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Tutorial outline

* Introduction & preliminaries

* Optimization models & state of the practice —
* Deep dive into dimensions of kidney exchange: ———
* Short-term uncertainty Intermission

* Fairness vs economic efficiency

* Long-term uncertainty & dynamic optimization

* Incorporating human expert judgment in better ways
* Incentives & mechanism design

* Other organ exchanges
* Conclusion & open research problems
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Kidney exchange

ldea introduced in 1986 [Rapaport] )
First exchange (NEPKE) started 2003-04 [Roth, Sonmez, Unver, ...]

Pair 1 Pair 2




Objective:
Maximum weight combination of disjoint cycles



Cap on cycle length

* Why a cap?
* Transplants in a cycle must occur simultaneously
* Cycle may fail

* Capis typically 3



Complexity of batch optimization problem

* Theorem [Abraham, Blum, Sandholm EC-07]

NP-complete for any cycle length cap = 3

e Solvable in polynomial time if cap=2 or cap=w

e See also complexity results by Biro, Manlove, Rizzi
Disc. Math. 09



Other barter-exchange markets

* Holiday Homes: Intervac

* Books: Read It Swap It

* General used goods: Netcycler / swap.com

* National Odd Shoe Exchange SRR

R TR R R T R R

...............

e Room exchange (e.g. dorm rooms) ,, oy v
* Nurse shift exchange X
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Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice



Pre-2007 state of the art in kidney
exchange clearing algorithms

* Manual matching / greedy algorithms
* (Weighted) maximum matching [edmonds 1965]

* CPLEX



Algorithms for batch problem

* Algorithms find a provably optimal solution

e Based on branch-and-price framework:

* Branch-and-price, DFS pricing iaorham, eium, sandhoim 07

* Branch-and-price, B-F pricing cuoric et . msom 14, piaut, vickerson, sandhoim Aaar-16]

* Branch-and-price, ... iimentova et al 1ccsa 14, Maniove & 0'Malley AW A 14, Mak-Hau 1. Comb 0pt 15, ]
e Based on constraint generation:

e Basic, not scalable (asrnam, eium, sandnoim ec.o7

e Based on PC-TSP janderson et al. pras 2015)
 Compact formulations:

* Extended edge formulation (constantino etal. 108 201

e Position-indexed (onzoing work with cmu and Manlove & Trimble at U. Glasgow]



Kidney exchanges use designs, algorithmes,
and software from Prof. Sandholm’s lab

e United Network for Organ Sharing (UNOS)

* Our technology was selected
e Exchange went live Oct. 2010
* Match run twice a week

e 143 transplant centers

DONATE '
LIFE

UNITED NETWORK FOR ORGAN SHARING

* Previously:
e Alliance for Paired Donation
e Paired Donation Network
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UNQOS has design constraints that
orivate exchange don’t have

* Must have transparent, broadly-agreed policies

* Clearing algorithm / priority points must be
transparent

* Al must be autonomous (surgeons still have veto)

* Have to work also with small transplant centers =>
slower turnaround time



A first approach:
Constraint (row) generation

[Abraham, Blum, Sandholm, EC-07]
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Special Case: No limit on cycle length

* Polynomial-time solvable via max-weight
perfect matching

* Red vertex for each patient, blue vertex for
each donor

* Edge between each patient and their
incompatible donor with weight 0

(=> perfect matching)

* Edge between patient and compatible
donor with weight 1

* Exchanges correspond to perfect matchings

Items
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ILP: Edge Formulation (in original directed graph)

* Max 3, w(e)*e B
* Subject to:

* Conservation: 2. outi)€ - 2ecinwi€ =0
* Capacity: 3, couywi € < 1 forallv,
e e € {0,1} for each edge e

* Limit L on cycle length:

* For each (non-cycle) path p of length L:
decp€SL-1



Constraint (= Row) Generation

* |[LP too large (too many constraints)

e Even with only 1000 patients, there are 400M length-3
paths

* Incremental formulation
* Begin with small subset of constraints
* Repeat
* Solve LP relaxation
* Add subset of violated constraints, if any

