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Focus of this lecture

● Closer look at the performance of no-regret dynamics

● Last-iterate convergence

● Social welfare guarantees of no-regret dynamics



Multi-player games

● Finite number of     players
● Each player selects a strategy 
● There is a utility function 
● Once we fix the rest of the players, the utility function is linear
● This captures extensive-form and normal-form games



The no-regret framework

● A sequence of interactions between a learner and the environment
● In each round, the learner chooses a strategy    , and observes a utility 
● Recall the definition of regret:
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The no-regret framework

● A sequence of interactions between a learner and the environment
● In each round, the learner chooses a strategy    , and observes a utility 
● Recall the definition of regret:

● Regret can be negative!
● E.g., 



No-regret learning in games

● Each player updates its strategy via a no-regret algorithm
● Decentralized and uncoupled equilibrium computation

○ Unknown game accessed via utility queries
● Centralized equilibrium computation

○ State of the art algorithms in theory and in practice



No-regret learning in games

● Many algorithms (MWU, RM, RM+) guarantee regret at most 
● Convergence to Nash equilibria in 2p0s games, and coarse correlated 

equilibria in multi-player general-sum games with a rate of 
● Are there algorithms that enjoy a faster rate of convergence of       ?
● The analysis of             has been is overly pessimistic
● Here we actually have certain control over the utilities
● Can we improve our analysis? In general, no!



Lower bounds under common regret minimizers

● Theorem (Chen-Peng 2020, NeurIPS). MWU incurs            regret even in 
self-play.

● Theorem (Farina-Grand-Clément-Kroer-Lee-Luo 2023, NeurIPS). RM+        
incurs            regret even in self-play.

The key technique to obtaining near-optimal rates in games revolves around the 
use of optimism.



Optimistic no-regret learning

● The key idea is to use a prediction 
● Typically set as                 (more sophisticated predictions?)
● Taking              recovers the non-optimistic algorithms
● Optimistic FTRL (optimistic MD is defined similarly):

Learning rate

Regularizer



Analyzing the regret of optimistic algorithms 

Theorem (Syrgkanis-Agarwal-Luo-Schapire 2015, NIPS). For any sequence of 
utilities, the regret of optimistic FTRL and optimistic MD satisfies 

The non-optimistic counterparts satisfy 

(RVU Bound)



Analysis of (online) gradient descent

Online gradient descent:

Quadratic growth:

Summing over all time steps,



Analyzing the regret of optimistic algorithms 

Lemma. If player   follows (optimistic) MD or FTRL, 

=> If all players follow (optimistic) MD or FTRL, 

Thus, 



Near-optimal regret in games

● The previous analysis failed to use the last term in the RVU bound

● As a warm-up, we focus on the class of games such that 
○ Two-player zero-sum games
○ Strategically zero-sum games
○ Polymatrix zero-sum games  



Near-optimal regret in games with nonnegative regrets

Theorem. If                   , then                    .

Proof: For any player  , 

For a sufficiently small learning rate, 

Thus, 



Near-optimal regret in general games

What about general games?

Theorem (A-Farina-Luo-Lee-Kroer-Sandholm 2022, NeurIPS). There exists a 
no-regret learning algorithm such that for any sequence of utilities,

● The algorithm is optimistic FTRL with logarithmic regularization: 



Best of both worlds

●            regret is possible when all players follow the prescribed protocol
● What if some player deviates? Can we still secure           regret?



Best of both worlds

●            regret is possible when all players follow the prescribed protocol
● What if some player deviates? Can we still secure           regret?

Check whether  

Yes: Switch to the adversarial regime

No: Follow the protocol



Beyond time-average convergence

● The no-regret framework implies convergence for the average strategies
● What can be said about the last-iterate of the dynamics?
● In general, no-regret dynamics cycle even in 2p0s games



Importance of last-iterate convergence

● Algorithmic benefits: Last-iterate convergence behaves fundamentally 
different than that of the average iterate
○ Last-iterate can converge at an exponential rate (much faster than       ) 

(Tseng 1995, JCAM; Gilpin-Peña-Sandholm 2012, MathProg; 
Wei-Lee-Zhang-Luo 2021, ICLR)

○ Only need to store a single strategy (crucial when each strategy is 
represented with a massive neural network)

● Insights into obtaining improved regret guarantees
● A more convincing notion of learning



Optimism to the rescue

● Optimistic learning dynamics have been shown to enjoy last-iterate 
convergence in certain classes of games (e.g. 2p0s)

● Theorem (Wei-Lee-Zhang-Luo 2021, ICLR). Optimistic gradient descent 
converges to an   -Nash equilibrium in 2p0s games after               iterations.
○ Main caveat:     can be arbitrarily large even in          games
○ When is     small?
○ The limit point is the projection of the initialization to the set of NE! 
○ Last-iterate is an extreme version of weighted averages



Analyzing last-iterate convergence

We saw earlier that                       =>  

Key observation: Holds for optimistic gradient descent

There is a matching lower bound

Optimistic learning



Potential games

● So far we have focused on strictly competitive games
● What about cooperative games?
● E.g., identical interest games or potential games 

Theorem. (Optimistic) gradient descent converges to   -Nash equilibria            
after             iterations in potential games.

Corollary. Optimistic gradient descent guarantees 



General games?

● We have focused on restricted classes of games (e.g. 2p0s, potential)
● Can we hope to extend last-iterate convergence to general games?
● No! Last-iterate convergence is inherently tied to Nash equilibria
● And Nash equilibria are hard to compute
● A single iterate is uncorrelated (correlation requires multiple iterates)
● Lack of convergence is inherent in no-regret learning in games



Small variation despite cycling

● We saw earlier that
● The dynamics are still cycling (in general) 
● Small variation does not always imply Nash equilibria



Social welfare of no-regret dynamics

● No-regret dynamics converge to some equilibrium
● Is that enough?
● Some equilibria are better than others; e.g., in (social) welfare
● Converge to equilibria with high welfare
● What is the welfare of no-regret dynamics?
● Maximizing welfare of coarse correlated equilibria is NP-hard
● Content with near-optimal welfare for broad classes of games



Smooth games

Definition (Roughgarden 2015, JACM). A game is          -smooth if there exists     
s.t.

● Robust price of anarchy:
●                 in simultaneous second-price auctions
●                 in congestion games with linear latency functions



Regret minimization in smooth games

Theorem (Roughgarden 2015, JACM). In any         -smooth game, any no-regret 
dynamics attain a          fraction of the optimal welfare.

Proof: 



Improved welfare using optimism

Theorem (A-Panageas-Farina-Sandholm 2022, ICML). Optimistic learning 
dynamics have the following property:

● Either they converge to an       -Nash equilibrium;
● Or the welfare outperforms the robust price of anarchy:  



Takeaways

● Cycling can lead to improved welfare guarantees
● The further away from Nash, the larger the improvement in welfare
● Interesting interplay between regret, convergence, and welfare
● Many interesting open problems!
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