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1 Introdu
tionDesigning truthful me
hanisms with non-trivial worst-
ase revenue guarantees is an importantbut 
hallenging problem. Su
h guarantees are espe
ially 
ru
ial in 
ost-sharing problems, wherethe me
hanism in
urs out
ome-dependent 
osts, su
h as produ
tion 
osts. (Approximate) budget-balan
e is the natural 
onstraint that the revenue 
olle
ted by the me
hanism (approximately)equals the 
ost in
urred.General me
hanism design te
hniques are highly 
oveted but equally rare. The most power-ful te
hnique is, of 
ourse, the VCG me
hanism, whi
h is truthful and e
onomi
ally eÆ
ient (i.e.,welfare-maximizing). However, the VCG me
hanism typi
ally o�ers no non-trivial revenue guar-antees (see e.g. [35℄). More broadly, many important 
ost fun
tions are 
omplex, and 
an evenbe NP-hard to evaluate; for these, no \reasonable" truthful me
hanism 
an a
hieve exa
t budget-balan
e [15, 21, 23℄.The only known general te
hnique for designing truthful, approximately budget-balan
ed 
ost-sharing me
hanisms that have reasonable e
onomi
 eÆ
ien
y or 
omputational 
omplexity is dueto Moulin [34℄. Roughly, a Moulin me
hanism simulates an as
ending iterative au
tion. In ea
hiteration, pri
es are simultaneously o�ered to the remaining players. Players that a

ept remainin 
ontention; the others are removed. The me
hanism halts when all remaining players a

eptthe pri
es o�ered to them. To a
hieve approximate budget-balan
e, the me
hanism o�ers pri
es atea
h iteration that approximately 
over the 
ost that would be in
urred if the iteration is the last.To obtain truthfulness, a Moulin me
hanism o�ers ea
h player a non-de
reasing sequen
e of pri
es.Thus, Moulin me
hanisms are 
exible, intuitive, and provide expli
it 
ontrol over the generatedrevenue. Moreover, they have been su

essfully designed for a wide range of appli
ations.Why aren't Moulin me
hanisms enough? There are three reasons. First, re
ent negative re-sults [21, 40℄ show that for many fundamental 
ost-sharing problems, Moulin me
hanisms inevitablysu�er from poor budget-balan
e, poor e
onomi
 eÆ
ien
y, or both. Se
ond, designing the as
endingpri
es that are o�ered in ea
h iteration of a Moulin me
hanism 
an be a highly non-trivial problem.For example, for metri
 un
apa
itated fa
ility lo
ation (UFL) 
ost-sharing problems, many 
lassi-
al approximation algorithms (e.g. [7, 17, 22, 24, 42℄) naturally indu
e pri
es, but su
h pri
es neednot be as
ending and thus do not lead to truthful Moulin me
hanisms; instead, a new metri
 UFLalgorithm was devised for this purpose [36℄. Third, Moulin me
hanisms have found appli
ationprimarily in \binary demand games", in whi
h ea
h player is either served by the me
hanism ornot (see also [34℄), and not in ri
her multi-parameter problems. These drawba
ks motivate thesear
h for me
hanism design te
hniques that go beyond Moulin me
hanisms, while retaining theirdesirable features.1.1 Our ResultsWe propose a
y
li
 me
hanisms, a new framework for designing truthful, approximately budget-balan
ed 
ost-sharing me
hanisms. A
y
li
 me
hanisms stri
tly generalize Moulin me
hanisms,retain nearly all of their laudable properties, and address the three drawba
ks dis
ussed above.To des
ribe the di�eren
e between Moulin and a
y
li
 me
hanisms, re
all that a Moulin me
h-anism simulates an as
ending au
tion in whi
h pri
es are simultaneously o�ered to the remainingplayers in ea
h iteration. In an iteration of an a
y
li
 me
hanism, these pri
es are o�ered to theplayers one-by-one in some designer-pres
ribed order. If a player refuses the pri
e o�ered to it, theiteration terminates immediately, this player is removed for the rest of the au
tion, and the nextiteration begins anew with all of the remaining players. See Se
tion 3 for a formal de�nition. Per-haps surprisingly, this minor modi�
ation greatly enri
hes the set of possible truthful me
hanisms.2



Problem Moulin lower bounds A
y
li
 upper boundsVertex Cover �, � = 
(k1=3) � = O(log k), � = 2Set Cover �, � = 
(pk) �, � = O(log k)Metri
 UFL � = 
(log k), � = 3 � = O(log k), � = 1:61Steiner Tree � = 
(log2 k), � = 2 � = O(log2 k), � = 2Fault-Tolerant UFL N/A � = O(R2max + log k), � = O(R2max)Table 1: Summary of approximation results. \Moulin lower bounds" are provable lower bounds,established in [21, 40, 41℄, on the best-possible worst-
ase approximate eÆ
ien
y and budget-balan
e a
hievable by Moulin me
hanisms for the given problem 
lass, where k denotes the numberof players. \A
y
li
 upper bounds" are the performan
e guarantees for the a
y
li
 me
hanismsdesigned and analyzed in this paper. For fault-tolerant UFL, Rmax denotes the maximum numberof fa
ilities to whi
h a demand might be 
onne
ted (Se
tion 7).The reason is that many natural methods of 
harging pri
es do not give rise to as
ending au
tionswhen pri
es are o�ered simultaneously, but do yield as
ending au
tions when some of the o�ers aresuppressed by the early termination of an iteration.A
y
li
 me
hanisms o�er three important advantages over Moulin me
hanisms. First, we showin Se
tion 4 that several truthful a
y
li
 me
hanisms follow in a generi
 way from \o�-the-shelf"primal-dual algorithms. For example, all known primal-dual and dual �tting algorithms for metri
UFL [22, 24℄ and Steiner tree [1, 16℄ naturally indu
e truthful a
y
li
 me
hanisms.Se
ond, for several important 
lasses of 
ost-sharing problems, a
y
li
 me
hanisms have farbetter budget-balan
e and e
onomi
 eÆ
ien
y than Moulin me
hanisms. We make this 
ompari-son pre
ise using the standard notions of �-approximate eÆ
ien
y and �-budget-balan
e, de�nedformally in Se
tion 2. The approximation ratios �; � are always at least one, with � = 1 and � = 1denoting full eÆ
ien
y and exa
t budget-balan
e, respe
tively. For some 
ost-sharing problems,Moulin me
hanisms 
annot obtain good approximate eÆ
ien
y or budget-balan
e. For example,for Vertex Cover 
ost-sharing problems, every Moulin me
hanism possesses 
(k1=3)-approximatebudget-balan
e and e
onomi
 eÆ
ien
y, where k is the number of players [21, 40℄. In sharp 
ontrast,we show that the well-known primal-dual Vertex Cover approximation algorithm indu
es a truthfula
y
li
 me
hanism that is 2-budget-balan
ed and has O(log k)-approximate eÆ
ien
y. We also givequantitative improvements over the best-possible Moulin me
hanisms for several other types of
ost-sharing problems. Table 1 summarizes our results. (We use f(n) = O(g(n)), f(n) = 
(g(n)),and f(n) = o(g(n)) to mean that limn!1 f(n)=g(n) is bounded above by a positive 
onstant,bounded below by a positive 
onstant, and equal to zero, respe
tively.)Finally, in Se
tion 6 we extend a
y
li
 me
hanisms to general demand 
ost-sharing problems,a multi-parameter setting in whi
h ea
h bidder 
an be allo
ated one of multiple levels of servi
e.As a paradigmati
 example, in Se
tion 7 we fo
us on a fault-tolerant version of UFL 
ost-sharingproblems.What do we sa
ri�
e for the in
reased generality of a
y
li
 me
hanisms? Only a modi
umof 
ollusion-resistan
e: while Moulin me
hanisms are groupstrategyproof|without side payments,every non-trivial deviation by a 
oalition harms one of its members|a
y
li
 me
hanisms are weaklygroupstrategyproof, meaning that every non-trivial deviation by a 
oalition fails to help one of itsmembers.
3



Figure 1: Example 2.1. An instan
e of un
apa
itated fa
ility lo
ation (UFL).1.2 Related WorkThe theory of Moulin me
hanisms was developed by Moulin [34℄ and Moulin and Shenker [35℄.Subsequently, resear
hers designed approximately budget-balan
ed Moulin me
hanisms for a widerange of 
ombinatorial 
ost-sharing problems [4, 18, 19, 23, 25, 30, 31, 36, 41℄. Immorli
a, Mahdian,and Mirrokni [21℄ were the �rst to prove that, for several basi
 
lasses of 
ost-sharing problems,Moulin me
hanisms inevitably su�er from poor budget-balan
e. Roughgarden and Sundarara-jan [40℄ developed a framework for quantifying eÆ
ien
y loss in Moulin me
hanisms, and notedthat Moulin me
hanisms with poor budget-balan
e have equally poor e
onomi
 eÆ
ien
y. Finally,Devanur, Mihail, and Vazirani [10℄ designed several approximately budget-balan
ed 
ost-sharingme
hanisms that are not Moulin me
hanisms. All of the me
hanisms in [10℄ are equivalent toinstantiations of the a
y
li
 me
hanism framework developed in this paper.All of our me
hanisms are derived from primal-dual algorithms. There is, of 
ourse, a longhistory of 
onne
tions between 
ost sharing, me
hanism design, and the primal-dual method (seee.g. [10, 23, 25, 36, 37℄ and the referen
es therein). Our work further strengthens these 
onne
tions.2 Preliminaries2.1 Cost-Sharing Problems and Me
hanismsA 
ost-sharing problem is spe
i�ed by a 
ost fun
tion C de�ned on a universe U of players. Everyplayer i 2 U has a private, nonnegative valuation vi for servi
e. We assume that the 
ost fun
tionC is non-de
reasing (i.e., S � T implies C(S) � C(T )) and that C(;) = 0. The 
ost fun
tions thatwe 
onsider are impli
itly de�ned by 
ombinatorial optimization problems; here, C(S) denotes thevalue of a minimum-
ost solution to the subproblem indu
ed by the subset S of players.Example 2.1 (UFL) An important type of impli
itly de�ned 
ost fun
tion is an un
apa
itatedfa
ility lo
ation (UFL) 
ost fun
tion. Su
h a fun
tion is spe
i�ed by a set U of demands (theplayers), a set F of fa
ilities, an opening 
ost fq for ea
h fa
ility q 2 F , and a nonnegative 
ostfun
tion 
 de�ned on F � U . In Figure 1, for example, the universe 
ontains three players andtwo fa
ilities, the fa
ility opening 
osts are f1 = 1 and f2 = 2, and the 
onne
tion 
osts betweenfa
ilities and players are as shown. For a subset S � U of the players, the 
ost C(S) is de�ned asthe 
ost of the 
heapest way to open a non-empty subset of fa
ilities and 
onne
t all of the players4



in S to open fa
ilities. Formally,C(S) = min;6=F ��F 0�Xq2F � fq +Xi2S minq2F � 
(q; i)1A :For instan
e, in Figure 1, the 
ost C(fA;B;Cg) of servi
ing all of the players is 7.We fo
us on dire
t-revelation me
hanisms. Su
h a me
hanism 
olle
ts a bid bi from ea
h playeri 2 U , sele
ts a set S � U of players, and 
harges every player i a pri
e pi. We only allowme
hanisms that satisfy the following standard assumptions: individual rationality, meaning thatpi = 0 if i =2 S and pi � bi if i 2 S; and no positive transfers, meaning that pri
es are alwaysnonnegative. We also assume that players have quasilinear utilities, meaning that ea
h player iaims to maximize ui(S; pi) = vixi�pi, where xi = 1 if i 2 S and xi = 0 if i =2 S. (Stri
tly speaking,we should use the notation ui(vi; S; pi); but the shorter form is 
onvenient and should 
ause no
onfusion.)A me
hanism is strategyproof (SP), or truthful, if no player 
an ever stri
tly in
rease its utilityby misreporting its valuation. Formally, SP means that for every player i, every bid ve
tor b withbi = vi, and every bid ve
tor b0 with bj = b0j for all j 6= i, ui(S; pi) � ui(S0; p0i), where (S; p) and(S0; p0) denote the outputs of the me
hanism for the bid ve
tors b and b0, respe
tively. (The playerhas true valuation vi in both 
ases.) It is groupstrategyproof (GSP) [35℄ if no 
oordinated false bidby a subset of players 
an ever stri
tly in
rease the utility of one of its members without stri
tlyde
reasing the utility of some other member; transfers between 
oalition members are not allowed.It is weakly groupstrategyproof (WGSP) [10℄ if no 
oordinated false bid by a subset of players 
anever stri
tly in
rease the utility of every one of its members. Thus, in a WGSP me
hanism, everydeviating 
oalition has at least one indi�erent member. We note that while WGSP implies SP,truthful me
hanisms are not generally WGSP; for example, VCG me
hanisms are typi
ally notWGSP.Traditionally, the role of a 
ost-sharing me
hanism is to simply sele
t an allo
ation (su
h as asubset of players to serve in a UFL 
ost-sharing problem). The re
ent 
omputer s
ien
e literaturehas, for the most part, additionally demanded 
ost-sharing me
hanisms that produ
e a feasibleway of supplying the 
hosen allo
ation|in a UFL problem, a proposal of fa
ilities to open and
onne
tions between open fa
ilities and the served players. This paper follows the latter approa
h:all of the me
hanisms we 
onsider also produ
e a feasible solution to the optimization problemindu
ed by the served set S. The 
ost CM (S) of this feasible solution is permitted to ex
eedthe optimal 
ost C(S). For instan
e, in Example 2.1, a me
hanism M might 
hoose to servi
ethe set fA;B;Cg by opening the se
ond fa
ility, 
onne
ting all three players to it, and in
urring(suboptimal) 
ost CM (fA;B;Cg) = 8. Allowing suboptimal solutions is ne
essary for feasiblyimplementable (i.e., polynomial-time) me
hanisms: all of the optimization problems we 
onsiderare NP -hard, and thus 
omputing the optimal 
ost C(S) given a set S 
annot be a