* Perform Branch-and-Bound, doing the repeat loop
above at every node



Constraint Generation ...

e Constraint Seeding:

* Forbid any (non-cycle) path of length L-1 that has no edge closing the cycle
from its tail to head

* Or, seed with random constraints from the ILP

* Constraint Generation:
* Find length-L path with value sum more thanL—-1
* Along cycle C contains |C| of these paths

* Or, more space efficient to add only one constraint for such a cycle: Edge sum in
a long fractional cycle can be at most floor( ([L-1]/L)*|C| ) => slower

* So we went in the other direction: Add a constraint per violating path p, and
each path with the same interior vertices => faster



A First Approach:
Constraint (Row) Generation in Edge Formulation

* Even after many improvements, could not clear
markets with 100 nodes faster than our second
approach with 10,000 nodes

* Theorem. LP relaxation of edge formulation not as
tight as that of cycle formulation



A better algorithm (early version of what we fielded
at UNQS)

[Abraham, Blum, Sandholm, EC-07]
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Special Case: Cycle Length L < 2

Model using a different graph:
* One undirected edge for each cycle of length at most 2
* Edge weight is weight of cycle

* Exchanges correspond to matchings
* Polytime to find max-weight matching in general graph



ILP: Cycle formulation

* C(L) = set of cycles of length < L
* One variable for each cycle cin C(L)
* Max zc e C(L) Wc Xc

* Subject to:
* D c.viec X <1 (each v, belongs to at most one cycle)

* x. € {0,1} for all c € C(L)



Solving the ILP

e Too large to write down
 Unlike winner determination in combinatorial auctions

e Overall approach: Branch-and-Price

* Branch: select fractional column and fix its value to 1 and
O respectively X7

e Fathom the search node if no better than incumbent
* Solve LP relaxation using column generation



Column generation

* Master LP P has too many variables
 Won’t fit in memory
* Would take too long to solve

* Begin with restricted LP P’, which contains
only a small subset of the variables (i.e.,
cycles)

* OPT(P’) < OPT(P)

* Solve P’ and, if necessary, add more
variables to it

* Repeat until OPT(P’) = OPT(P)



“Pricing” problem

* Price of a cycle (i.e., column) c is
* p(c)=w,-3,,,.dual-val(v)

* Dual constraint c is violated if p(c) >0

* Pricing problem: find a positive price cycle, or report
that none exists (in which case OPT(P’) = OPT(P))

» Key: Check the price of cycles one-by-one, without
having all cycles in memory



Pricing problem:
Further techniques to enhance speed

* Generate cycles by DFS over input graph

 Vertices explored in non-decreasing order of dual value
* Earlier vertices more likely to belong to positive-price cycle
e Can prune DFS path early

* Avoid repeating parent’s pricing problem work in child’s
pricing problem
 If a vertex wasn’t the root of any positive price cycle,

and its dual value hasn’t decreased,
then it can’t be the root of a positive-price cycle now either



“Tailing off” effect

 OPT(P’) = OPT(P), but some columns still have positive
price
* Many iterations required to prove optimality

* Our technique for tackling this led to big speedup

e Polytime upper bound by removing cycle length constraint

* Edge formulation in bipartite perfect-matching graph (integrality
gap 0, so we can just solve that LP instead of that ILP)

* Column (edge here) generation

* Fastest polynomial-time maximum-weight matching code didn’t scale
[Rothberg DIMACS implementation challenge 1990]

e Optimal once incumbent value = upper bound
* Length-3 cycles usually enough to match upper bound



Column seeding

* Pricing problem is expensive & improving OPT(P’) is
slow
e => Want to begin with OPT(P’) close to OPT(P)
e => Select good (but small) set of initial columns

* Begin with columns from heuristic solutions
* E.g. randomized greedy and max-weight matching
e Perform well and introduce very few columns

* Also, random selection of larger set of cycles (400,000)



Column management

* Problems with too many columns in P’
* Run out of memory, even with <4000 vertices
* LPs take longer to solve

