 2. Compute $x^t \in \text{conv}(X)$ such that $M^t x^t = x^t$
- 3. Play x^t , observe utility \boldsymbol{u}^t
- 4. Feed to \mathcal{R}_{Φ} the utility $\pmb{M} \mapsto \langle \pmb{u}^t, \pmb{M} \pmb{x}^t \rangle$

$$
\text{Regret analysis:} \quad R_X^{\text{Swap}}(T) = \max_{M \in S_n} \sum_{t=1}^T \langle \boldsymbol{u}^t, \boldsymbol{M} \boldsymbol{x}^t - \boldsymbol{x}^t \rangle
$$

we'll discuss how to do this in a minute

The GGM Framework

Blum, Mansour (*JMLR* 2007); Gordon, Greenwald, Marks (*ICML* 2008)

Idea: Use

- a regret minimizer \mathcal{R}_{Φ} on \mathcal{S}_n (stochastic matrices) with regret $R_{\Phi}(T)$, and
- fixed points

Algorithm: For each iteration $t = 1, ..., T$:

1. Obtain matrix \bm{M}^t from $\mathcal{R}_{\bm{\Phi}}$

2. Compute
$$
x^t \in \text{conv}(X)
$$
 such that $M^t x^t = x^t$

- 3. Play x^t , observe utility \boldsymbol{u}^t
- 4. Feed to \mathcal{R}_{Φ} the utility $\pmb{M} \mapsto \langle \pmb{u}^t, \pmb{M} \pmb{x}^t \rangle$

Regret analysis: $R_X^{\text{Swap}}(T) = \max_{M \in \mathcal{S}_M}$ $M \in S_n$ \sum $t=1$ \overline{T} u^t , $Mx^t - M^t x^t$ $=$ $R_{\Phi}(T)$

we'll discuss how to do this in a minute

Regret Minimization Over $n \times n$ Stochastic Matrices

{ Sequence-form strategies in this tree-form decision problem } \cong { 4×4 stochastic matrices }

Use CFR!

 $R_X^{\text{Swap}}(T) = R_{\Phi}(T) \in \mathcal{O}\left(n\sqrt{T \log n}\right)$

with MWU at every decision point

Tighter analysis is possible: Blum-Mansour shows $\sqrt{T}n\log n$

Theorem [Blum & Mansour *JMLR* 2007] There exists an algorithm for learning CE in normalform games with convergence rate $\sqrt{(n \log n)/T}$.

More Generally: Φ-Equilibria

Def: Given a tuple of subsets $\Phi = {\{\Phi_i\}_{i\in [n]}}$ where $\Phi_i \subseteq X_i^{X_i}$, correlated distribution $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is a Φ -equilibrium if

$$
\mathop{\mathbb{E}}_{x \sim \mu} \left[u_i(\phi_i(x_i), x_{-i}) - u_i(x_i, x_{-i}) \right] \le 0
$$

for all players *i* and all functions $\phi_i \in \Phi_i$

Special cases:

- CCE (constant functions): $\Phi_i = \{\phi_{x_i^*}: x^* \in X_i\}$ where $\phi_{x_i^*}(x_i) = x_i^*$ for all x_i
- CE (all functions): $\Phi_i = X_i^{X_i}$

No-(External-)Regret Learning in Extensive-Form Games

Pure strategy set $X \subseteq \{0,1\}^n$

On each iteration:

- player outputs tree-form strategy $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \boldsymbol{u}^t and gets reward $\langle \boldsymbol{u}^t, \boldsymbol{x}^t \rangle \in [-1,1]$

Goal: minimize **regret** after T timesteps

$$
R_X(T) \coloneqq \max_{x^* \in X} \sum_{t=1}^T \langle u^t, x^* - x^t \rangle
$$

No-(External-)Regret Learning in Extensive-Form Games

Pure strategy set $X \subseteq \{0,1\}^n$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \bm{u}^t and gets reward $\mathop{\mathbb{E}}$ x^t ~ μ^t $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize **regret** after T timesteps

$$
R_X(T) \coloneqq \max_{x^* \in X} \sum_{t=1}^T \mathop{\mathbb{E}}_{x^t \sim \mu^t} \langle u^t, x^* - x^t \rangle
$$