omplished inpolynomial time, unless P = NP .2.2 Approximate Budget-Balan
e and EÆ
ien
yWe study two types of approximation guarantees for 
ost-sharing me
hanisms, one for revenue andone for e
onomi
 eÆ
ien
y. First, for a parameter � � 1, a me
hanism M is �-budget balan
ed ifCM (S)� �Xi2S pi � C(S)5



for every out
ome (set S, pri
es p, and feasible solution with 
ost CM (S)) of the me
hanism. Weemphasize that the revenue of the me
hanism must (approximately) 
over the 
ost of the solutionit proposes, whi
h 
an ex
eed the optimal 
ost C(S), and should also be no more than the optimal
ost. This requirement 
an only be met if the feasible solution produ
ed by the me
hanism has 
ostat most � times that of optimal. (Alternatively, we 
ould require that CM (S) �Pi2S pi � � �C(S).A me
hanism satisfying one of these de�nitions is easily modi�ed to satisfy the other simply bys
aling its pri
es by a � fa
tor. All of our results have natural analogues for this alternativede�nition of approximate budget-balan
e.)Se
ond, following [40℄, we quantify eÆ
ien
y loss in 
ost-sharing me
hanisms via the so
ial 
ostobje
tive. The so
ial 
ost in
urred by a me
hanism is de�ned as the 
ost CM (S) of the feasiblesolution it produ
es for the instan
e 
orresponding to S, plus the sum Pi=2S vi of the ex
ludedvaluations. The optimal so
ial 
ost is minS�U "C(S) +Xi=2S vi# : (1)A 
ost-sharing me
hanism has two sour
es of ineÆ
ien
y: �rst, it might 
hoose a suboptimal set Sof players to serve; se
ond, it might produ
e a suboptimal solution to the optimization problemindu
ed by S.Minimizing so
ial 
ost is ordinally equivalent to maximizing so
ial surplus Pi2S vi � C(S).No meaningful approximation results are possible for the latter obje
tive [14℄. The weaker goalof approximating the optimal so
ial 
ost permits the rigorous di�erentiation between 
ost-sharingme
hanisms on eÆ
ien
y grounds, and the so
ial 
ost obje
tive 
an be interpreted as the \mini-mal perturbation" of surplus ne
essary for non-trivial approximation results (see [40℄ for a formalargument). We 
all a 
ost-sharing me
hanism �-approximate if, assuming truthful bids, it alwaysprodu
es a solution with so
ial 
ost at most � times that of an optimal solution.2.3 Cost-Sharing Methods and Moulin Me
hanismsA Moulin me
hanism is a type of 
ost-sharing me
hanism that is driven by a 
ost-sharing method|a fun
tion � that assigns a non-negative 
ost share �(i; S) for every subset S � U of players andevery player i 2 S. We 
onsider 
ost-sharing methods that, given a set S, produ
e both the 
ostshares �(i; S) for all i 2 S and also a feasible solution for the optimization problem indu
ed by S.A 
ost-sharing method is �-budget balan
ed for a 
ost fun
tion C and a parameter � � 1 ifC�(S)� �Xi2S �(i; S) � C(S); (2)where C�(S) is the 
ost of the feasible solution produ
ed by the method �. This 
ost 
an ex
eedthe optimal 
ost C(S), and depends on the 
ost-sharing method �. A 
ost-sharing method is
ross-monotoni
 if the 
ost share of a player only in
reases as other players are removed: for allS � T � U and i 2 S, �(i; S) � �(i; T ).Given a 
ost-sharing method � for C, we obtain the 
orresponding Moulin me
hanism bysimulating an iterative as
ending au
tion, with the method � suggesting pri
es for the remainingplayers at ea
h iteration.De�nition 2.2 Let U be a universe of players and � a 
ost-sharing method de�ned on U . TheMoulin me
hanism M(�) indu
ed by � is the following.6



1. Colle
t a bid bi from ea
h player i 2 U .2. Initialize S := U .3. If bi � �(i; S) for every i 2 S, then halt. Output the set S, the feasible solution 
onstru
tedby �, and 
harge ea
h player i 2 S the pri
e pi = �(i; S).4. Let i� 2 S be a player with bi� < �(i�; S).5. Set S := S n fi�g and return to Step 3.The Moulin me
hanismM(�) 
learly inherits the budget-balan
e fa
tor of the 
ost-sharing method �.Moulin [34℄ proved that for every 
ross-monotoni
 
ost-sharing method �, the 
orresponding me
h-anism M(�) is GSP.3 A
y
li
 Me
hanisms3.1 OverviewA Moulin me
hanism 
an be viewed as a simulation of an iterative as
ending au
tion, with thepri
es that are simultaneously o�ered to the remaining players at ea
h iteration governed by theunderlying 
ost-sharing method. Cross-monotoni
ity of the 
ost-sharing method ensures that thesequen
e of pri
es o�ered to a player is nonde
reasing, whi
h in turn implies that the me
hanismis truthful. Conversely, non-
ross-monotoni
 
ost-sharing methods result in iterative au
tions thatneed not be as
ending, and the 
orresponding me
hanisms are generally not truthful.In an a
y
li
 me
hanism, in ea
h iteration of the simulated iterative au
tion, pri
es are o�eredto the remaining players a

ording to a designer-spe
i�ed order. If ea
h remaining player a

eptsthe pri
e o�ered to it, then the me
hanism halts, and the remaining players are served at the pri
eso�ered in the �nal iteration. If some player refuses to pay the pri
e it is o�ered, then the iterationterminates immediately, this player is removed for the rest of the au
tion, and the next iterationbegins with the remaining players. Thus, a player need not be o�ered a pri
e in every iteration.Ordering the o�ers to the remaining players permits the 
onstru
tion of truthful me
hanismsfrom non-
ross-monotoni
 
ost-sharing methods. Intuitively, the early termination of an iteration
on
eals subsequent pri
es from the players. If aborted iterations 
orrelate appropriately withfailures of 
ross-monotoni
ity, then the simulated iterative au
tion is as
ending in the followingsense: whenever an o�er is made to a player, it is at least as large as every o�er made in previousiterations. This property is suÆ
ient for truthfulness. As we will see, many primal-dual algorithmsnaturally indu
e a 
ost-sharing method that is not 
ross-monotoni
 but possesses pre
isely thistype of 
orrelation.3.2 De�nitionsTo de�ne an a
y
li
 me
hanism for a 
ost fun
tion C and a universe U , we require both a 
ost-sharing method � and an o�er fun
tion � . An o�er fun
tion spe
i�es a nonnegative o�er time�(i; S) for every subset S � U and every player i 2 S. These times spe
ify the ordering in whi
hthe players of S should be o�ered a pri
e, with lower times 
orresponding to earlier o�ers, andequal times indi
ating simultaneous o�ers. As suggested in Se
tion 3.1, a 
ost-sharing method andan o�er fun
tion indu
e a me
hanism that simulates an iterative au
tion in a natural, generi
 way.7



De�nition 3.1 Let U be a universe of players, � a 
ost-sharing method de�ned on U , and � ano�er fun
tion de�ned on U . The me
hanism M(�; �) indu
ed by � and � is the following.1. Colle
t a bid bi from ea
h player i 2 U .2. Initialize S := U .3. If bi � �(i; S) for every i 2 S, then halt. Output the set S, the feasible solution 
onstru
tedby �, and 
harge ea
h player i 2 S the pri
e pi = �(i; S).4. Among all players i 2 S with bi < �(i; S), let i� be one with minimum �(i; S). (Break tiesarbitrarily.)5. Set S := S n fi�g and return to Step 3.Remark 3.2 The de�nition of the me
hanism M(�; �) depends only on the ordering of the o�ertimes, and not on their numeri
al values. We work with real-valued o�er times rather than abstra
torderings be
ause su
h times arise naturally in primal-dual algorithms.Remark 3.3 For every universe U and 
ost-sharing method �, the Moulin me
hanism indu
edby � is equivalent to the me
hanism indu
ed by � and the identi
ally zero o�er fun
tion.As foreshadowed in Se
tion 3.1, the me
hanism indu
ed by a 
ost-sharing method and ano�er fun
tion will be truthful only if all failures of 
ross-monotoni
ity are suppressed by the o�erfun
tion. We formalize the required property next; we prove that it is suÆ
ient for truthfulness inSe
tion 3.3.Let � be an o�er fun
tion de�ned on a universe U . For a subset S � U and a player i 2 S, letL(i; S), E(i; S), and G(i; S) denote the players of S with o�er time �(�; S) stri
tly less than, equalto, and stri
tly greater than that of i, respe
tively.De�nition 3.4 Let � and � be a 
ost-sharing method and an o�er fun
tion, respe
tively, de�nedon a universe U . The fun
tion � is valid for � if the following two properties hold for every subsetS � U and player i 2 S:(a) �(i; S n T ) = �(i; S) for every subset T � G(i; S);(b) �(i; S n T ) � �(i; S) for every subset T � G(i; S) [ (E(i; S) n fig).In De�nition 3.4, a player's 
ost share must remain �xed as players with subsequent o�er timesare removed, and it 
an only in
rease with the deletion of players with equal o�er times. Thedeletion of a player with an earlier o�er time imposes no 
onstraints, as su
h a deletion terminatesthe iteration and suppresses the values of subsequent 
ost shares. Also, we impose no expli
it
onstraints on how the o�er fun
tion � 
hanges between 
onse
utive iterations.Example 3.5 Consider the universe U = fx; yg and the non-
ross-monotoni
 
ost-sharing method �de�ned by �(y; fx; yg) = 1 and �(x; fx; yg) = �(y; fyg) = �(x; fxg) = 1=2. Let �x and �y denoteo�er fun
tions satisfying �x(x; fx; yg) < �x(y; fx; yg) and �y(y; fx; yg) < �y(x; fx; yg), respe
tively.Then �x is valid for � while �y is not.De�nition 3.6 An a
y
li
 me
hanism is a me
hanism M(�; �) indu
ed by a 
ost-sharing method� and an o�er fun
tion � that is valid for �. 8



Remark 3.7 A
y
li
 me
hanisms are stri
tly more general than Moulin me
hanisms. For exam-ple, all sequential me
hanisms (see [34℄), in whi
h players are exogenously ordered and su

essivelyo�ered servi
e at the 
urrent marginal 
ost, are easily implementable as a
y
li
 me
hanisms. Theseme
hanisms are fully budget-balan
ed and are not generally Moulin me
hanisms. Sequential me
h-anisms are not immediately useful for our purposes, however, as they have poor eÆ
ien
y and
omputational 
omplexity properties.De�nition 3.4 is easy to satisfy in several appli
ations. Looking ahead, Se
tion 4 shows thatseveral well-known algorithms naturally indu
e a 
ost-sharing method and an o�er fun
tion that isvalid for it. In all of our appli
ations, the 
ost share �(i; S) of a player 
orresponds to part of a dualsolution to the optimization problem indu
ed by S, and the o�er time �(i; S) is the time at whi
hplayer i is \dea
tivated" by a primal-dual algorithm. For example, in UFL (Example 2.1), there isa one-to-one 
orresponden
e between players and dual variables. We employ 
ost-sharing methodsthat de�ne 
ost shares as the dual variable values 
omputed by a primal-dual UFL algorithm thatruns over time. The o�er time of a player is de�ned as the time at whi
h the player's dual variable�rst assumes its �nal value.Remark 3.8 We use the term \a
y
li
" to re
e
t the fa
t that the o�er fun
tion of an a
y
li
me
hanism orders the remaining players in a way that 
on
eals the non-
ross-monotoni
ity of theunderlying 
ost-sharing method. In parti
ular, De�nition 3.4 implies that for every subset S ofplayers, the following graph is dire
ted a
y
li
: the verti
es are the players of S, and the ar
 (i; j)is in
luded if and only if �(j; S n fig) < �(j; S). This 
onsequen
e of De�nition 3.4 is reminis
entof but di�erent from the notion of \semi-
ross-monotoni
ity" introdu
ed in [21℄.3.3 Properties of A
y
li
 Me
hanismsThe following basi
 properties of a
y
li
 me
hanisms are immediate.Proposition 3.9 Let � and � be a 
ost-sharing method and an o�er fun
tion de�ned on the uni-verse U , and M(�; �) the indu
ed me
hanism.(a) For every bid ve
tor b, the me
hanism M(�; �) halts within jU j iterations.(b) If � and � run in polynomial time, then so does M(�; �).(
) If � is �-budget-balan
ed with respe
t to a 
ost fun
tion C, then so is M(�; �).(d) The me
hanism M(�; �) has no positive transfers and is individually rational.The rest of this se
tion studies the in
entive-
ompatibility properties of a
y
li
 me
hanisms.Our key lemma states that the pri
es o�ered to a player 
an only in
rease during the exe
ution ofan a
y
li
 me
hanism. To make this pre
ise, we say that player i is o�ered the pri
e p in iteration jof an a
y
li
 me
hanism M(�; �) if the following 
onditions hold: �rst, if S is the set of playersremaining at the beginning of the jth iteration, then i 2 S; se
ond, if a player i� is 
hosen fordeletion in this iteration, then �(i; S) � �(i�; S); third, the pri
e p is the 
ost share �(i; S).We �rst prove a preliminary result, stating that the pri
e o�ered to a player by an a
y
li
me
hanism is �xed on
e a player with a subsequent o�er time is o�ered a pri
e.Lemma 3.10 Suppose an a
y
li
 me
hanism M(�; �) o�ers pri
es to players j and i in an iterationwith remaining players S, and �(j; S) < �(i; S). Then �(j; S) is the only pri
e o�ered to j insubsequent iterations. 9