* Delete columns so P’ is not too big

* Only a small fraction of columns end up in the final
solution for OPT(P) => unlikely to delete

* Will always generate again if needed
e Delete column with largest negative price first, as this is
the most satisfied constraint in D

* But some columns we never delete, e.g., those we have
branched on and those with positive LP value



Primal heuristics

. Rounding heuristic: include all cycles with LP value at least % ;
greedily select remaining cycles

* Rarely helps

. Our heuristic:

* P’ atroot node usually contains enough columns so that
integral OPT can match fractional OPT

 We use CPLEX MIP as a primal heuristic at nodes, but only on
the restricted ILP that corresponds to P’
e Constraint that ILP value has to match fractional target, and
e Time limit, and
* Only do this if node has sufficiently different set of cycles than its parent
* Improves speed significantly



Experiment using data generator by [Saidman et al. 06]
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Recap: Main message

* This algorithm made modern kidney
exchanges able to be cleared in a scalable way

e Techniques that made this possible
Incremental problem formulation
Exploiting problem specific upper bounds in several ways
Other algorithmic ideas



Additional functionality

for modern kidney exchanges
supported by this algorithm
and its later enhancements



Side constraints

* Algorithm supports certain kinds of side constraints, e.g.,
* Center A does not want to be in cycles longer than 2
* Patient x does not want to be in a cycle longer than 2

* Center B does not want to participate in altruistic
donor chains of length greater than 3



Multiple willing donors per patient

* All their edges included in input graph
* Solver automatically uses at most one of the donors



Incorporating compatible pairs

* Why?
e Patient can get a better kidney
* Others get more/better matches

e Our algorithm supports this

e Could preprocess so patient can’t get worse kidney than
her compatible donor brings



Incorporating list exchange(s)

* Algorithm can be used also if list exchanges were
included in the optimization



Weights on edges

* Algorithm supports weights on edges (thus also on
nodes)

* Weights can represent, e.g.,
e Degrees of compatibility
* Projected life years (potentially quality-adjusted)
* Travel distance
* Wait time
* Transplanting children
* Transplanting sensitized, hard-to-match patients

* Tradeoffs between efficiency and fairness
* Al autonomy



Never-ending altruistic donor (NEAD) chains
[Rees et al. New England Journal of Medicine 2009]

Transplant No.

1 2 3 4 5 6 7 8 9 10
Dat July July Sept. Sept. Feb. Feb. Feb. Feb. March March
ate 2007 2007 2007 2007 2008 2008 2008 2008 2008 2008
State AZ OH OH MD MD MD NC MD OH

Recipient’s Sex
and ABO Type

Donor’s Sex and

OJOL
©
2O,
2O,
©)
©)
2O,

ABO Type
Recipient’s PRA 62% 0% 23% 0% 82% 78% 64% 3% 100% 46%6
Recipient’s Race White White White White  White  Hispanic  White White White Black
or Ethnic Group
Recipient-Donor Wife—  Daughter— Mother—  Brother— Husband— Daughter—  Wife— Friend—  Brother—  Mother—
Relationship Husband  Mother  Daughter Sister Wife Father Husband Friend Brother  Daughter

We started the first NEAD when working with APD

Different from closed chains [Gentry,...]

Incorporated chains at UNOS 4/2011

Our early approaches handled chains as cycles via 0-weight back edges

Weighted edges to value
* Different “bridge donor” kidneys, and
* Not using up different altruistic donors
* Based on blood & tissue type, likelihood of pulling out, ...
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30- Chaln [New York Times 2/18/2012]

:M aﬁﬂﬂﬁfmt




Study of chains

[Dicker a & Sandholm, AAMAS-12]



Impact of within-batch chain cap on
UNOS data

Optimizing for Maximum Cardinality Optimizing for Maximum Weight
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Theory: Short chains suffice

* ABO-model with tissue type incompatibility
* Large, unweighted graph

THEOREM 1. Assume that”y < 2/5, o < 3pa/2, and 1o >
[ta > g > piag. Then with high probability (G(n) has an efficient
allocation (i.e., one that saves as many patients as possible) that
uses only cycles of length at most 3 and chains of length at most 3.
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Candidates Matched (%)

Why the discrepancy?