No-Φ-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \bm{u}^t and gets reward $\mathop{\mathbb{E}}$ x^t ~ μ^t $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize Φ**-regret** after timesteps

$$
R_X^{\Phi}(T) \coloneqq \max_{\phi \in \Phi} \sum_{t=1}^T \mathop{\mathbb{E}}_{x^t \sim \mu^t} \langle \boldsymbol{u}^t, \phi(x^t) - x^t \rangle
$$

No-Φ-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \bm{u}^t and gets reward $\mathop{\mathbb{E}}$ x^t ~ μ^t $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize Φ**-regret** after timesteps

$$
R_X^{\Phi}(T) \coloneqq \max_{\phi \in \Phi} \sum_{t=1}^T \mathop{\mathbb{E}}_{x^t \sim \mu^t} \langle u^t, \phi(x^t) - x^t \rangle
$$

Proposition

If all players in a game run Φ-regret minimizers that achieve Φ -regret ϵT , then the average strategy profile $\bar{\mu}$ is an ϵ -approximate Φ -equilibrium.

Swap Regret in Extensive-Form Games

Q: Can **swap regret** be efficiently minimized in *extensive-form* games?

Theorem [Corollary of Blum-Mansour] There exists a swap regret minimizer

for tree-form strategy sets whose swap regret is ϵT after $\mathcal{O}\big(n\cdot2^n/\epsilon^2\big)$ iterations.

convergence rate

Theorem

[*Special case of* Peng & Rubinstein *STOC*'24; Dagan, Daskalakis, Fishelson, Golowich *STOC*'24] There exists a swap regret minimizer for tree-form strategy sets* whose swap regret is ϵT after $n^{\widetilde{\mathcal{O}}(1/\epsilon)}$ iterations.

Bad per-iteration complexity and *or, indeed, any set $X \subset \mathbb{R}^n$ for which *external* regret is minimizable

 \Rightarrow For **constant** ϵ , an ϵ -CE can be computed in **polynomial time!**

Theorem

[Daskalakis, Farina, Golowich, Sandholm, Zhang *arXiv*'24] There is a constant $c > 0$ such that achieving swap regret ϵT in tree-form $\text{strategy sets requires } \textbf{exp}(\boldsymbol{\Omega}(\textbf{min}\{\boldsymbol{n},\boldsymbol{1/\epsilon}\}^{\boldsymbol{\mathcal{C}}})) \text{ iterations.}$

Open question: Can ϵ -CE be computed in time $poly(n, 1/\epsilon)$ or even $poly(n, \log(1/\epsilon))$? (using something other than adversarial no-swap-regret learning)

Digression: Nonlinear strategy maps

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

External regret minimizer on X outputs points in $conv(X)$

Q: For $x^* \in \text{conv}(X)$ and $\phi: X \to X$, what does $\phi(x^*)$ mean?

A1: When $X = \{e_1, ..., e_n\}$ is a normal-form strategy set, $conv(X) = \Delta(X)$ and $\phi(x) = Mx$ for some M, so we can set $\phi(x^*) = \sum_i x_i^* \phi(e_i) = Mx^*$.

A2: Take any distribution $\mu \in \Delta(X)$ with $x^* = \mathbb{E}$ ∼ x , and define $\phi(x^*) = \mathbb{E}$ ∼ $\phi(x)$.