Proof: Let b denote the bid ve
tor and m the iteration with remaining players S. We show that noplayer of L(i; S) will ever be deleted; thus all removed players lie in G(j; S), and the lemma followsfrom De�nition 3.4(a).We pro
eed by 
ontradi
tion, and let ` denote the �rst player of L(i; S) removed at or afteriterationm. Let T � S denote the players of S removed prior to `. Sin
e ` was removed, �(`; SnT ) >b`. Sin
e i was o�ered a pri
e in iteration m and ` 2 L(i; S), �(`; S) � b` < �(`; S n T ). By our
hoi
e of `, T 
ontains no players of L(i; S), and hen
e T � G(`; S). But De�nition 3.4(a) thengives �(`; S) = �(`; S n T ), a 
ontradi
tion. �Corollary 3.11 If an a
y
li
 me
hanism M(�; �) o�ers a pri
e to player i when the remainingset of players is S, then M never deletes a player of L(i; S).Proof: Let b denote the bid ve
tor. Sin
e i is o�ered a pri
e when the remaining set of players is S,�(j; S) � bj for every j 2 L(i; S). Lemma 3.10 implies that every player j 2 L(i; S) will be o�eredthe same pri
e �(j; S) in subsequent iterations, and hen
e no su
h player will ever be deleted. �We now show that a
y
li
 me
hanisms only o�er as
ending sequen
es of pri
es.Lemma 3.12 If an a
y
li
 me
hanism M(�; �) o�ers a player i the pri
e p1i in some iteration andthe pri
e p2i in a subsequent iteration, then p1i � p2i .Proof: Let S denote the remaining players in the earlier iteration, so p1i = �(i; S). Sin
e i waso�ered a pri
e in this iteration, Corollary 3.11 implies that no player of L(i; S) will be deleted inthis or subsequent iterations. The lemma now follows from De�nition 3.4(b). �Lemma 3.12 implies that a
y
li
 me
hanisms are strategyproof.Theorem 3.13 Every a
y
li
 me
hanism is strategyproof.Sin
e we generalize Theorem 3.13 in Theorem 3.16 below, we omit its short proof.The next example shows that me
hanisms indu
ed by invalid o�er fun
tions are not generallytruthful.Example 3.14 De�ne U , �, and �y as in Example 3.5. The me
hanism M(�; �y) indu
ed by �and �y is not strategyproof. To see this, suppose that vy = 3=4 and bx = 1=4. If player y bidstruthfully, it is not served and re
eives zero utility. If it bids at least 1, however, it is served at thepri
e 1=2 and re
eives positive utility.Re
all from Se
tion 2.3 that Moulin me
hanisms are groupstrategyproof (GSP). The next ex-ample shows that a
y
li
 me
hanisms need not be GSP.Example 3.15 De�ne U , �, and �x as in Example 3.5. Sin
e �x is valid for �, the a
y
li
 me
hanismM(�; �x) is strategyproof. It is not GSP, however. To see this, set vx = 1=2 and vy = 1. In everypossible exe
ution of M(�; �x), player x re
eives zero utility. The 
oalition fx; yg 
an manipulatethe me
hanism by bidding bx = 0 and by = 1; player x obtains the same utility as with truthfulbidding, and player y obtains stri
tly more.We 
on
lude this se
tion by proving that a
y
li
 me
hanisms are weakly groupstrategyproof(re
all Se
tion 2.1), and thus nearly mat
h the in
entive-
ompatibility guarantee of Moulin me
h-anisms. 10



Theorem 3.16 Every a
y
li
 me
hanism is WGSP.Proof: Let M(�; �) be an a
y
li
 me
hanism de�ned on the universe U . Re
all from Se
tion 2.1that a me
hanism is WGSP if no 
oordinated false bid by a 
oalition of players 
an stri
tly in
reasethe utility of every player in the 
oalition. Fix a 
oalition T � U , a valuation vi and a bid bi forevery player i 2 T , and bids b�T for the players not in T . Let Ev and Eb denote the exe
utionsof M for the bid ve
tors (vT ; b�T ) and (bT ; b�T ), respe
tively. Let (S; p) and (S0; p0) denote theout
omes of these exe
utions. We 
laim that ui(S; p) � ui(S0; p0) for some i 2 T .There are three 
ases. First, if no player of T is deleted in Ev or Eb, then these exe
utionsterminate with identi
al out
omes (S; p) and (S0; p0), and the 
laim holds. Se
ond, if some player i 2T is deleted in Eb, then ui(S0; p0) = 0. Sin
e ui(S; p) � 0 by the individual rationality of M(�; �)(Proposition 3.9(d)), the 
laim holds. For the �nal 
ase, assume that T � S0 and T 6� S, and let i bethe �rst player of T deleted in Ev, say in the jth iteration; obviously, ui(S; p) = 0. The exe
utions Evand Eb are identi
al up to their jth iterations, and i is o�ered the same pri
e p�i in both exe
utions.Sin
e i is deleted in Ev, p�i > vi. By Lemma 3.12, p0i � p�i > vi. Thus ui(S0; p0) < 0 = ui(S; p),
ompleting the proof. �Remark 3.17 The proof of Theorem 3.16 immediately implies an in
entive-
ompatibility guaran-tee somewhat stronger than WGSP: for every a
y
li
 me
hanism, every deviation by a 
oalitionthat stri
tly in
reases the utility of one of its members either de
reases the utility of or preventsservi
e to another member (
f., Example 3.15).Remark 3.18 Not all WGSP me
hanisms are a
y
li
; see Juarez [27℄. For example, the followingme
hanism for two players is WGSP but not a
y
li
: o�er servi
e to the �rst player at a �xed pri
e,and to the se
ond at a pri
e that is a stri
tly in
reasing fun
tion of the �rst player's bid.Chara
terizing the 
lass of WGSP me
hanisms and its relationship to a
y
li
 me
hanisms is aninteresting dire
tion for future resear
h.4 A
y
li
 Me
hanisms via Primal-Dual AlgorithmsThis se
tion demonstrates how several well-known primal-dual algorithms naturally indu
e a
y
li

ost-sharing me
hanisms. All of these algorithms were designed prior to the development ofMoulin me
hanisms, but sin
e the 
ost-sharing methods indu
ed by these algorithms are not 
ross-monotoni
, they 
ould not be used to 
onstru
t su
h me
hanisms. Se
tion 5 proves that theseme
hanisms mat
h or, in most 
ases, improve upon the best approximation guarantees possible forMoulin me
hanisms.Se
tion 4.1 formally de�nes the �ve types of 
ombinatorial 
ost-sharing problems that we study.Se
tion 4.2 gives a self-
ontained a

ount of three primal-dual algorithms, shows how ea
h indu
esa 
ost-sharing method and an o�er fun
tion in a natural way, and proves that these 
ost-sharingmethods are not 
ross-monotoni
. Se
tion 4.3 proves the a
y
li
ity of these me
hanisms, and alsoshows that not all natural primal-dual algorithms indu
e a
y
li
 me
hanisms.4.1 Five Combinatorial Cost-Sharing ProblemsThis se
tion and the next fo
us on the following �ve 
lasses of 
ost-sharing problems.
11



Non-Metri
 Un
apa
itated Fa
ility Lo
ation (NMUFL). As introdu
ed in Example 2.1,a non-metri
 un
apa
itated fa
ility lo
ation (NMUFL) 
ost fun
tion C is des
ribed by a universe Uof demands, a set F of fa
ilities with nonnegative opening 
osts, and 
onne
tion 
ost fun
tion 
de�ned on F �U . In�nite 
onne
tion 
osts are also allowed. For a subset S � U , C(S) is de�ned asthe 
ost of the 
heapest way to open a non-empty subset of fa
ilities and 
onne
t all of the playersin S to open fa
ilities.Set Cover. A set 
over 
ost fun
tion C is des
ribed by a universe U of elements and a 
olle
tionC = fA1; : : : ; Amg of subsets of U with nonnegative 
osts 
1; : : : ; 
m. For a subset S � U , C(S) isde�ned as the 
ost of the 
heapest way of 
overing the elements of S using subsets from C.There is a 
lose 
onne
tion between NMUFL and Set Cover problems, and the latter 
anbe viewed as spe
ial 
ases of the former: elements 
orrespond to demands, sets and their 
osts
orrespond to fa
ilities and their opening 
osts, and 
onne
tion 
osts are either 0 (if the givenelement belongs to the given set) or +1 (otherwise).Vertex Cover. A vertex 
over 
ost fun
tion C is des
ribed by an undire
ted graph G = (V;U)with nonnegative vertex weights. For a subset S � U , C(S) is de�ned as the minimum weight of avertex 
over|a subset of verti
es that in
ludes at least one endpoint of ea
h edge|of (V; S).Vertex 
over 
ost fun
tions are 
learly spe
ial 
ases of set 
over 
ost fun
tions: edges 
orrespondto elements, and sets of edges in
ident on a 
ommon vertex form the subsets.Metri
 Un
apa
itated Fa
ility Lo
ation. A metri
 un
apa
itated fa
ility lo
ation 
ost fun
-tion is a NMUFL 
ost fun
tion in whi
h the 
onne
tion 
osts satisfy the triangle inequality: forevery pair i; i0 2 U of demands and pair q; q0 2 F of fa
ilities,
(q; i) � 
(q; i0) + 
(q0; i0) + 
(q0; i):Steiner Tree (ST). A Steiner tree (ST) 
ost fun
tion is spe
i�ed via an undire
ted graph G =(V;E) with nonnegative edge 
osts, a root vertex r 2 V , and a subset U � V of sour
e verti
es.For a subset S � U , C(S) is de�ned as the minimum 
ost of a subgraph of G that 
ontains at leastone path between the root r and ea
h sour
e of S.4.2 Primal-Dual Algorithms and Cost-Sharing MethodsGood a
y
li
 me
hanisms depend on good 
ost-sharing methods|fun
tions that take as input asubset S of players, and output both a feasible solution for the optimization problem indu
ed by Sand 
ost shares for the players that approximately 
over the 
ost of this solution. This goal isstrongly reminis
ent of that a
hieved by primal-dual algorithms|algorithms that output a feasiblesolution to an optimization problem, as well as a \dual solution" that 
erti�es the near-optimalityof the solution. This parallel has already been exploited in the design of Moulin me
hanisms(e.g. [18, 23, 25, 30, 36℄), and we demonstrate that this 
onne
tion is equally powerful in the designof a
y
li
 me
hanisms.This se
tion des
ribes three non-
ross-monotoni
 
ost-sharing methods indu
ed by well-knownprimal-dual algorithms, in
luding two in
omparable methods for NMUFL problems and a methodfor ST problems. Se
tions 4.3{5.2 leverage these methods to design a
y
li
 me
hanisms with goodperforman
e guarantees, and in parti
ular establish most of the upper bounds listed in Table 1.
12



4.2.1 The PD Me
hanism for NMUFL ProblemsPrimal-dual algorithms lead to 
ost-sharing methods in a generi
 way. Our �rst illustration is aNMUFL algorithm that forms the basis of our 2-budget-balan
ed a
y
li
 me
hanism for VertexCover problems. Consider a NMUFL problem de�ned by a universe U , fa
ilities F , and fa
ilityand 
onne
tion 
osts f and 
, respe
tively. A star is a pair (q; T ), where q 2 F is a fa
ility and Tis a subset of demands. The 
ost 
(q; T ) of the star (q; T ) is de�ned as fq +Pi2T 
(q; i). Let C(S)denote the set of all stars involving only players of S. The following integer program is an exa
tformulation of the NMUFL problem indu
ed by a subset S � U of players:Min X(q;T )2C(S) 
(q; T )xqTsubje
t to:(IP (S)) X(q;T )2C(S) : i2T xqT � 1 for all i 2 SxqT 2 f0; 1g for all (q; T ) 2 C(S).There is one de
ision variable per star (q; T ), and setting a variable xqT = 1 should be interpretedas opening the fa
ility q and assigning all of the demands of T to q. There is one 
onstraint perplayer i of S, stating that at least one star 
ontaining i must be sele
ted. Every feasible solutionof the NMUFL instan
e indu
ed by S 
an be mapped easily to a feasible solution of IP (S) of nogreater 
ost, and 
onversely.Repla
ing the last 
onstraint of IP (S) by xqT � 0 for every star (q; T ) 2 C(S) yields a linearprogramming relaxation. The dual linear program of this relaxation isMax Xi2S �isubje
t to:(D(S)) Xi2T �i � 
(q; T ) for all (q; T ) 2 C(S)�i � 0 for all i 2 S.There is a one-to-one 
orresponden
e between the dual de
ision variables �i and the players of S.By weak linear programming duality (see e.g. [9℄), the obje
tive fun
tion value of every feasiblesolution � ofD(S) provides a lower bound on the obje
tive fun
tion value of every feasible solution xof IP (S): Xi2S �i � X(q;T )2C(S) 
(q; T )xqT : (3)Why are these mathemati
al programs useful for designing 
ost-sharing methods? Suppose analgorithm is guaranteed to return feasible solutions x� and �� to IP (S) and D(S), respe
tively,su
h that X(q;T )2C(S) 
(q; T )x�qT � � �Xi2S ��i : (4)Interpret x� as a feasible solution to the NMUFL instan
e indu
ed by S, and ea
h dual variable ��ias a 
ost share �(i; S). By inequalities (3) and (4), this 
ost-sharing method � is �-budget-balan
ed.Thus, designing a �-budget-balan
ed 
ost-sharing method redu
es to designing a �-approximationalgorithm with performan
e guarantee established via the primal-dual inequalities (3) and (4).13