* Possible reasons:
* Unweighted — not the (only) reason
* UNOS data not “large”
e Uniform tissue type incompatibility model not realistic

* Experiments using Saidman et al. generator:

Candidates Matched, |Alts|=1 Candidates Matched, |Alts|=5 Candidates Matched, |Alts|=10

100 100 100
9ot 90} 90
Bof F 80k F Bof
- -
o o
0 & g or
fi-] fi-]
= =
60 3 g sor
o o
2 2
sor z T sof
m m
(] (]
aof a0l
oF 0

16 32 64 128 756 512 16 32 64 F¥T] 256 16 32 64 28 256
Total Candidate Pool Size Total Candidate Pool Size Total Candidate Pool Size

* In dynamic experiments, a chain cap of 4 was best
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Newer scalable clearing algorithms



Better batch algorithms, infinite chain caps

[Anderson et al. PNAS 2015]

* Builds on the prize-collecting traveling salesperson
p rO b I e m [Balas Networks 1989]

» PC-TSP: visit each city (patient-donor pair) exactly once, but
with the additional option to pay some penalty to skip a city
(penalized for leaving pairs unmatched)

* They maintain decision variables for all cycles of length
at most L, but build chains in the final solution from
decision variables associated with individual edges

* Then, an exponential number of constraints could be
required to prevent the solver from including chains of
length greater than K; these are generated
incrementally until optimality is proved.

* Leverage cut generation from PC-TSP literature to provide
stronger (i.e. tighter) IP formulation



Better batch algorithms under within-
batch chain caps

[Glorie et al. MS&OM 2014]

|dea: solve a structured alternate optimization problem that
implicitly prices variables

Price (for max card, weight): w_ -2
* Buttw.=2,,, . w,
Take G=(V,E), create G"=(V,E) s.t. all edges e = (u,v) are
reweightedr,=6,—w,
* Positive price cycles in G = negative weight cycles in G’

Bellman-Ford finds shortest paths

e Undefined in graphs with negative weight

* Shortest path is NP-hard (reduce from Hamiltonian path:

» Set edge weights to -1, given edge (u,v) in E, ask if shortest path from uto vis
weight 1-| V| = visits each vertex exactly once

* We only need some short path (or proof that no negative cycle exists)
* Now pricing runs in time O(| V| | E| cap), but ...

6V

vinc



Better batch algorithms under within-batch
chain caps

[Plaut, Dickerson, Sandholm AAAI-16]

* Necessary to prevent internal looping during modified B-F

0

@D
PR
0 -1 P 0

* Now pricing runs in time O(| V| | E| cap?)




Mean time (s)

Better batch algorithms under within-batch

chain caps

[Plaut, Dickerson, Sandholm AAAI-16]

Experiment with 300 vertices, 1 hour time limit
on realistic generated UNOS graphs

-~ BNP-DFS

.
«— BNP-PoLY :
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Compact formulations

[Constantino et al. EJOR 2014]

* Previous models: exponential #constraints (CG methods)
or #variables (B&P methods)

e Let L be upper bound on #cycles in a final matching
* Create L copies of compatibility graph

e Search for a single cycle or chain in each copy
* (Keep cycles/chains disjoint across graphs)

Cycle 1 Cycle 2 Complete solution

- -

- —
- — -




Compact formulations

[Consta ntino et al. EJOR 2014] b { 1 if arc (Z,j) is selected to be in copy [ of the graph,
o 0 otherwise.
maximize Z Z Wi Th; (7a)
I (i,7)€A
subject to Z xéz = Z a:ij Vie V,Vie{1,...L} (7b)
J:(Gi)eA j:(i,5)€A
Z Z xﬁj\{l VieV (7c)
! j:(i,5)€EA
Y &<k Wl e [l .0} (7d)
(i,7)eA
z.; € {0,1}. V(i,j) € AVl € {1,...L} (7e)

7a: max edge weights over all graph copies
7b: give a kidney <-> get a kidney within that copy