Warning: When ϕ **is nonlinear, this depends on the choice of** μ

⇒ "Kuhn's theorem fails when considering nonlinear deviations"

A3: When Φ consists only of linear maps, this doesn't matter (we can use sequenceform strategies + set $\phi(x) = Mx$

No-Linear-Swap-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$,

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \bm{u}^t and gets reward $\mathop{\mathbb{E}}$ x^t ~ μ^t $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize Φ**-regret** after timesteps

$$
R_X^{\Phi}(T) \coloneqq \max_{M \in \Phi_{\text{LIN}}} \sum_{t=1}^T \mathop{\mathbb{E}}_{x^t \sim \mu^t} \langle u^t, M x^t - x^t \rangle
$$

 Φ _{LIN} = { $M : Mx \in conv(X)$ $\forall x \in conv(X)$ }

Advantages:

- Natural generalization of stochastic matrices for normal-form games
- GGM applies verbatim, and fixed points are easy (linear program: $Mx = x$, $x \in conv(X)$)

No-Linear-Swap-Regret Learning

Pure strategy set $X \subseteq \{0,1\}^n$,

On each iteration:

- player outputs tree-form strategy $x^t \in \text{conv}(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \boldsymbol{u}^t and gets reward $\langle \boldsymbol{u}^t, \boldsymbol{x}^t \rangle \in [-1,1]$

Goal: minimize Φ**-regret** after timesteps

$$
R_X^{\Phi}(T) := \max_{M \in \Phi_{\text{LIN}}} \sum_{t=1}^T \langle \boldsymbol{u}^t, M\boldsymbol{x}^t - \boldsymbol{x}^t \rangle
$$

 Φ _{LIN} = { $M : Mx \in conv(X)$ $\forall x \in conv(X)$ }

Advantages:

- Natural generalization of stochastic matrices for normal-form games
- GGM applies verbatim, and fixed points are easy (linear program: $Mx = x$, $x \in conv(X)$)
- We can still work with tree-form strategies (linearity of expectation)

The GGM Framework

Gordon, Greenwald, Marks (*ICML* 2008)

GGM requires two things.

• fixed point oracle fix : $\Phi_{\text{LIN}} \to \text{conv}(X)$, *i.e.,* $Mx = x$ if $x = f$ ix (M) , and *Still easy! Use linear programming or power iteration*

• a regret minimizer \mathcal{R}_{Φ} on Φ_{LIN} *How to characterize* Φ_{LIN}?

So what does Φ _{LIN} look like?

Warm-up (Special case): What are the affine maps $\phi : [0,1]^n \to [0,1]$?

• Constant functions:

$$
\phi(x)=0, \qquad \phi(x)=1
$$

• Functions that depend on one input coordinate: $\phi(x) = x_i, \quad \phi(x) = 1 - x_i$

Claim: Every affine $\phi : [0, 1]^n \rightarrow [0, 1]$ is a convex combination of these!

So what does Φ _{LIN} look like?

Warm-up (Special case): What are the affine maps $\phi : [0,1]^n \to [0,1]^n$?

Each coordinate *j* is an affine map $\phi_j : [0,1]^n \to [0,1]$ \Rightarrow Each ϕ_i makes ≤ 1 query to the input

So what does Φ _{LIN} look like?

Does this generalize?

What is the generalization of a "query" to an arbitrary tree-form strategy space?

Does this generalize?

What is the generalization of a "query" to an arbitrary tree-form strategy space?

These are the **untimed communication (UTC) deviations**

Communication: Player has twoway communication with mediator to gain information

Untimed: Player can send zero, one, or multiple queries between real game actions

Untimed communication deviations as tree-form decision problems DAG \Box ^(0, 0)

The UTC functions are exactly the linear functions [Zhang, Farina, Sandholm *ICLR*'24]

Regret minimization on DAGs of size $m = n^2$ is possible with regret $m\sqrt{T}$ using CFR + scaled extensions [Zhang, Farina, Sandholm *ICML*'23]

+

+

Fixed-point solving using LP or power iteration

GGM

COROLLARY

[Zhang, Farina, Sandholm *ICLR*'24] Φ _{LIN}-regret minimization on tree-form decision problems is possible with regret $n^2\sqrt{T}$

Beyond Linear Deviations

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

On each iteration:

