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Focus of this lecture

e Closer look at the performance of no-regret dynamics

e Last-iterate convergence

e Soclal welfare guarantees of no-regret dynamics



Multi-player games

Finite number of n players

Each player selects a strateqgy x; € A&}

There is a utility function u; : X5_;X; = R

Once we fix the rest of the players, the utility function is linear
This captures exiensive-form and normal-form games




The no-regret framework

e A sequence of interactions between a learner and the
e In each round, the learner chooses a strategy xf and observes a
e Recall the definition of regret:
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No-regret learning in games

e [ach player updates its strategy via a no-regret algorithm
e Decentralized and uncoupled equilibrium computation
o Unknown game accessed via utility queries

e Centralized equilibrium computation
o State of the art algorithms in theory and in practice




No-regret learning in games

Many algorithms (MWU, RM, RM+) guarantee regret at most O(\/T)
Convergence to in 2p0s games, and

in multi-player general-sum games with a rate of 7"~
Are there algorithms that enjoy a faster rate of convergence of 7-'?
The analysis of O(+/T) has been is overly pessimistic
Here we actually have certain control over the utilities
Can we improve our analysis? In general, no!
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Lower bounds under common regret minimizers

e Theorem (Chen-Peng 2020, NeurlPS). MWU incurs Q(\/T) regret even in

self-play.
e Theorem (Farina-Grand-Clement-Kroer-Lee-Luo 2023, NeurlPS). RM+

incurs Q(\/T) regret even in self-play.

The key technique to obtaining near-optimal rates in games revolves around the
use of optimism.



Optimistic no-regret learning

The key idea is to use a prediction m

Typically set as m! = u!~'(more sophisticated predictions?)
Taking m! = 0 recovers the non-optimistic algorithms
Optimistic FTRL (optimistic MD is defined similarly):

Regularizer
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Analyzing the regret of optimistic algorithms

Theorem (Syrgkanis-Agarwal-Luo-Schapire 2015, NIPS). For any sequence of
utilities, the regret of optimistic FTRL and optimistic MD satisfies

t=1
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Analysis of (online) gradient descent
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Analyzing the regret of optimistic algorithms

Lemma. If player i follows (optimistic) MD or FTRL, |5 — ;7 = On).
=> If all players follow (optimistic) MD or FTRL, ||u} — u{~'[|. = O(n).

Thus,

T
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Near-optimal regret in games

e The previous analysis failed to use the last term in the RVU bound
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e As awarm-up, we focus on the class of games such that » Reg/ >0

o games i=1
o Strategically zero-sum games
T
o Zzero-sum games e o
9 Ui = § x; Aijx;

JEN;



Near-optimal regret in games with nonnegative regrets

Theorem. If Y Reg] >0, then Reg] = O(1).

=1
Proof: For any player g,
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Near-optimal regret in general games

What about general games?

Theorem (A-Farina-Luo-Lee-Kroer-Sandholm 2022, NeurlPS). There exists a
no-regret learning algorithm such that for any sequence of utilities,

T T
alogT Y _
max{Reg; , 0} < ; +6772HU§—W§H3—52H37§—$§ e
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e The algorithm is optimistic FTRL with logarithmic regularization: — Zlog zi(a)



Best of both worlds

e O(logT) regret is possible when all players the prescribed protocol
e What if some player ? Can we still secure O(v/T)regret?



Best of both worlds

e O(logT) regret is possible when all players the prescribed protocol
e What if some player ? Can we still secure O(v/T)regret?