1. Initialize �i = 0 for all i 2 S, xqT = 0 for all (q; T ) 2 C(S), and the time t to 0. All playersof S are a
tive and un
onne
ted.2. While a
tive players remain:(a) Uniformly in
rease �i for every a
tive player i 2 S, until Pi2T �i = 
(q; T ) for somestar (q; T ) 
ontaining at least one a
tive player. In
rease t by the same amount.(b) Choose su
h a star (q; T ) and letW denote the players already 
onne
ted to q. Set xqW =0 and xqT[W = 1. Dea
tivate and 
onne
t to q all of the players of T .Figure 2: The PD algorithm for NMUFL.There are several broadly appli
able algorithmi
 paradigms for designing approximation algorithmsof this type (see e.g. [43℄).Cost-sharing methods do not automati
ally yield truthful 
ost-sharing me
hanisms unless theysatisfy additional 
onstraints (
f., De�nition 3.4). This motivates 
on
entrating on a parti
ularlysimple 
lass of algorithms: primal-dual algorithms. Roughly, a primal-dual algorithm 
onstru
tsfeasible solutions to a (primal) optimization problem and the dual of its linear relaxation in tandem,maintaining inequalities (3) and (4) as invariants during its exe
ution. Typi
ally, the algorithmbegins with the all-zero primal and dual solutions, and primal feasibility is attained only at termi-nation.Figure 2 displays a primal-dual algorithm for the NMUFL problem, whi
h we 
all the PDalgorithm. (This algorithm is well known; see [20℄ and [43, Chapter 15℄.) At the beginning of thealgorithm, all dual variables are zero and all stars are un
hosen. The algorithm also maintains anotion of time, initially zero. A player is a
tive if it is not 
ontained in a 
hosen star, and ina
tiveotherwise. In ea
h iteration, the dual variables �i of all a
tive players are in
reased simultaneouslyat unit rate until the dual 
onstraint for some un
hosen star (q; T ) be
omes tight: Pi2T �i = 
(q; T ).When su
h a star be
omes tight, it is 
hosen and the a
tive players of T are dea
tivated; ties arebroken in an arbitrary but 
onsistent way. Su
h a star 
an be found in polynomial time, eventhough there are an exponential number of stars (see [22℄). As long as there is a feasible solutionwith �nite 
ost, the algorithm will terminate with su
h a solution. By Step 2a, it maintains dualfeasibility as an invariant.Lemma 4.1 (PD Invariant) For every NMUFL instan
e, the PD algorithm terminates with adual feasible solution.This primal-dual algorithm indu
es a 
ost-sharing method �PD for the given NMUFL problem:given a subset S � U , return the feasible NMUFL solution 
omputed by this algorithm, and setea
h 
ost share �PD(i; S) to the �nal value of the dual variable �i.The 
ost-sharing method �PD is not 
ross-monotoni
, even in the spe
ial 
ase of Vertex Cover
ost-sharing problems, and thus does not yield a truthful Moulin me
hanism.Example 4.2 Consider the Vertex Cover 
ost-sharing problem shown in Figure 3(a), with vertexweights as shown. This problem 
orresponds to the NMUFL instan
e shown in Figure 3(b). Edgesin the �gure represent zero 
onne
tion 
osts; non-edges represent in�nite 
onne
tion 
osts.14



w  = 81

CBA
1 2 3 4

w  = 82 3 4
w  = 4 w  = 6(a) Vertex Cover problem

f  = 81

A

1

B C

2 3 4

f  = 82f  = 4 3f  = 6 4

(b) Equivalent NMUFL problemFigure 3: Example 4.2. The 
ost-sharing method �PD is not 
ross-monotoni
.We 
laim that �PD(C; fB;Cg) < �PD(C; fA;B;Cg), whi
h is a violation of 
ross-monotoni
ity.To 
ompute the 
ost share �PD(C; fA;B;Cg), we exe
ute the primal-dual algorithm of Figure 2with all three players present. At time 2, the star (2; fA;Bg) be
omes tight and players A and Bare dea
tivated. At time 4, the star (3; fB;Cg) be
omes tight, C is dea
tivated, and algorithmterminates with �PD(C; fA;B;Cg) = 4. If we remove player A and exe
ute the algorithm, thestar (3; fB;Cg) is the �rst to be
ome tight, at time t = 3. The algorithm halts at this point with�PD(C; fB;Cg) = 3 < �PD(C; fA;B;Cg).The primal-dual algorithm in Figure 2 also indu
es an o�er fun
tion: set �PD(i; S) equalto the time at whi
h player i is dea
tivated in Step 2b of the algorithm. We 
all the me
ha-nism M(�PD; �PD) indu
ed by �PD and �PD the PD me
hanism. Se
tions 4.3{5.2 establish thatthe PD me
hanism is a
y
li
 and, for Vertex Cover problems, is 2-budget-balan
ed and O(log k)-approximate.Example 4.3 In Example 4.2, �PD fails to be 
ross-monotoni
 be
ause�PD(C; fB;Cg) = 3 < 4 = �PD(C; fA;B;Cg):On the other hand, �PD(A; fA;B;Cg) = 2 < 4 = �PD(C; fA;B;Cg); in words, the PD me
hanismo�ers player A its �rst-round pri
e of 2 before it o�ers player C its �rst-round pri
e of 4. Cross-monotoni
ity fails only when player A refuses this pri
e; in this 
ase, the PD me
hanism makes no�rst-round o�er to player C, thereby suppressing the non-
ross-monotoni
ity.4.2.2 The DMV Me
hanism for NMUFL ProblemsNext we give a se
ond NMUFL 
ost-sharing method that leads to a me
hanism that outperformsthe PD me
hanism for general NMUFL and metri
 UFL problems (but not for Vertex Coverproblems). The method is again de�ned via a primal-dual algorithm for the programs IP (S)and D(S) (Figure 4). See also Remark 4.8 below for a greedy interpretation of this algorithm.This algorithm di�ers from the PD algorithm primarily in its 
hoi
e of the star (q; T ) in themain loop. First, only stars (q; T ) entirely 
omposed of a
tive players T are eligible for sele
tion.Se
ond, the sele
tion 
riterion depends on whether or not the fa
ility q appears in a previously
hosen star. These rules are designed to maintain the invariant that, prior to the s
aling in Step 3,the 
urrent primal and dual solutions have equal obje
tive fun
tion value. Primal-dual algorithms15



1. Initialize �i = 0 for all i 2 S, xqT = 0 for all (q; T ) 2 C(S), and the time t to 0. All playersof S are a
tive and un
onne
ted, all fa
ilities are 
losed.2. While a
tive players remain:(a) Uniformly in
rease �i for every a
tive player i 2 S, until for some star (q; T ) of a
tiveplayers T : (i) q is 
losed and Pi2T �i = 
(q; T ); or (ii) q is open and Pi2T �i =Pi2T 
(q; i). In
rease t by the same amount.(b) Choose su
h a star (q; T ). Dea
tivate and 
onne
t to q all of the players of T . In 
ase (i),open q and set xqT = 1. In 
ase (ii), let W denote the players already 
onne
ted to q,and set xqW = 0 and xqT[W = 1.3. Divide every dual variable �i by Hk, where Hk =Pki=1 1=i and k = jU j.Figure 4: The DF algorithm for NMUFL.of this type are sometimes 
alled dual-�tting algorithms [22℄, so we 
all this algorithm the DFalgorithm.Lemma 4.4 (DF Invariant) After ea
h iteration of Step 2 of the DF algorithm,X(q;T )2C(S) 
(q; T )xqT =Xi2I �i;where I denotes the 
urrent set of ina
tive players.We omit the straightforward indu
tive proof. See also [20, 22℄ for alternative des
riptions of theDF algorithm, in
luding polynomial-time implementations.The DF algorithm only 
onstrains dual variable growth in Step 2 via a stri
t subset of thedual 
onstraints|stars 
omprising only a
tive players|and the algorithm need not maintain dualfeasibility. This motivates Step 3, whi
h s
ales the dual variables to re
over dual feasibility.Lemma 4.5 For every NMUFL instan
e, the DF algorithm terminates with a dual feasible solution.Lemma 4.5 follows from the well-known dual-�tting analysis of the greedy Set Cover algorithm(see [8, 20℄ and [43, Chapter 13℄).Remark 4.6 Lemma 4.5 holds with a s
aling fa
tor of HjSj. For in
entive-
ompatibility reasons(Se
tion 4.3.1), we s
ale by the larger fa
tor of HjU j in Step 3.Like the PD algorithm, the DF algorithm indu
es a 
ost-sharing method �DF and an o�erfun
tion �DF . Given a subset S � U , the method �DF returns the feasible solution 
omputed bythe DF algorithm for the NMUFL instan
e indu
ed by S, and 
ost shares equal to the �nal (s
aled)dual variables. The o�er time �DF (i; S) is de�ned as the time at whi
h player i is dea
tivated inStep 2b of the DF algorithm. We 
all the indu
ed me
hanism M(�DF ; �DF ) the DMV me
hanism,as spe
ial 
ases of this me
hanism were studied in [10℄. Se
tions 4.3{5.2 prove a
y
li
ity of andgood performan
e guarantees for the DMV me
hanism.16



Remark 4.7 In Example 4.2, �DF (C; fA;B;Cg) = 6=H3 = 36=11 while �DF (C; fB;Cg) =3=H3 = 18=11. Thus �DF is not 
ross-monotoni
. Minor modi�
ations to this example showthat �DF also fails to be 
ross-monotoni
 in the spe
ial 
ase of metri
 UFL problems.Remark 4.8 The DF algorithm 
an also be interpreted as a greedy algorithm [22℄. Given a partialsolution to a NMUFL instan
e, de�ne the 
ost e�e
tiveness of a star (q; T ) as 
(q; T )=jT j if q is
losed and as Pi2T 
(q; i)=jT j if q is already open. The main loop of the DF algorithm (Step 2)is equivalent to repeatedly 
hoosing the star of a
tive players with smallest 
ost e�e
tiveness. Thedual variable of ea
h parti
ipating player is set to the 
ost e�e
tiveness of the star, divided by Hk.Remark 4.9 The DMV me
hanism has an alternative des
ription in whi
h all of the su

essiveinvo
ations of the underlying DF algorithm are 
ombined into a single one. In parti
ular, theme
hanisms in [10℄ are des
ribed in this way.4.2.3 The AKR-GW Me
hanism for ST ProblemsOur �nal 
ost-sharing method is an analogue of the PD method for ST 
ost-sharing problems. Tode�ne this ST 
ost-sharing method, we introdu
e a well-known primal-dual formulation for the STproblem. Consider a graph G = (V;E) with nonnegative edge 
osts 
, a root vertex r, and sour
everti
es U = fs1; : : : ; skg (the players). For a subset A � V of verti
es, let Æ(A) denote the edgesof E with pre
isely one endpoint in A. For a subset S � U of players, a subset A � V n frg isS-separating if it 
ontains at least one vertex of S. Let C(S) denote the S-separating subsets. Thefollowing integer program is an exa
t formulation of the ST problem indu
ed by a subset S � U ofplayers: Min Xe2E 
exesubje
t to:(IP � ST (S)) Xe2Æ(A) xe � 1 for all A 2 C(S)xe 2 f0; 1g for all e 2 E.The de
ision variables of IP (S) indi
ate whi
h edges are 
hosen. The 
onstraints require that forevery subset A that in
ludes at least one sour
e of S and ex
ludes the root, at least one 
hosenedge protrudes from A. Every subgraph of G that spans S [ frg satis�es these 
onstraints, and
onversely.We 
an obtain a linear program from IP � ST (S) by repla
ing the �nal set of 
onstraints bythe nonnegativity 
onstraints xe � 0 for all e 2 E. The dual linear program isMax XA2C(S) yAsubje
t to:(D � ST (S)) XA2C(S) : e2Æ(A) yA � 
e for all e 2 EyA � 0 for all A 2 C(S).In 
ontrast to the previous dual program D(S), dual variables 
an 
orrespond to more than oneplayer of S. Despite this more 
omplex stru
ture, we show that the standard primal-dual algorithmfor this problem leads easily to an a
y
li
 me
hanism.17



1. Initialize yA = 0 for all A 2 C(S), xe = 0 for all e 2 E, F = ;, and the time t to 0. All playersof S are a
tive.2. While a
tive players remain:(a) Let A1; : : : ; A` denote the 
onne
ted 
omponents of (V; F ) that in
lude at least one a
tiveplayer. Uniformly in
rease the y-value of ea
h su
h 
omponent untilPA2C(S) : e2Æ(A) yS =
e for some edge e with xe = 0. In
rease t by the same amount.(b) Choose su
h an edge e. Set xe = 1 and add e to F . Dea
tivate every player 
ontainedin r's 
onne
ted 
omponent in (V; F ).3. Output F � = fe 2 F : F n feg is infeasibleg.Figure 5: The AKR-GW algorithm for ST.Next we review the primal-dual Steiner tree algorithm designed in [1℄; the primal-dual interpre-tation was made expli
it in [16℄. We 
all this algorithm the AKR-GW algorithm, and it is shown inFigure 5. The algorithm starts with the all-zero primal and dual solutions, and iteratively augmentsits (infeasible) primal solution one edge at a time. A player i is de�ned to be a
tive while thereis no path from its sour
e si to the root. At ea
h iteration, the algorithm 
onsiders the 
onne
ted
omponents of (V; F ), where F is the edges sele
ted so far. The algorithm uniformly in
reases thedual variables 
orresponding to the 
omponents that 
ontain at least one a
tive player. These dualvariables are in
reased at a uniform rate until some dual 
onstraint be
omes tight. The 
orrespond-ing edge is then added to the primal solution. The main loop halts when all players are ina
tive,at whi
h point the 
urrent primal solution is feasible. Step 2a ensures that every dual 
onstraintis respe
ted, so the AKR-GW algorithm terminates with a dual feasible solution. The algorithm
on
ludes with a pruning step (Step 3) that is relevant only for budget-balan
e (Theorem 5.8).Let F be the solution 
omputed by the main loop and 
all an edge e 2 F essential if F n feg is nota feasible Steiner tree. The essential edges of F form a feasible solution (see [16℄), and these arethe �nal output of the algorithm. This algorithm 
an be implemented in polynomial time [1, 16℄.We obtain a 
ost-sharing method �ST and o�er fun
tion �ST from the AKR-GW algorithmas follows. The o�er fun
tion is de�ned as in our earlier appli
ations: given S, �ST (i; S) is thetime at whi
h the AKR-GW algorithm dea
tivates player i in Step 2b. De�ning the 
ost-sharingmethod �ST is 
ompli
ated by the many-to-many 
orresponden
e between dual variables and play-ers (
f., the dual program D(S) for NMUFL). A natural solution is to divide the value of a dualvariable equally among parti
ipating players [23, 30℄. Formally, let �(A) � 1 denote the number ofsour
e verti
es of S inhabiting the S-separating set A, and de�ne�ST (i; S) = XA2C(S) : i2A yA�(A) ; (5)where fyAgA2C(S) is the dual feasible solution 
omputed by the AKR-GW algorithm.The 
ost-sharing method �ST , given S � U , returns the 
ost shares given in (5) together withthe solution 
omputed by the AKR-GW algorithm for the Steiner tree instan
e indu
ed by S.Simple examples show that �ST is not 
ross-monotoni
. We 
all the me
hanism M(�ST ; �ST ) theAKR-GW me
hanism. 18