- player outputs **mixed strategy** $\mu^t \in \Delta(X)$
- environment outputs (possibly adversarial) **utility vector** $\boldsymbol{u}^t \in \mathbb{R}^n$
- player observes \bm{u}^t and gets reward $\mathop{\mathbb{E}}$ x^t ~ μ^t $\langle u^t, x^t \rangle \in [-1,1]$

Goal: minimize Φ**-regret** after timesteps

$$
R_X^{\Phi}(T) \coloneqq \max_{\phi \in \Phi} \sum_{t=1}^T \mathop{\mathbb{E}}_{x^t \sim \mu^t} \langle u^t, \phi(x^t) - x^t \rangle
$$

The GGM Framework

Gordon, Greenwald, Marks (*ICML* 2008)

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

GGM requires two things.

- Fixed point oracle fix $: \Phi \to \text{conv}(X)$, *i.e.,* $\phi(x) = x$ if $x = \text{fix}(\phi)$ **Problem:** $\phi: X \rightarrow X$ is a discrete function!
	- *It may not have a fixed point*
	- *Even if we make some assumption like being continuous, fixed points are PPAD-hard to compute*

• Regret minimizer \mathcal{R}_{Φ} on Φ

Problem: *if* $X = \{0,1\}^n$ then $|\Phi| > 2^{n \cdot 2^n}$. How can we hope to *minimize regret efficiently?*

The GGM Framework: Upgraded

Zhang, Anagnostides, Farina, Sandholm (arXiv 2024)

Pure strategy set $X \subseteq \{0,1\}^n$, set of deviations $\Phi \subseteq X^X$

GGM requires two things.

- **Expected** fixed point oracle fix $: \Phi \to \Delta(X)$, *i.e.*, $\mathbb E$ $x^{\sim}\mu$ $x = \mathbb{E}$ $x^{\sim}\mu$ $\phi(x)$ if $\mu = \text{fix}(\phi)$
	- Always exist
	- $-$ Easy to compute! $\mu \coloneqq \mathrm{Unif}\{x, \phi(x), \phi^2(x), ..., \phi^{L-1}(x)\}$ satisfies

$$
\mathop{\mathbb{E}}_{x \sim \mu} [\phi(x) - x] = \frac{1}{L} \sum_{\ell=0}^{L-1} [\phi^{\ell+1}(x) - \phi^{\ell}(x)] = \frac{1}{L} [\phi^L(x) - x] \to 0
$$

• Regret minimizer \mathcal{R}_{Φ} on Φ

When $\Phi = \{ \text{degree-}k \text{ polynomials} \}$ and the game tree is balanced, regret minimizers with regret $\exp(\text{poly}(k, \log n)) \sqrt{T}$ exist

Theorem: There exist efficient regret minimizers with regret $\exp(\mathrm{poly}(k,\log n))\,\sqrt{T}$ against the set Φ_k of degree- k polynomials.

Swap Regret in Extensive-Form Games

Q: Can **swap regret** be efficiently minimized in *extensive-form* games?

Theorem [Corollary of Blum-Mansour]

There exists a swap regret minimizer for tree-form strategy sets whose swap regret is ϵT after $\mathcal{O}\big(n\cdot2^n/\epsilon^2\big)$ iterations.

convergence rate

Theorem

[*Special case of* Peng & Rubinstein *STOC*'24; Dagan, Daskalakis, Fishelson, Golowich *STOC*'24] There exists a swap regret minimizer for tree-form strategy sets* whose swap regret is ϵT after $n^{\widetilde{\mathcal{O}}(1/\epsilon)}$ iterations.