7c: only use a vertex once
Poly #constraints and #variables!
7d: cycle cap




Compact formulations for within-batch
chain caps

[ongoing with David Manlove & James Trimble]

* Previous: edge is in a cycle/chain or not
* Weak LP relaxation

* |dea: where in the cycle/chain does the edge exist?
e “Position indexed”



Compact formulations for within-batch

Ch dlin Cd pS longoing with David Manlove & James Trimble]

max Z Z Wi Yijk + Z WeZe

(4,) EA kEK(4,5) ceC

R S SIS
4:(4,0)EA KEK(j,i) cEC:iappears in ¢
Z Yij1 < 1

j:(i,5)€A
Do Uik > D Yigk

J:(J,0) EAN J:(3,5)€EA

keK(4,1)

Yijk € {0, 1}
zc € {0,1}

(3a)
i€ P (3b)
i€N (3c)
Ceok-y O
(1,7) € A,k € K(4,5) (3e)
ceC (3f)

3a: max weight of edges in chains + weight of cycles
3b: each pair is in at most chain/cycle
3c: each NDD has at most one used out edge

3d: if an edge is used at position k+1 in chain, there must be

an appropriate edge used at position k in that chain



How to choose a formulation

 Comparison of LP relaxations

e Column-generation-based tend to have tighter
relaxations (so far!)

* Business constraints
e Constraint-generation-based approaches outperform
when feasible matching space is less constrained
* E.g., no chain cap ...

e Column-generation-based approaches allow for more
expressive objective functions (so far!)

* E.g., general stochastic matching



Flelded kidney exchanges

NEPKE (started 2003-04, now closed)
e United Network for Organ Sharing (UNOS)
* Alliance for Paired Donation 600
* Paired Donation Network (now closed) transplants
in US per year,
mainly via open
* San Antonio chains

* National Kidney Registry

* Mayo Clinic
» St. Barnabas Compassionate Share
* Canada

* Netherlands

e UK Only US one that uses

) purely algorithmic matching
e Australia

* Portugal
* Israel (about to start)
* Sweden (about to start Q1 2016)
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State of practice

* United States:

e Started in the US in 2003-04 (NEPKE; pool now merged to UNOS
pool), cycles

* UNOS nationwide exchange (only one that is run by algorithms)

e Several private exchanges (NKR, APD) and single-center
“exchanges”

e ~600 transplants per year, mostly via open chains
* Multi-listing, competition, sniping
e Cadence: twice a week or even multiple times per day

Netherlands: national, chains, algorithms

UK: national, quarterly, hierarchical algorithmic approach
Canada: national, quarterly, CPLEX

Nascent: Australia, Portugal, Israel, Sweden, ...
International: one swap at APD so far via manual matching



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty



Matched # Transplanted

* Only around 8% of UNOS matches resulted in an
actual transplant

e Similarly low % in other exchanges [arc 2013
* Many reasons for this. How to handle?

* One way: maximize expected value of the (batch)
transplants



Fa I | U re_a Wa re m O d e | [Dickerson Procaccia Sandholm E£C-13]

* Compatibility graph G
* Edge (v, v)) if v/s donor can donate to v/'s patient
* Weight w, on each edge e

* Success probability g, for each edge e

* Discounted utility of cycle ¢
u(c) =3w, *Tlq.

Value of successful cycle Probability of success
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Failure-aware model...

e Discounted utility of an (unweighted for simplicity) k-chain ¢

k’ﬁqi]

1=0

Exactly first j transplants execute Chain executes in entirety

* These cycle and chain utilities are not the same one would get by
simply replacing the weight of each edge by (weight * success
probability)

e Utility of a solution M: u(M) =5 u(c)
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Our problem

* Discounted clearing problem is to find matching M"
with highest discounted utility

Maximum cardinality Maximum expected
transplants
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Motivating theorem

* G(n, t(n), p): random graph with
* n patient-donor pairs
* t(n) altruistic donors
* Probability ©(1/n) of incoming edges

e Constant transplant success probability g

Theorem
For all g€ (0,1) and «, 8 > 0, given a large G(n, an, 8/n), w.h.p.
there exists some matching M’ s.t. for every maximum

cardinality matching M,

u,(M’) 2 u (M) + Q(n)
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Proof sketch: Counting Y-gadgets

© O,

oe  bd  ag

& é
o &
o

o

© b
Y

gadget. (b) The maximum cardinality (c) The matching My, .
matching My .