4.3 A
y
li
ityWe now prove that all three of the me
hanisms de�ned in Subse
tion 4.2 are a
y
li
.4.3.1 The PD and DMV Me
hanismsThe proofs of a
y
li
ity for the PD and DMV NMUFL me
hanisms are essentially the same. Webegin by noting that 
ost shares and o�er times are equal in the PD method, and di�er only by a�xed s
aling fa
tor in the DF method.Lemma 4.10 For every NMUFL problem with universe U , subset S � U , and player i 2 S:(a) �PD(i; S) = �PD(i; S);(b) �DF (i; S) = �DF (i; S)=HjU j.Proof: In the PD algorithm, every dual variable �i is in
reased at unit rate from time 0 to thethe time at whi
h the 
orresponding player is dea
tivated, whi
h by de�nition is �PD(i; S). Sin
e�PD(i; S) is the �nal value of �i, (a) follows.By the same argument, after Step 2 of the DF algorithm, �i = �DF (i; S) for every player i 2 S.Sin
e �DF (i; S) is this value divided by HjU j, (b) follows. �We 
an now prove that the PD me
hanism is a
y
li
 and hen
e, by Theorem 3.16, WGSP.Theorem 4.11 The PD me
hanism is a
y
li
.Proof: Fix a NMUFL 
ost-sharing problem and let E(S) denote the exe
ution of the PD algorithmon the NMUFL instan
e indu
ed by a subset S � U of players. Fix S � U and a player i 2 S. Let(q;A) denote the star 
hosen at time �PD(i; S) in E(S) that 
ontains player i.To establish De�nition 3.4(a), 
hoose T � G(i; S). Sin
e the o�er time of a player equals theearliest time at whi
h a star 
ontaining it is 
hosen by the PD algorithm, no star 
hosen in E(S) ator before time �PD(i; S) in
ludes a player of T . By indu
tion on the main loop, the exe
utions E(S)and E(S n T ) are identi
al up to and at the time �PD(i; S). As a result, �PD(i; S n T ) = �PD(i; S).By Lemma 4.10(a), �PD(i; S n T ) = �PD(i; S).The proof of De�nition 3.4(b) is similar. Fix a subset T � G(i; S)[(E(i; S)nfig) of players. Theexe
utions E(S) and E(SnT ) are identi
al prior to the time �PD(i; S). Thus �PD(i; SnT ) � �PD(i; S)and, by Lemma 4.10(a), �PD(i; S n T ) � �PD(i; S). �An identi
al argument proves the a
y
li
ity of the DMV me
hanism.Theorem 4.12 The DMV me
hanism is a
y
li
.4.3.2 The AKR-GW Me
hanismThe AKR-GW me
hanism is also a
y
li
, although the argument is more deli
ate than for the PDand DMV me
hanisms. Indeed, Example 4.15 below shows that the 
orresponding me
hanism fora more general 
lass of problems need not be a
y
li
.First, we require a te
hni
al monotoni
ity lemma about the AKR-GW algorithm. A set A andthe 
orresponding dual variable yA are a
tive at time � in the AKR-GW algorithm if yA is in
reasedin Step 2a when the time t equals � . 19



Lemma 4.13 Fix a Steiner tree 
ost-sharing problem with universe U . For S � U , let E(S) denotethe exe
ution of the AKR-GW algorithm on the instan
e indu
ed by S. Choose T � S � U . Let ��denote the earliest time in E(S) at whi
h some sour
e of T is dea
tivated.(a) If A 
ontains no players of T , then A is a 
onne
ted 
omponent in E(S) at time � � �� ifand only if it is a 
onne
ted 
omponent of E(S n T ) at time � .(b) If A is a 
onne
ted 
omponent at time � � �� in E(SnT ), then there is a 
onne
ted 
omponentA0 in E(S) at time � with A � A0.Roughly, Lemma 4.13 states that removing a subset T of sour
e verti
es 
an only shatter a
tivedual variables into smaller ones, up until the time at whi
h the �rst sour
e of T be
omes ina
tive.We omit the proof and move on to establish the a
y
li
ity of the AKR-GW me
hanism.Theorem 4.14 The AKR-GW me
hanism is a
y
li
.Proof: Fix a Steiner tree 
ost-sharing problem with universe U , a subset S � U , and a playeri 2 S. By the de�nition of the AKR-GW algorithm and the 
ost-sharing method �ST (5), we 
aninterpret the 
ost share �ST (i; S) of a player i as a

ruing over the time interval [0; �ST (i; S)℄ inthe AKR-GW algorithm. The marginal in
rease at time � is equal to 1=�(A), where A is player i's
onne
ted 
omponent at time � and �(A) is the number of players of S 
ontained in A.To 
he
k De�nition 3.4(a), �x S, i 2 S, and a subset T � G(i; S). Let E(S) and E(S nT ) denotethe exe
ution of the AKR-GW algorithm on the Steiner tree instan
es indu
ed by S and S n T ,respe
tively. By the de�nition of �ST , the o�er time of a player is the time at whi
h it joins the
onne
ted 
omponent of the root in the 
urrent primal solution. Sin
e T � G(i; S), no player of T isin the same 
onne
ted 
omponent as player i at or before time �(i; S) in E(S). By Lemma 4.13(a),the 
ontributions to player i's 
ost share are exa
tly the same in E(S) and in E(S nT ) until the time�(i; S), at whi
h time player i is dea
tivated in both exe
utions. Hen
e �ST (i; S) = �ST (i; S n T ),as desired.To 
he
k De�nition 3.4(b), �x T � G(i; S) [ (E(i; S) n fig). Observe that players of T mighthave joined player i's 
onne
ted 
omponent long before time �ST (i; S) in E(S). By Lemma 4.13(b),at ea
h time prior to �ST (i; S), player i's 
onne
ted 
omponent in E(SnT ) 
ontains at most as manyplayers as that in E(S), and does not 
ontain the root r. Therefore, by time �ST (i; S), player i hasa

umulated at least as large a 
ost share in E(S n T ) as in E(S). Sin
e player i's 
ost share in thelatter exe
ution is �xed by time �ST (i; S), the �nal 
ost shares satisfy �ST (i; S n T ) � �ST (i; S). �4.3.3 Is A
y
li
ity Automati
?Does every \natural" primal-dual algorithm indu
e an a
y
li
 me
hanism? We next formalize thisquestion and answer it negatively. We restri
t attention to primal-dual algorithms that share thefollowing properties with the ones studied in this paper. First, the primal-dual algorithm maintainsa notion of time. Se
ond, dual variables 
orrespond to non-empty subsets of players, are initiallyzero, and are only in
reased throughout the algorithm. (The DF algorithm for NMUFL 
an beinterpreted as a su
h an algorithm by moving its �nal s
aling step inside its main loop.) Third,at every point in time, every player is 
lassi�ed as either a
tive or ina
tive, and a dual variable isin
reased only if it 
orresponds to at least one a
tive player. Finally, the algorithm should terminatewith feasible primal and dual solutions.Every su
h algorithm indu
es the following 
ost-sharing method and o�er fun
tion. For asubset S of players and a player i 2 S, the o�er time �(i; S) is the latest moment in time at20



whi
h player i is a
tive in the exe
ution of the primal-dual algorithm on the optimization problemindu
ed by S. The 
ost-sharing method � returns the primal solution 
onstru
ted by the primal-dual algorithm and de�nes player i's 
ost share as follows. At the beginning of the primal-dualalgorithm, �(i; S) is initialized to zero. Whenever some dual variable is in
reased in the algorithm,this in
rease is split equally among the a
tive players to whi
h this variable 
orresponds. Thus, atevery moment in time, the sum of the players' 
ost shares equals the sum of the dual variables. We
all M(�; �) the 
anoni
al me
hanism indu
ed by the primal-dual algorithm. The PD, DMV, andAKR-GW me
hanisms are all 
anoni
al in this sense.Not all 
anoni
al me
hanisms are a
y
li
. A Steiner forest 
ost-sharing problem is spe
i�ed bythe same data as a Steiner tree problem, ex
ept that the sour
es U = fs1; : : : ; skg and root r arerepla
ed by a set U = f(s1; t1); : : : ; (sk; tk)g of sour
e-sink pairs (the players). For a subset S � U ,C(S) is de�ned as the minimum 
ost of a subgraph of G that 
ontains at least one path betweenea
h si-ti pair of S. The AKR-GW algorithm of Figure 5 extends to (and was originally designedfor) Steiner forest problems [1, 16℄; the only di�eren
e is that a player is de�ned to be a
tive if andonly if its sour
e and sink lie in di�erent 
onne
ted 
omponents. The next example shows that the
anoni
al me
hanism for this primal-dual algorithm is not a
y
li
.Example 4.15 Consider a Steiner forest 
ost-sharing problem with player set U = f1; 2; : : : ; kgand graph equal to the path of nodes s1; s3; s2; t1; t3; t2. The middle three edges have unit 
ost andthe outer two edges have 
ost 3=2. The �rst player 
orresponds to (s1; t1), the se
ond to (s2; t2),and k � 2 players have sour
es and sinks 
o-lo
ated at s3 and t3, respe
tively. Let �SF denotethe 
ost-sharing method indu
ed by the AKR-GW algorithm. When this algorithm is run with allplayers present, at time t = 1=2, all three of the middle edges will be sele
ted. All players otherthan the �rst two are dea
tivated at this jun
ture. The 
ost share of ea
h of the �rst two players is 1at this time, with a 
ontribution of 1/2 from both the sour
e and the sink of ea
h player. The �naltwo edges are sele
ted at t = 3=4, and the �nal 
ost shares of both players are 11=8, with s1 and t2
ontributing a further 1=4 to their respe
tive 
ost shares, and s2 and t1 ea
h 
ontributing 1=8.Now suppose the se
ond player is absent. The sink t1 is in a singleton 
onne
ted 
omponentuntil t = 1=2, at whi
h point edge (t1; t3) is sele
ted. Similarly, the sour
e s1 is isolated untiltime t = 3=4, when edge (s1; s3) is sele
ted. These 
ontributions to the �rst player's 
ost shareequal 5=4. All other dual variable growth involving s1 or t1 is split equally among the �rst player andthe last k� 2 players; provided k is suÆ
iently large, the 
orresponding 
ontributions to player 1's
ost share are negligible. Thus, �SF (1; U n f2g) � 5=4 < 11=8 = �SF (1; U). By symmetry,�SF (2; U n f1g) � 5=4 < 11=8 = �SF (2; U). This mutual failure of 
ross-monotoni
ity implies thatno o�er fun
tion, 
anoni
al or otherwise, 
an be valid for �SF (re
all Remark 3.8).Remark 4.16 There is, however, a 2-budget-balan
ed and O(log2 k)-approximate Moulin me
h-anism for Steiner forest problems [30℄. This me
hanism is 
anoni
al for a primal-dual algorithmthat is similar to the AKR-GW algorithm but di�erent in an important respe
t: the duration ofa
tivity of ea
h player is independent of the presen
e or absen
e of other players.Chara
terizing the primal-dual algorithms that indu
e a
y
li
 
anoni
al me
hanisms is an in-teresting open problem.5 Improved Approximation GuaranteesThis se
tion proves tight upper and lower bounds on the approximate budget-balan
e (Se
tion 5.1)and eÆ
ien
y (Se
tion 5.2) of the three a
y
li
 me
hanisms de�ned in the previous se
tion.21



5.1 Budget-Balan
e GuaranteesThis se
tion shows how budget-balan
e guarantees for all of the me
hanisms de�ned in Se
tion 4.2follow easily from existing work in the approximation algorithms literature.5.1.1 The PD Me
hanism for NMUFL and Vertex Cover ProblemsWe next show that the PD me
hanism for NMUFL problems is dmax-budget-balan
ed, where dmaxdenotes the maximum number of fa
ilities to whi
h a player 
an be assigned at �nite 
ost. Themore important appli
ation of this me
hanism is to Vertex Cover problems, for whi
h dmax = 2(
f., Figure 3(b)). Extending the well-known analysis of primal-dual Set Cover algorithms impliesthe following guarantee for the PD algorithm.Lemma 5.1 For every NMUFL instan
e, the PD algorithm 
omputes a primal solution fx�qT g(q;T )2C(S)and a dual solution f��i gi2S satisfyingX(q;T )2C(S) 
(q; T )x�qT � dmax �Xi2S ��i :The intuition behind Lemma 5.1 is that every in
rease of a dual variable in the PD algorithm only
ontributes to dual 
onstraints of dmax di�erent fa
ilities, and thus the primal 
ost will only ex
eedthe sum of the dual variables by a dmax fa
tor. The details are essentially the same as those forSet Cover algorithms, whi
h appear in Ho
hbaum [20℄ and Vazirani [43, Chapter 15℄.In addition, the dual solution 
omputed by the PD algorithm is feasible (Lemma 4.1), and hen
ethe 
omputed primal and dual solutions satisfy weak duality (3). As dis
ussed in Se
tion 4.2.1,sin
e the 
ost shares of the PD method are the dual variables 
omputed by the PD algorithm,budget-balan
e of the PD method and me
hanism follow.Theorem 5.2 For every NMUFL 
ost-sharing problem, the PD me
hanism is dmax-budget-balan
ed.Re
all that every Moulin me
hanism for Vertex Cover problems is 
(k1=3)-budget-balan
ed [21℄.Assuming the Unique Games Conje
ture [28℄, the budget-balan
e guarantee in Theorem 5.2 is thebest possible for a polynomial-time me
hanism for small values of dmax [29℄.5.1.2 The DMV Me
hanism for NMUFL and Metri
 UFL ProblemsThe PD me
hanism has poor budget-balan
e in NMUFL problems in whi
h dmax is large. In these
ases, the DMV me
hanism a
hieves a superior performan
e guarantee. In parti
ular, the followinglemma is obvious from Lemma 4.4 and Step 3 of the DF algorithm.Lemma 5.3 For every NMUFL instan
e, the DF algorithm 
omputes a primal solution fx�qT g(q;T )2C(S)and a dual solution f��i gi2S satisfyingX(q;T )2C(S) 
(q; T )x�qT = HjU j �Xi2S ��i :Also, by Lemma 4.5, the dual solution 
omputed by the DF algorithm is feasible. As withTheorem 5.2, budget-balan
e follows.Theorem 5.4 ([10℄) For every NMUFL 
ost-sharing problem with k players, the DMV me
hanismis Hk-budget-balan
ed. 22