Yes: Switch to the

t
Check whether ) " |lul —u] || = Q(log ).
T=1

No: the protocol



Beyond time-average convergence

e The no-regret framework implies convergence for the average strategies
e \What can be said about the last-iterate of the dynamics?
e In general, no-regret dynamics even in 2p0s games




Importance of last-iterate convergence

e Algorithmic benefits: Last-iterate convergence behaves fundamentally
different than that of the average iterate
o Last-iterate can converge at an exponential rate (much faster than 7')
(Tseng 1995, JCAM; Gilpin-Pena-Sandholm 2012, MathProg;
Wei-Lee-Zhang-Luo 2021, ICLR)
o Only need to store a single strategy (crucial when each strategy is
represented with a massive neural network)
e Insights into obtaining improved regret guarantees
e A more convincing notion of learning




Optimism to the rescue

e Optimistic learning dynamics have been shown to enjoy last-iterate
convergence in certain classes of games (e.g. 2p0s)

e Theorem (\Wei-Lee-Zhang-Luo 2021, ICLR). Optimistic gradient descent
converges to an e -Nash equilibrium in 2p0s games after Clog(1/e) iterations.
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Main caveat: C can be arbitrarily large even in 2 x 2 games
When is ¢ small?

The limit point is the projection of the initialization to the set of NE!
Last-iterate is an extreme version of weighted averages




Analyzing last-iterate convergence

We saw earlier that Z Reg! >0 => Z Z 2! — 271> = O(1).  Optimistic learning

1=1 t=1

Key observation: NEGAP(z Z |zt — 2!7'].  Holds for optimistic gradient descent

i(l\UEGAP(wt))2 <O0(1) = NEGAP(z") =0 (

) There is a matching lower bound
t=1
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Potential games

e So far we have focused on strictly competitive games
e \What about cooperative games?
e E.g., identical interest games or potential games u; = Vo

Theorem. (Optimistic) gradient descent converges to e-Nash equilibria
after O(1/¢*) iterations in potential games.

Corollary. Optimistic gradient descent guarantees Reg; = O(1).



General games”?

We have focused on restricted classes of games (e.g. 2p0s, potential)
Can we hope to extend last-iterate convergence to general games?
No! Last-iterate convergence is inherently tied to Nash equilibria

And Nash equilibria are hard to compute

A single iterate is uncorrelated (correlation requires multiple iterates)
Lack of convergence is inherent in no-regret learning in games




Small variation despite cycling

T n
—1112
e We saw earlier that 2_ 2> llzf — 27! = O(log T)

t=1 =1

e The dynamics are still cycling (in general)
e Small variation does not always imply Nash equilibria
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Social welfare of no-regret dynamics

No-regret dynamics converge to some equilibrium

|s that enough?

Some equilibria are better than others; e.g., in (social) welfare
Converge to equilibria with high welfare

What is the welfare of no-regret dynamics?

Maximizing welfare of coarse correlated equilibria is NP-hard

Content with near-optimal welfare for broad classes of games



Smooth games

Definition (Roughgarden 2015, JACM). A game is (A, i)-smooth if there exists =*
S.t.

Zuz i, x_;) > AOPT — uiui(aj),Vaj,

1=1

A

e Robust price of anarchy: PoA = —— .

e rPoA = 0.5in simultaneous second-price auctions
e 1PoA = 0.4in congestion games with linear latency functions



Regret minimization in smooth games

Theorem (Roughgarden 2015, JACM). In any (X, 11)-smooth game, any no-regret
dynamics attain a rPoA fraction of the optimal welfare.

Proof:

n T T n

ZRegf = ZZ(uz(azj,aﬁt_z) —u;(2")) > XTOPT — (1 + p Z ZUZ
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T
A
72 SWG') 2 17 OPT —mfZRegw



Improved welfare using optimism
Theorem (A-Panageas-Farina-Sandholm 2022, ICML). Optimistic learning
dynamics have the following property:

e Either they converge to an O(e)-Nash equilibrium;
e Or the welfare outperforms the robust price of anarchy:

T A
Z >—OPT+6
P L+ p



Takeaways

Cycling can lead to improved welfare guarantees

The further away from Nash, the larger the improvement in welfare
Interesting interplay between regret, convergence, and welfare
Many interesting open problems!
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