O—E—@ ©

(a) A

For every structure X of constant size, w.h.p. can find Q(n) structures isomorphic to X and isolated from the
rest of the graph

Label them (alt vs. pair): flip weighted coins, constant fraction are labeled correctly = constant x Q(n) = Q(n)

Direct the edges: flip 50/50 coins, constant fraction are entirely directed correctly = constant x Q(n) = Q(n)
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In theory, we’re losing out on expected actual
transplants by maximizing match cardinality.

... What about in practice?



‘ts
9

All UNOS match runs (constant)

All UNOS match runs (bimodal)
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Solving this new problem

* Real-world kidney exchanges are still small
 UNOS pool: 281 donors, 260 patients 2 reb 2015)

* Undiscounted clearing problem is NP-hard when
cycle/chain cap L > 3 (abraham et al. 2007)

 Special case of our problem

* Current UNOS solver will not scale to this problem
 Empirical intractability driven by chains



Algorithm changes for this probabilistic setting

* Use chain extension in pricing problem

* Theorem. Don’t have to extend a chain by any finite #steps if optimistic infinite extension has
negative expected value:

k—1 k
Qma,:c
(1  Ginam }:[ Qi) —+ u(c) + € — (dmm —+ Zdz) <0

2=0

A

Optimistic future value of

e . Donation to waitlist
infinite extension

Pessimistic sum of
LP dual values

Discounted utility of current
chain

* Ordering heuristics for cycle and chain generation

* Upper bound now hard
* Theorem. Discounted clearing NP-complete (even with no chains or cycle length cap)
* So, we use looser bound: solve with w’, = (1-pg,;) w,

* Lower bound still easy
* Theorem. Discounted clearing with 2-cycles polytime



Scaling experiments

Ours without chain curtailing

10 127 /128 128 /128 128 /128
25 125 /128 128 /128 128 / 128
50 105 / 128 128 /128 125 /128
75 91/128 126 /128 123 /128
100 1/128 121/128 121 /128
150 114 /128 95 /128
200 113 /128 76 /128
250 94 /128 48 /128
500 107 / 128 1/128
700 115/128
900 38 /128
1000

* Runtime limited to 60 minutes; each instance given 8GB of RAM.
* |V| represents #patient-donor pairs; additionally, 0.1|V| altruistic donors are present.



Dynamic experiment with failures

24 weeks; Bimodal failure probability; #altruists = 0.1 * #pairs
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Total transplants

100
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Patient-donor pairs



Pre-match edge testing

[Blum et al. EC-13 and EC-15]

 Complementary idea: perform a small amount of
testing before a match run to query for
(non)existence of edges
* more extensive medical testing
e donor interviews
* surgeon interviews, etc.

* For 2-cycles only: stochastic matching



The power of two crossmatches

[Blum et al. EC-13]

 Cast as a general stochastic matching problem:

Given a graph G(V,E), choose subset of edges S such that:

[M(S)] 2 (1-€) [M(E)]

Need: “sparse” S, where every vertex has O(1) incident
tested edges

* Initially: 2-cycles only (= undirected), at most 2
tests per vertex = polytime algorithm for this



Pre-match testing in rounds

[Blum et al. EC-15]

* What about testing a variable number of edges per
vertex?