Every Moulin me
hanism for NMUFL problems is 
(pk)-budget-balan
ed [21℄. Under standard
omplexity assumptions, the budget-balan
e guarantee in Theorem 5.4 is the best possible forpolynomial-time NMUFL me
hanisms [13℄.After a minor modi�
ation, the DMV me
hanism 
an a
hieve radi
ally better budget-balan
efor the spe
ial 
ase of metri
 UFL problems. In parti
ular, the metri
 DF algorithm is the sameas the DF algorithm, ex
ept dual variables are only s
aled by a fa
tor of 1.861 in Step 3 of thealgorithm. This 
hange 
learly has no e�e
t on the a
y
li
ity of the me
hanism. Jain et al. [22℄proved the following.Lemma 5.5 ([22℄) For every metri
 UFL instan
e, the metri
 DF algorithm terminates with adual feasible solution.Budget-balan
e of the 
anoni
al me
hanism follows.Theorem 5.6 ([10℄) For every metri
 UFL 
ost-sharing problem, the metri
 DMV me
hanism is1:861-budget-balan
ed.No metri
 UFL Moulin me
hanism is better than 3-budget-balan
ed [21℄.Remark 5.7 The budget-balan
e guarantee in Theorem 5.6 
an be improved using a slightlydi�erent me
hanism. Jain et al. [22℄ suggested a modi�
ation of the DF algorithm for metri
 UFLand proved that s
aling its dual variables by a fa
tor of 1.61 is enough to re
over dual feasibility.The proof of Theorems 4.11 and 4.12 
arries over to show that the 
anoni
al me
hanism indu
edby this re�ned algorithm is a
y
li
. As in Theorem 5.6, this me
hanism is 1.61-budget-balan
ed.5.1.3 The AKR-GW Me
hanism for ST ProblemsFinally, we argue that the AKR-GW algorithm is 2-budget-balan
ed. This fa
t nearly follows fromearlier work [1, 16℄; the only 
ompli
ation arises from the la
k of dual variables for 
omponents that
ontain the root vertex. Modifying the proof in [16℄ (details omitted) yields the following result.Theorem 5.8 For every ST 
ost-sharing problem, the AKR-GW me
hanism is 2-budget-balan
ed.The budget-balan
e guarantee in Theorem 5.8 mat
hes the lower bound known for Moulinme
hanisms [30℄. The �rst 2-budget-balan
ed Moulin me
hanism for ST problems was given inJain and Vazirani [23℄. An interesting open question is whether or not there are polynomial-time�-budget-balan
ed a
y
li
 me
hanisms for ST problems with � < 2. Su
h a me
hanism 
annot bebased dire
tly on the linear relaxation proposed in Se
tion 4.2.3, whi
h 
an have an integrality gaparbitrarily 
lose to 2 [43, Example 22.10℄.5.2 EÆ
ien
y GuaranteesThis se
tion proves mat
hing upper and lower bounds on the approximate eÆ
ien
y a
hieved bythe three me
hanisms de�ned in Se
tion 4.2. Re
all from Se
tion 2.2 that the so
ial 
ost of ame
hanismM for an out
ome S with valuation pro�le v is de�ned as CM (S)+Pi=2S vi, where CM isthe 
ost of the feasible solution produ
ed by the me
hanism, and that a me
hanism is �-approximateif its so
ial 
ost is always at most � times the minimum-possible (1).
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5.2.1 The PD and DMV Me
hanisms for NMUFL ProblemsWe obtain eÆ
ien
y guarantees for the PD and DMV me
hanisms for NMUFL problems as a
onsequen
e of the following more general result.Theorem 5.9 Let M(�; �) be a �-budget-balan
ed a
y
li
 me
hanism for a 
ost-sharing problem Cwith universe U of k players su
h that:(P1) for some 
onstant 
 > 0, �(i; S) = 
 � �(i; S) for all S � U and i 2 S;(P2) for every S � U and T � S, Xi2T �(i; S) � C(T ): (6)Then, M(�; �) is (Hk + �)-approximate.Property (P1) states that o�er times are proportional to 
ost shares. Property (P2) 
an be in-terpreted as a \stability" property in the spirit of the 
ore (see e.g. [38℄), demanding that ea
h
oalition T has no in
entive to se
ede from the me
hanism and seek servi
e elsewhere at 
ost C(T ).Theorem 5.9 has immediate impli
ations for the PD and DMV me
hanisms.Corollary 5.10 For every NMUFL 
ost-sharing problem, the PD me
hanism is O(dmax + log k)-approximate, where dmax is the largest number of fa
ilities to whi
h a demand 
an be assigned at�nite 
ost.Proof: To 
he
k 
ondition (6), �x a NMUFL problem with universe U and subsets T � S � U .Let �PD denote the PD 
ost-sharing method. The 
ost shares f�PD(i; S)gi2S form a feasiblesolution to the dual program D(S) of Se
tion 4.2.1 (Lemma 4.1). The subset of 
ost sharesf�PD(i; S)gi2T form a feasible solution to the dual program D(T ). Condition (6) follows fromweak duality.The 
orollary is now immediate from Lemma 4.10(a), Theorem 5.2, and Theorem 5.9. �For example, for Vertex Cover problems, the PD me
hanism is O(log k)-approximate. EveryMoulin me
hanism for su
h problems is 
(k1=3)-approximate [21, 40℄.Corollary 5.11 For every NMUFL 
ost-sharing problem, the DMV me
hanism is O(log k)-approximate.Proof: Immediate from Lemma 4.5, Lemma 4.10(b), Theorem 5.4, and Theorem 5.9. �Every Moulin me
hanism for NMUFL problems is 
(pk)-approximate [21, 40℄.Remark 5.12 Corollary 5.11 also applies to the 1.61-budget-balan
ed metri
 UFL me
hanismdis
ussed in Remark 5.7.Our proof of Theorem 5.9 depends on two lemmas. The �rst upper bounds the servi
e 
ostin
urred by the me
hanism in terms of the servi
e 
ost and part of the ex
luded valuations of anoptimal solution.
24



Lemma 5.13 Let M =M(�; �) be a �-budget-balan
ed a
y
li
 me
hanism for a 
ost-sharing prob-lem C with universe U that satis�es property (P2) of Theorem 5.9. Let v be a valuation pro�lefor U , S the out
ome of M on input v, and S� the out
ome with optimal so
ial 
ost. Then,CM(S) � � �0�C(S�) + Xi2SnS� vi1A :Proof: Sin
e M is �-budget-balan
ed,CM (S) � � �0� Xi2S\S� �(i; S) + Xi2SnS� �(i; S)1A : (7)By property (P2) and sin
e C is nonde
reasing,Xi2S\S� �(i; S) � C(S \ S�) � C(S�): (8)By individual rationality (Proposition 3.9(d)), �(i; S) � vi for every i 2 S nS�; 
ombining this withinequalities (7) and (8) proves the lemma. �The se
ond lemma upper bounds the ex
luded valuation of the me
hanism in terms of theservi
e 
ost of an optimal solution.Lemma 5.14 Let M = M(�; �) be an a
y
li
 me
hanism for a 
ost-sharing problem C with uni-verse U of k players that satis�es properties (P1) and (P2) of Theorem 5.9. Let v be a valuationpro�le for U , S the out
ome of M on input v, and S� the out
ome with optimal so
ial 
ost. Then,Xi2S�nS vi � Hk � C(S�):Proof: Let ` = jS� n Sj and rename the players so that player i is the ith player of S� n S to bedeleted by M on input v. Let Si denote the set of players from whi
h i is deleted by M . We provethat �(i; Si) � C(S�)`� i+ 1 (9)for every i 2 f1; 2; : : : ; `g. Player i's deletion from Si implies that vi < �(i; Si); summing (9) overall players of S� n S then yields the lemma.Fix a player i of S� n S. We �rst 
laim that, when player i is deleted, its o�er time �(i; Si) isminimum among the remaining players fi; i + 1; : : : ; `g of S� n S. If not, there is a player j > i ofS� n S with �(j; Si) < �(i; Si). Sin
e i is o�ered a pri
e in the iteration it is deleted, Corollary 3.11implies that L(i; Si) � S. But j 2 L(i; Si) \ (S� n S), a 
ontradi
tion.This 
laim and property (P1) imply that, when player i is deleted, its 
ost share �(i; Si) isminimum among the remaining players of S�nS. Property (P2) and the fa
t that C is nonde
reasinggive a bound on the sum of the 
ost shares of these players:X̀j=i �(j; Si) � C(fi; i+ 1; : : : ; `g) � C(S�);25



sin
e player i's 
ost share is the smallest of the (`� i+1) remaining players of S� nS, it is at mostC(S�)=(`� i+ 1). This establishes (9) and 
ompletes the proof. �Theorem 5.9 now follows easily.Proof of Theorem 5.9: Fix a 
ost-sharing problem with universe U and a valuation pro�le v for U .Applying Lemmas 5.13 and 5.14, we upper bound the so
ial 
ost in
urred by M in terms of theoptimal so
ial 
ost as follows:CM (S) +Xi=2S vi � � �0�C(S�) + Xi2SnS� vi1A+Hk � C(S�) + Xi2Un(S[S�) vi� (Hk + �) �0�C(S�) + Xi2UnS� vi1A :�Remark 5.15 Lemma 5.14 and Theorem 5.9 
ontinue to hold if property (P1) is repla
ed by theweaker assumption that, for every subset S � U of players and i; j 2 S, �(i; S) < �(j; S) if andonly if �(i; S) < �(j; S).Our �nal result in this se
tion shows that the logarithmi
 fa
tor in Theorem 5.9 
annot beremoved: even for extremely simple 
ost-sharing problems, every O(1)-budget-balan
ed a
y
li
me
hanism is 
(log k)-approximate.Example 5.16 (Publi
 ex
ludable good) In a publi
 ex
ludable good 
ost-sharing problem, C(;) =0 and C(S) = 1 for every nonempty set S. This problem 
an be interpreted as a metri
 UFL prob-lem with all players 
o-lo
ated with a single fa
ility that has unit opening 
ost. It 
an also beinterpreted as a Vertex Cover problem on a star graph, in whi
h the 
enter has unit weight andthe other verti
es have in�nite weight.Theorem 5.17 Every �-budget-balan
ed a
y
li
 me
hanism for a publi
 ex
ludable good problemwith k players is at least (Hk=�)-approximate.Proof: Fix a universe U of k players and a �-budget-balan
ed a
y
li
 me
hanism M(�; �). We �rst
laim the following: for every nonempty set S � U , there is a player with minimum o�er time �(i; S)and 
ost share �(i; S) � 1=�jSj. In proof, let T � S denote the players with o�er time stri
tlylarger than the minimum. Sin
e � is �-budget-balan
ed, Pi2SnT �(i; S n T ) � C(S n T )=� = 1=�and hen
e �(i; S n T ) � 1=�jS n T j � 1=�jSj for some player i 2 S n T . Invoking De�nition 3.4(a)shows that �(i; S) = �(i; S n T ) and 
ompletes the 
laim.Using this 
laim, we 
an indu
tively rename the players of U as follows. For i = 1; 2; : : : ; k,player i is a player of Si � U n f1; 2; : : : ; i� 1g that has minimum o�er time �(�; Si) and 
ost share�(�; Si) at least 1=�(k � i+ 1). Now set the valuation vi of player i to 1=�(k � i+ 1)� � for small� > 0. The optimal so
ial 
ost is at most 1. Sin
e player i has minimum o�er time in Si andvi < �(i; Si) for every i, the me
hanism M outputs the empty allo
ation and in
urs so
ial 
ostPki=1 vi � Hk=�. �Very re
ently, Dobzinski et al. [11℄ extended this lower bound to all strategyproof me
hanisms:every O(1)-budget-balan
ed randomized or deterministi
 SP me
hanism is 
(log k)-approximatefor publi
 ex
ludable good problems. 26



5.2.2 The AKR-GW Me
hanism for ST ProblemsWe now establish the following eÆ
ien
y guarantee for the AKR-GW me
hanism.Theorem 5.18 For every ST 
ost-sharing problem, the AKR-GWme
hanism is O(log2 k)-approximate.Lemma 5.14 does not apply to this me
hanism be
ause its 
ost shares need not be proportionalto its o�er times. However, the me
hanism satis�es 
ondition (6), enabling the appli
ation ofLemma 5.13.Lemma 5.19 For every ST 
ost fun
tion, the AKR-GW 
ost-sharing method �ST satis�es prop-erty (P2) of Theorem 5.9.Proof: By the de�nition of �ST (5),Xi2T �ST (i; S) � XA2C(T ) y�A;where fy�AgA2C(S) is the dual feasible solution produ
ed by the AKR-GW algorithm for D(S)�ST .Sin
e fy�AgA2C(T ) is feasible for D(T )� ST , the lemma follows from weak duality. �We require a surrogate for Lemma 5.14|an upper bound on the ex
luded valuationsPi2S�nS vi.We a

omplish this by a \redu
tion" to another ST 
ost-sharing method designed by Jain and Vazi-rani [23℄. We omit a detailed des
ription of the method, and note only that it is 
ross-monotoni
 [23,Theorem 3℄ and 
anoni
al in the sense of Se
tion 4.3.3 for a primal-dual algorithm of Edmonds [12℄.Roughgarden and Sundararajan [40, Theorem 4.5℄ proved that the Jain-Vazirani method �JVis O(log2 k)-summable, whi
h has the following 
onsequen
e.Proposition 5.20 ([40℄) There is a 
onstant a > 0 su
h that the following holds: for every Steinertree problem C with universe U of k players, subset S � U , and ordering � of the players,jSjXi=1 �JV (i; Si) � (a log2 k) � C(U);where i and Si denote the ith player of S and the set of all players of U that follow i (in
luding iitself) with respe
t to �.We also use the fa
t that the JV method �JV dominates the AKR-GW method �ST in thefollowing sense.Lemma 5.21 For every ST 
ost-sharing problem with universe U , subset S � U , and player i 2 S,�JV (i; S) � �ST (i; S)=2.Lemma 5.21 follows from a monotoni
ity result similar to Lemma 4.13(b). (The fa
tor of 2 arisesbe
ause of a s
aling step required to obtain the method �JV from the dual variables in Edmonds'salgorithm [12℄.)Our proxy for Lemma 5.14 is as follows.Lemma 5.22 Fix a Steiner tree problem C with universe U of k players and a valuation pro�le vfor U . Let S be the out
ome of the AKR-GW me
hanism on input v and S� the out
ome withoptimal so
ial 
ost. Then, Xi2S�nS vi = O(log2 k) � C(S�):27