Bad per-iteration complexity and *or, indeed, any set $X \subset \mathbb{R}^n$ for which *external* regret is minimizable

 \Rightarrow For **constant** ϵ , an ϵ -CE can be computed in **polynomial time!**

Theorem

[Daskalakis, Farina, Golowich, Sandholm, Zhang *arXiv*'24] There is a constant $c > 0$ such that achieving swap regret ϵT in tree-form $\text{strategy sets requires } \textbf{exp}(\boldsymbol{\Omega}(\textbf{min}\{\boldsymbol{n},\boldsymbol{1/\epsilon}\}^{\boldsymbol{\mathcal{C}}})) \text{ iterations.}$

Open question: Can ϵ -CE be computed in time $poly(n, 1/\epsilon)$ or even $poly(n, \log(1/\epsilon))$? (using something other than adversarial no-swap-regret learning)

Peng & Rubinstein (*STOC*'24); Dagan, Daskalakis, Fishelson, Golowich (*STOC*'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (*STOC*'24); Dagan, Daskalakis, Fishelson, Golowich (*STOC*'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (*STOC*'24); Dagan, Daskalakis, Fishelson, Golowich (*STOC*'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (*STOC*'24); Dagan, Daskalakis, Fishelson, Golowich (*STOC*'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Peng & Rubinstein (*STOC*'24); Dagan, Daskalakis, Fishelson, Golowich (*STOC*'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Goal: Build a **swap regret minimizer** on

Time:
$$
t = T = K^d
$$

Play $\mu^{K^d} := \text{Unif}\{x_1^K, ..., x_{D-1}^{K^{d-1}}, x_D^{K^d}\}$
(Mixed strategy!)

Intuition: In the GGM framework, if $\mu^t = \mathrm{Unif}\{\pmb{x}_1, ..., \pmb{x}_D\}$ let $\pmb{\phi}^t$ be the "map" that takes $x_1 \mapsto x_2 \mapsto \cdots \mapsto x_n$

- μ^t is an expected fixed point of ϕ^t
- each value of ϕ^t is being picked by regret minimizer $\Rightarrow \Phi$ -regret is small!

Peng & Rubinstein (*STOC*'24); Dagan, Daskalakis, Fishelson, Golowich (*STOC*'24)

Given: External regret minimizer R_X on $X \subset [0,1]^n$ achieving ϵK regret after K steps (e.g., for extensive-form games, CFR gives $K = n^2/\epsilon^2$)

Goal: Build a **swap regret minimizer** on

Time:
$$
t = T = K^d
$$

Play $\mu^{K^d} := \text{Unif}\{x_1^K, ..., x_{D-1}^{K^{d-1}}, x_D^{K^d}\}$
(Mixed strategy!)

Intuition: In the GGM framework, if $\mu^t = \mathrm{Unif}\{\pmb{x}_1, ..., \pmb{x}_D\}$ let $\pmb{\phi}^t$ be the "map" that takes $x_1 \mapsto x_2 \mapsto \cdots \mapsto x_n$

- μ^t is an expected fixed point of ϕ^t
- each value of ϕ^t is being picked by regret minimizer $\Rightarrow \Phi$ -regret is small!

Summary + some further references

What equilibrium concepts can be reached by efficient learning algorithms?

 $d =$ depth of game

 $FP(n) =$ time complexity of computing a fixed point of an $n \times n$ matrix

 $QP(n)$ = time complexity of solving an *n*-variable convex quadratic program

Larger sets Φ Harder to learn

Summary + some further references

What equilibrium concepts can be reached by efficient learning algorithms?

References

- A Blum, Y Mansour (*JMLR* 2007), "From external to internal regret"
- GJ Gordon, A Greenwald, C Marks (*ICML* 2008), "No-regret learning in convex games"
- BH Zhang, G Farina, T Sandholm (*ICML* 2023), "Team belief DAG: generalizing the sequence form to team games for fast computation of correlated team max-min equilibria via regret minimization"
- BH Zhang, G Farina, T Sandholm (*ICLR* 2024), "Mediator Interpretation and Faster Learning Algorithms for Linear Correlated Equilibria in General Extensive-Form Games"
- BH Zhang, I Anagnostides, G Farina, T Sandholm (*arXiv* 2024), "Efficient Φ-Regret Minimization with Low-Degree Swap Deviations in Extensive-Form Games"
- C Daskalakis, G Farina, N Golowich, T Sandholm, BH Zhang (*arXiv* 2024), "A Lower Bound on Swap Regret in Extensive-Form Games"