Proof: Let � denote the order in whi
h players are deleted by the AKR-GW me
hanism, withplayers of S appearing last in an arbitrary relative order. De�ne `, i, and Si as in the proof ofLemma 5.14. We haveXi2S�nS vi < X̀i=1 �ST (i; Si) � 2X̀i=1 �JV (i; Si) � 2X̀i=1 �JV (i; Si \ S�) = O(log2 k) � C(S�);the �rst inequality follows from the de�nition of the AKR-GW me
hanism, the se
ond fromLemma 5.21, the third from the 
ross-monotoni
ity of �JV , and the �nal bound from applyingProposition 5.20 to the ST 
ost-sharing problem indu
ed by S� and to the subset S� n S. �Proof of Theorem 5.18: Identi
al to the proof of Theorem 5.9, with Lemma 5.14 repla
ed byLemma 5.22. �Adapting an example from [40℄ shows that the bound in Theorem 5.18 is tight, up to a 
onstantfa
tor. An interesting open question is whether or not O(1)-budget-balan
ed, polynomial-timea
y
li
 me
hanisms 
an a
hieve o(log2 k)-approximate eÆ
ien
y for ST 
ost-sharing problems. Fullbudget-balan
e and O(log k)-approximate eÆ
ien
y are possible if the polynomial-time 
onstraintis dropped [2℄.5.2.3 A
y
li
 Me
hanisms and SummabilityThe generi
 methods known for deriving eÆ
ien
y guarantees for Moulin me
hanisms do not seemto 
arry over to a
y
li
 me
hanisms. In more detail, re
all that a 
ost-sharing method � is �-summable [40℄ for a 
ost-fun
tion C if, for every ordering � of the players of U and every subset S �U , jSjX̀=1 �(i`; S`) � � � C(S) (10)where S` and i` denote the set of the �rst ` players of S and the `th player of S (with respe
t to�), respe
tively. Intuitively, the ordering � represents the reversal of the order in whi
h playersare deleted, and �(i`; S`) is the worst-
ase valuation that player i` 
ould have possessed, given thatit was deleted from the set S`. For Moulin me
hanisms, summability 
hara
terizes approximateeÆ
ien
y in the following sense: if M is a Moulin me
hanism based on an �-summable, �-budget-balan
ed 
ost-sharing method, then it is �(�+ �)-approximate [40℄.Unfortunately, the summability of a 
ost-sharing method � does not imply upper or lowerbounds on the approximate eÆ
ien
y of an a
y
li
 me
hanism 
onstru
ted from �. Summabilitydoes not automati
ally lead to a valid lower bound on approximate eÆ
ien
y be
ause, dependingon the asso
iated o�er fun
tion, not all orderings of the players 
orrespond to possible deletionsequen
es. It does not automati
ally give a valid upper bound be
ause it only treats deletionsequen
es that result in the empty set. For 
ross-monotoni
 
ost-sharing methods, worst-
asedeletion sequen
es are, essentially without loss of generality, of this form. For a non-
ross-monotoni
method, this need not be the 
ase; intuitively, the presen
e of additional undeleted players 
anin
rease the left-hand side of (10).The de�nition of summability 
an be re�ned to handle both of these issues, resulting in a
hara
terization of the approximate eÆ
ien
y of an a
y
li
 me
hanism. However, the resultingexpression is too unwieldy to be evaluated easily for non-trivial me
hanisms. An important openproblem is to obtain useful and widely appli
able upper or lower bounds on the approximateeÆ
ien
y of an a
y
li
 me
hanism in terms of its 
ost-sharing method and o�er fun
tion.28



6 General Demand Cost-Sharing ProblemsWe now extend a
y
li
 me
hanisms to general demand 
ost-sharing problems, in whi
h players
an be allo
ated one of several \levels of servi
e". The next se
tion applies this framework tofault-tolerant fa
ility lo
ation problems.6.1 PreliminariesIn a general demand 
ost-sharing problem, there is a universe U = f1; 2; : : : ; kg of players. Ea
hplayer i has a publi
ly known maximum level of servi
e Ri, a positive integer. An allo
ation S isnow a ve
tor (s1; : : : ; sk) of nonnegative integers with si � Ri for every i, whi
h des
ribes the levelof servi
e o�ered to ea
h player. The 
ost fun
tion C des
ribes the 
ost in
urred by the me
hanismas a fun
tion of the allo
ation S. We assume that the 
ost of the all-zero ve
tor is zero, and thatthe 
ost is nonde
reasing in ea
h 
omponent. We also assume that every player prefers higher levelsof servi
e, but obtains diminishing returns. In other words, the private valuation of a player i is anonnegative ve
tor vi, where vi(j) denotes the marginal value of level j (over level j�1) to player i,and we assume that vi(j) is nonin
reasing in j. A player's bid bi = (bi(1); : : : ; bi(Ri)) is a ve
tor ofannoun
ed marginal values, whi
h must also be nonin
reasing in the level of servi
e. Given a bidve
tor from ea
h player, a me
hanism must determine an allo
ation S, a feasible solution to theoptimization problem indu
ed by S, and a pri
e pi to 
harge ea
h player. The utility of the playeris then ui(S; pi) = vi(si) � pi, where vi(si) = P1�j�si vi(j) denotes the total value the player hasfor the allo
ation.Example 6.1 (FTUFL) A fault-tolerant un
apa
itated fa
ility lo
ation (FTUFL) 
ost fun
tion isindu
ed by a UFL instan
e (Example 2.1)|demands (players) U , fa
ilities F with opening 
osts f ,
onne
tion 
osts 
|and also a requirement ve
tor R, indexed by U . The value Ri is the maximumnumber of distin
t open fa
ilities to whi
h a player might be 
onne
ted; in UFL, Ri = 1 for everyplayer. The 
ost C(S) is the 
ost of the optimal way to open fa
ilities and 
onne
t ea
h demand ito si distin
t open fa
ilities. For example, if S = (2; 1; 0) in the instan
e shown in Figure 1, thenthe optimal solution is to open both fa
ilities and 
onne
t ea
h player i to the nearest si fa
ilities.The 
ost of the solution is 17=2. A valuation vi(1); : : : ; vi(Ri) for a player i in an FTUFL problemdes
ribes, for ea
h level of servi
e j, the additional value i derives from being 
onne
ted to j fa
ilitiesover j � 1 fa
ilities.Our obje
tives of in
entive-
ompatibility, budget-balan
e, and e
onomi
 eÆ
ien
y extend togeneral demand problems in a straightforward way. The de�nition of SP and WGSP me
hanismsare identi
al to those in Se
tion 2.1, with player bids and utilities de�ned as above. The de�nitionof (approximate) budget-balan
e requires no modi�
ation. As in the binary demand 
ase, theso
ial 
ost in
urred by a me
hanism M is the servi
e 
ost CM (S) in
urred plus the total ex
ludedvaluation: Pi2UPj>si vi(j). The optimal so
ial 
ost is nowminS�U 24C(S) +Xi2U RiXj=si+1 vi(j)35 :As before, a me
hanism is �-approximate if its so
ial 
ost is always at most � times the minimumpossible.A 
ost-sharing method � for a general demand problem takes as input an allo
ation S and returnsa feasible solution for the optimization problem indu
ed by S, as well as a 
ost share �(i; j; S) for29



ea
h player i 2 U and j � si. The total 
ost share assigned to player i is Pj�si �(i; j; S). We
all a 
ost-sharing method demand-monotone if, for every player i and allo
ation S, �(i; j; S) isnonde
reasing in j 2 f1; : : : ; sig. Finally, an o�er fun
tion � assigns an o�er time �(i; j; S) for ea
hi 2 U and j � si.6.2 A
y
li
 Me
hanisms for General Demand ProblemsAs in the binary demand 
ase, a 
ost-sharing method and an o�er fun
tion together de�ne ame
hanism that simulates an iterative au
tion.De�nition 6.2 Let U be a universe of players, where player i has maximum level of servi
e Ri.Let � and � denote a 
ost-sharing method and an o�er fun
tion de�ned on the possible allo
ations.The me
hanism M(�; �) indu
ed by � and � is the following.1. Colle
t a bid bi from ea
h player i 2 U .2. Initialize S := (R1; : : : ; Rk).3. If bi(j) � �(i; j; S) for every i 2 U and j � si, then halt. Output the allo
ation S, the feasiblesolution 
onstru
ted by �, and 
harge ea
h player i 2 U the pri
e pi =Psij=1 �(i; j; S).4. Among all players i 2 U and levels j 2 f1; : : : ; sig with bi(j) < �(i; j; S), let (i�; j�) be onewith minimum �(i; j; S). (Break ties arbitrarily.)5. Set si� = j� � 1 and return to Step 3.As in Proposition 3.9, the me
hanism M inherits the budget-balan
e guarantee of its underlying
ost-sharing method. Also, if � and � are polynomial-time algorithms, then so is M(�; �). Theme
hanism 
learly has no positive transfers, and it satis�es a strengthened form of individualrationality. Pre
isely, the marginal pri
e pi(j) 
harged to a player i for level of servi
e j by su
h ame
hanism M(�; �) in an out
ome S is de�ned as �(i; j; S) if j � si and 0 if j > si.Proposition 6.3 Let M = M(�; �) be a general demand me
hanism indu
ed by the 
ost-sharingmethod � and o�er fun
tion � . For every bid ve
tor b, the me
hanism M 
omputes an allo
ation Sand marginal pri
es p su
h that, for every player i and level of servi
e j: (i) if j � si, thenpi(j) � bi(j); and (ii) if j > si, then pi(j) = 0.Individual rationality in the standard sense (Se
tion 2.1) follows from Proposition 6.3 by summingmarginal pri
es and bids over the servi
e levels.The next de�nition identi�es 
onditions on a 
ost-sharing method and o�er fun
tion so that theindu
ed general demand me
hanism is truthful (and even WGSP). Call a set of pairs P = f(i; j)gof positive integers 
losed if (i; j) 2 P whenever (i; j + 1) 2 P . Allo
ations S are de�ned asnonnegative ve
tors but 
orrespond to 
losed sets of pairs in a natural way, with a pair (i; j)indi
ating that player i re
eives level of servi
e at least j. We use these two representations ofallo
ations inter
hangeably. For an allo
ation S and (i; j) 2 S, de�ne the sets L(i; j; S), E(i; j; S),and G(i; j; S) by f(i0; j0) 2 S : �(i0; j0; S) < �(i; j; S)g, f(i0; j0) 2 S : �(i0; j0; S) = �(i; j; S)g, andf(i0; j0) 2 S : �(i0; j0; S) > �(i; j; S)g, respe
tively.De�nition 6.4 Let � and � be a 
ost-sharing method and an o�er fun
tion, respe
tively, de�nedon a universe U in whi
h player i has maximum level of servi
e Ri. The fun
tion � is valid for � ifthe following three properties hold for every allo
ation S and player i 2 U :30



(a) for every j � si and T � G(i; j; S) with S n T 
losed, �(i; j; S n T ) = �(i; j; S);(b) for every j � si and T � G(i; j; S) [ (E(i; j; S) n f(i; j)g) with S n T 
losed, �(i; j; S n T ) ��(i; j; S);(
) o�er times �(i; j; S) are stri
tly in
reasing in j.The �rst two 
onditions are natural generalizations of those in De�nition 3.4. The general demandsetting also ne
essitates the third 
ondition.Remark 6.5 De�nition 6.4(
) 
an be relaxed so that o�er times are only nonde
reasing in j,provided ties in Step 4 in De�nition 6.2 are broken in favor of higher servi
e levels.De�nition 6.6 A general demand a
y
li
 me
hanism is a me
hanismM(�; �) indu
ed by a demand-monotone 
ost-sharing method � and an o�er fun
tion � that is valid for �.We then have the following in
entive-
ompatibility guarantee.Theorem 6.7 Every general demand a
y
li
 me
hanism is WGSP.To prove Theorem 6.7, we require analogues of Lemmas 3.10 and 3.12. We say that player iis o�ered the marginal pri
e pi(j) in iteration ` of a general demand a
y
li
 me
hanism M(�; �)if the following 
onditions hold: �rst, if S is the 
urrent allo
ation at the beginning of the `thiteration, then (i; j) 2 S; se
ond, if player i�'s servi
e level is de
reased to j� � 1 in this iteration,then �(i; j; S) � �(i�; j�; S); third, the pri
e pi(j) is the 
ost share �(i; j; S). The �rst lemma thenstates that, in an a
y
li
 me
hanism, the marginal pri
e of a player-servi
e level pair (i; j) is �xedon
e a marginal pri
e is o�ered for some pair with a subsequent o�er time.Lemma 6.8 Suppose an a
y
li
 me
hanism M(�; �) o�ers marginal pri
es to players i and i0for servi
e levels j and j0 in an iteration with 
urrent allo
ation S, and �(i; j; S) < �(i0; j0; S).Then �(i; j; S) is the only marginal pri
e o�ered to i for servi
e level j in subsequent iterations.The se
ond lemma proves that marginal pri
es only in
rease throughout the exe
ution of ana
y
li
 me
hanism.Lemma 6.9 If a general demand a
y
li
 me
hanismM(�; �) o�ers a player i the marginal pri
e p1i (j)in some iteration and the marginal pri
e p2i (j) in a subsequent iteration, then p1i (j) � p2i (j).The proofs of Lemmas 6.8 and 6.9 rely only on parts (a) and (b) of De�nition 6.4 and are thesame as those of Lemmas 3.10 and 3.12. We 
an now prove Theorem 6.7.Proof of Theorem 6.7: Let M(�; �) be a general demand a
y
li
 me
hanism with universe U andve
tor R of maximum levels of servi
e. Fix a 
oalition T � U , a valuation vi and bid bi for ea
hplayer i 2 T , and bids for the players of U n T . Let Ev and Eb denote the exe
utions of M in whi
hea
h player i 2 T bids vi and bi, respe
tively. If these exe
utions are identi
al, they terminatewith equal allo
ations and pri
es, and every player obtains equal utility in both. So 
onsider the�rst iteration in whi
h Ev and Eb di�er, ne
essarily be
ause player i 2 T is o�ered a marginal pri
efor some servi
e level j that lies between bi(j) and vi(j). Sin
e o�er times are stri
tly in
reasingwith the servi
e level (De�nition 6.4(
)), Lemma 6.8 implies that the marginal pri
es o�ered to ifor servi
e levels 1 through j � 1 are �xed at their 
urrent values throughout the remainder of Ev31



and Eb. Therefore, player i derives the same utility from these servi
e levels in both exe
utions.For servi
e levels j and above, we 
onsider two 
ases.Case 1: Suppose bi(j) > vi(j). In the �rst iteration in whi
h Ev and Eb di�er, player i is o�ereda marginal pri
e pi(j) 2 (vi(j); bi(j)℄. Sin
e o�ered marginal pri
es only in
rease (Lemma 6.9), atthis or some subsequent iteration in Ev, player i's servi
e level will be redu
ed to j�1 or less. Thusin Ev, player i re
eives zero utility for servi
e levels j and above. In Eb, sin
e o�ered marginal pri
esfor level j only in
rease (Lemma 6.9), and sin
e � is demand-monotone (De�nition 6.6), player iis 
harged at least pi(j) for ea
h servi
e level j and above. By assumption, player i's marginalvaluations are de
reasing with servi
e level, and hen
e i re
eives nonpositive utility from servi
elevels j and above in Eb.Case 2: Suppose bi(j) < vi(j). In the �rst iteration in whi
h Ev and Eb di�er, player i is o�ered amarginal pri
e pi(j) 2 (bi(j); vi(j)℄. Arguing as in Case 1, player i re
eives zero utility from servi
elevels j and above in Eb. By Proposition 6.3, player i re
eives nonnegative utility from these servi
elevels in Ev.In both 
ases, player i's total utility in Ev is at least that in Eb, so the proof is 
omplete. �7 Fault Tolerant Fa
ility Lo
ationThis se
tion applies the me
hanism design framework of the previous se
tion to FTUFL problems(Example 6.1). Our main result is as follows.Theorem 7.1 There is an a
y
li
 me
hanism for non-metri
 FTUFL that is Hk-budget-balan
edand (2Hk +HRmax)-approximate, where k is the number of players and Rmax = maxi2U Ri is thehighest level of servi
e that 
an be o�ered to a player.We prove Theorem 7.1 by extending the DMV me
hanism of Se
tion 4.2.2. Essentially the sameme
hanism was studied in [10℄.We derive a demand-monotone 
ost-sharing method and an o�er fun
tion for FTUFL using ageneralization of the DF algorithm (Se
tion 4.2.2), whi
h we 
all the FTDF algorithm. Re
all fromRemark 4.8 that the DF algorithm 
an be viewed as a greedy algorithm: at ea
h step, it 
hooses astar (q; T ) 
omprising a
tive players T with minimum 
ost e�e
tiveness, where the 
ost e�e
tivenessof a star (q; T ) is (Pi2T 
(q; i))=jT j if fa
ility q is already open and (fq+Pi2T 
(q; i))=jT j otherwise.The FTDF algorithm, when supplied with a UFL instan
e and a nonnegative requirement si forea
h player i 2 U , repeatedly 
hooses the star (q; T ) with minimum 
ost e�e
tiveness, where T isa set of players that ea
h require at least one further 
onne
tion, until ea
h player i is 
onne
tedto si fa
ilities. Of 
ourse, a player i 
annot parti
ipate in a star (q; T ) if i is already 
onne
ted to q.We de�ne the o�er time �FTDF (i; j; S) to be the 
ost e�e
tiveness of the jth star in whi
h player iparti
ipates, and the 
ost share �FTDF (i; j; S) to be this same value, s
aled down by an HjU j fa
tor.We 
all the indu
ed me
hanism M(�FTDF ; �FTDF ) the FTDMV me
hanism.A variant on an argument of Rajagopolan and Vazirani [39℄, also des
ribed in Vazirani [43,Se
tion 13.2℄, shows that the FTDF algorithm 
an be interpreted as a dual �tting algorithm. Inparti
ular, the (s
aled) 
ost shares 
an be mapped to a dual feasible solution to a FTUFL linearprogramming relaxation given by Jain and Vazirani [26℄. Sin
e the sum of the 
ost shares assignedby the method �FTDF equals the 
ost of the feasible solution that it 
onstru
ts, divided by HjU j,budget-balan
e of the FTDMV me
hanism follows.32



Lemma 7.2 For every non-metri
 FTUFL 
ost-sharing problem with k players, the FTDMV me
h-anism is Hk-budget-balan
ed.Next we dis
uss a
y
li
ity.Lemma 7.3 The FTDMV me
hanism is a
y
li
.Proof: First 
onsider two iterations, not ne
essarily 
onse
utive, of the FTDF algorithm. Let (q1; T1)and (q2; T2) denote the stars 
hosen in these iterations. Every player a
tive in the later iterationwas a
tive in the earlier one, and every player already 
onne
ted to q2 in the earlier one is also
onne
ted to q2 prior to the later one. Thus, the star (q2; T2) was eligible for sele
tion in the earlieriteration. That (q1; T1) was sele
ted instead implies at least one of the following two statements:(i) the 
ost e�e
tiveness of (q1; T1) is at most that of (q2; T2); (ii) q1 = q2. Sin
e a player i 
anonly parti
ipate in a single star with a given fa
ility, the 
ost e�e
tiveness of the stars in whi
h iparti
ipates is nonde
reasing throughout the FTDF algorithm.This fa
t immediately implies that the o�er fun
tion �FTDF satis�es the relaxation of De�-nition 6.4(
) dis
ussed in Remark 6.5. Sin
e 
ost shares are proportional to o�er times, it alsoimmediately implies that the 
ost-sharing method �FTDF is demand-monotone. Finally, a varianton the proof of Theorem 4.11 shows that parts (a) and (b) of De�nition 6.4 hold, whi
h 
ompletesthe proof of a
y
li
ity. �We establish an eÆ
ien
y guarantee for the FTDMV me
hanism via the following extension ofTheorem 5.9 to general demand me
hanisms.Theorem 7.4 Let C be a general demand 
ost-sharing problem with universe U of k players andmaximum o�er level Rmax. Let M(�; �) be a �-budget-balan
ed a
y
li
 me
hanism for C su
h that:(P1) for some 
onstant 
 > 0, �(i; j; S) = 
 ��(i; j; S) for every requirement ve
tor S, player i 2 U ,and servi
e level j � si;(P2) for all allo
ation ve
tors S; T with ti � si � Ri for all i 2 U ,Xi2U X1�j�ti �(i; j; S) � C(T ):Then, M(�; �) is (Hk +HRmax + �)-approximate.Theorem 7.4 follows easily from analogues of Lemmas 5.13 and 5.14 for general demand me
hanisms,where the Hk bound in Lemma 5.14 is repla
ed by Hk +HRmax .Corollary 7.5 For every non-metri
 FTUFL 
ost-sharing problem with k players and maximumo�er level Rmax, the FTDMV me
hanism is (2Hk +HRmax)-approximate.Proof Sket
h: The FTDMV me
hanism 
learly satis�es property (P1) of Theorem 7.4. As inCorollary 5.10, it satis�es property (P2) be
ause it employs 
ost shares that 
an be mapped to adual feasible solution of a suitably stru
tured linear programming relaxation [26, 39℄. The 
orollarynow follows from Lemma 7.2 and Theorem 7.4. �Theorem 7.1 follows immediately from Lemma 7.2, Lemma 7.3, and Corollary 7.5.33



Remark 7.6 Can Theorem 7.1 be improved for metri
 instan
es of FTUFL? One approa
h wouldbe to prove that, for metri
 instan
es, s
aling the o�er times of the FTDF algorithm by a fa
tor of� � HjU j produ
es a budget-balan
ed 
ost-sharing method (
f., Theorem 5.6). For the spe
ial 
aseof uniform metri
 FTUFL instan
es, where all players have a 
ommon 
onne
tivity requirement,Jain et al. [22, 32℄ proved that s
aling o�er times by a 1.81 fa
tor is enough. For non-uniformmetri
 instan
es, whi
h are unavoidable in a me
hanism design 
ontext, no upper bound on thiss
aling fa
tor smaller than Hk is known.On the other hand, we 
an use a di�erent me
hanism to obtain better budget-balan
e andeÆ
ien
y guarantees when the maximum o�er level Rmax is small. Spe
i�
ally, the binary demandmetri
 UFL 
ost-sharing method of P�al and Tardos [36℄ 
an be invoked iteratively to de�ne anO(R2max)-budget-balan
ed, O(R2max + log k)-approximate a
y
li
 me
hanism for metri
 FTUFLproblems. The details are te
hni
al and deferred to a future paper. Very re
ently, Bleis
hwitz andS
hoppmann [3℄ modi�ed the P�al-Tardos method so that applying it iteratively dire
tly gives anO(Rmax)-budget-balan
ed and O(Rmax � log k)-approximate metri
 FTUFL me
hanism that is alsoGSP.8 Con
lusions and Open ProblemsWe developed a framework for designing approximately budget-balan
ed and eÆ
ient 
ost-sharingme
hanisms that subsumes previous work of Moulin [34℄. We demonstrated its appli
ability byshowing how well-known algorithms naturally indu
e me
hanisms with performan
e guaranteesprovably superior to those a
hievable via Moulin me
hanisms. Our work suggests a large numberof dire
tions for future resear
h; we list some of them below, loosely organized by topi
.8.1 Better Approximation GuaranteesOne natural goal is to improve upon the performan
e guarantees a
hieved by the me
hanismspresented in this paper. Some 
on
rete suggestions follow.1. Is there a polynomial-time, �-budget-balan
ed a
y
li
 me
hanism for Steiner tree 
ost-sharingproblems with � < 2 and reasonable (e.g., O(logd k) for some 
onstant d) approximate eÆ-
ien
y?2. Is there a polynomial-time, O(1)-budget-balan
ed, o(log2 k)-approximate a
y
li
 me
hanismfor Steiner tree 
ost-sharing problems?3. Metri
 UFL algorithms with approximation ratio less than 1.61 are known [6, 33℄. Can thesebe used to obtain polynomial-time a
y
li
 me
hanisms with 
omparable budget-balan
e andreasonable approximate eÆ
ien
y?A re
ent result by Bleis
hwitz, Monien, and S
hoppmann [2℄ gives a
y
li
 me
hanisms for theabove problems that are fully budget-balan
ed and O(log k)-approximate, but that do not run inpolynomial time (unless P = NP ).Sin
e a
y
li
ity is only the means to the end of in
entive-
ompatibility, we 
an ask the samequestions for wider 
lasses of me
hanisms.4. Answer questions 1{3 with \a
y
li
 me
hanism" repla
ed by \WGSP me
hanism" and by\SP me
hanism". 34



The quest for better performan
e guarantees 
ould be aided by general proof te
hniques. ForMoulin me
hanisms, upper bounding approximate eÆ
ien
y redu
es to upper bounding the summa-bility of the underlying 
ost-sharing method (see Se
tion 5.2.3) [40℄. No su
h result is known fora
y
li
 me
hanisms.5. Identify 
onditions under whi
h the approximate eÆ
ien
y of an a
y
li
 me
hanism is 
hara
-terized, or at least bounded above, by the summability of its 
ost-sharing method. Or, designan alternative to summability for this purpose.8.2 General Demand Me
hanismsGeneral demand 
ost-sharing problems should be studied in mu
h greater depth.6. Is there a polynomial-time, O(1)-budget-balan
ed a
y
li
 me
hanism for metri
 FTUFL thathas reasonable e
onomi
 eÆ
ien
y?7. Is there a general me
hanism design te
hnique when marginal valuations 
an be in
reasing?8. What other general demand problems admit good a
y
li
 me
hanisms? In parti
ular, 
on-ne
tivity 
ost-sharing problems|in whi
h ea
h player seeks a pres
ribed number of disjointpaths in a network between its sour
e and sink verti
es|pose a 
on
rete 
hallenge for ourte
hniques.8.3 Chara
terizationsFinally, we have few 
hara
terizations of 
ost-sharing me
hanisms. Moulin [34℄ provides 
har-a
terizations under the assumptions of GSP and full budget-balan
e. Immorli
a, Mahdian, andMirrokni [21℄ provide a partial 
hara
terization of GSP me
hanisms without any budget-balan
eassumptions.9. Is there a simple 
hara
terization of WGSP me
hanisms? To what extent do a
y
li
 me
ha-nisms exhaust the 
lass of WGSP me
hanisms? (See Juarez [27℄ for re
ent progress on thesequestions.)10. Is there a simple 
hara
terization of the me
hanisms that are implementable as a
y
li
 me
h-anisms? When does a \natural" primal-dual algorithm indu
e an a
y
li
 me
hanism? Arethere general te
hniques other than the primal-dual method for designing good a
y
li
 me
h-anisms? (See [2, 5℄ for re
ent results along these lines.)Referen
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