* What if we can test edges, get feedback, test more?
 What about 3-cycles, chains?

e Cast as an adaptive stochastic k-set packing
problem:

* Query edges in rounds, where each round tests at most
one incident edge per vertex



General theoretical results

[Blum et al. EC-15]

Adaptive: select one edge per vertex per round, test, repeat

Stochastic matching:
(1-€) approximation with O_(1) queries per vertex, in O.(1) rounds

Stochastic k-set packing:
(2/k — €) approximation with O_(1) queries per vertex, in O_(1) rounds

Non-adaptive: select O(1) edges per vertex, test all at once

Stochastic matching:
(0.5-€) approximation with O.(1) queries per vertex, in 1 round

Stochastic k-set packing:
(2/k — €)% approximation with O_(1) queries per vertex, in 1 round




Adaptive algorithm

For R rounds, do:

1. Pick a max-cardinality matching M in graph G,
minus already-queried edges that do not exist

2. Query all edgesin M

. Base graph Matching picked Result of queries

@
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« g 1)
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Intuition for adaptive algorithm

e If at any round r, the best solution on edges
queried so far is small relative to omniscient ...

e ... then current structrure admits large number of
ungueried, disjoint augmenting structures

* For k=2, simply augmenting paths

* Augmenting structures might not exist, but can
qguery in parallel in a single round

e Structures are constant size = exist with constant
probability

* Structures are disjoint = queries are independent
* - Close a constant gap per round



Fraction of Omniscient

1.0

0.8}

0.6}

0.4F

_INOS

- L
~ el ..
~ -. L~

, 2- and 3-cycles, with chains

~.
-
-

At p=0.5, one edge test per

vertex = +21% OPT - R=0
-- R=1
-~ R=2
..... R=23
--- R=4
— R=05

0.2 0.4 0.6 0.8

Edge Failure Rate

89



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty
* Fairness vs economic efficiency



An initial definition of fairness

[Roth, S6nmez, Unver JET 2006]

* Matching lottery: distribution over possible el due

[Li et al. AAMAS-14]

matchings (
u: @O0 O-0
© 000 .
U~ U3: M
* Example lottery: 4u, =%u, =05 Z‘*f ®-0
5: ()
£ﬂ2=£H4=£M5=O o

 Utility profile: total probability given to each vertex

(xf, x5, xf,, xE) = (0.5,1.0,1.0,0.5)



An initial definition of fairness

[Roth, S6nmez, Unver JET 2006]

* One utility profile x is said to Lorenz dominate another
utility profile y if:
* Sort both profiles in increasing order
« Condition 1: Fort={1..n}, X5 ;x; = Y5, v,
* Condition 2: There exists ts.t. Y51 X¢ > Ye_1 Ve

* Previous graph: Lorenz dominant profile assigns all weight

to H1:M M

Thm: There is a unique Lorenz-dominant utility profile.

e Algorithm is exponential in graph size (#odd components in
Gallai-Edmonds Decomposition)

* Applies to 2-cycles only



A fast egalitarian mechanism

[Li et al. AAMAS-14]

1 -1
=3 3

Thm: There is a pontlme—O(n3)—aIgor|thm to find the

OOH—\

Lorenz-dominant utility profile.

* Lorenz-dominant allocations not guaranteed to
exist in >2-cycles and chains matching



Balancing efficiency and equity

* Fielded kidney exchanges match under utilitarian
or near-utilitarian rules:

* i.e., “match as many as possible”
* (often with some ad-hoc vertex weighting)

* This can marginalize hard-to-match pairs



Present-day marginalization

* Highly-sensitized patients have elevated antibody levels
that negatively react to foreign tissue

* Harder to find a matching donor

* CPRA score estimates % of incompatible donors
* 0%: low sensitization, easy to find a match
* 100%: high sensitization, hard to find a match

* Typical definition of highly sensitized is 80% (and increasing);
80% is what we will use below

17% of adult deceased-donor kidney waitlist is highly-
sensitized

* “60% in kidney exchange



200 |
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o
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“The needs of the many outweigh
the needs of the few or the one.”

* ... Generally not followed in healthcare



Definition

Price of fairness: relative loss in
system efficiency due to using a fair
objective

[Bertismas, Farias, Trichakis OR 2011,
Caragiannis et al. WINE-09]



“Price of fairness” in kidney exchange

* Clearing problem: find a matching M” that
maximizes utility function

M* = argmaxu(M)
MEM

* Price of fairness: relative loss of match
efficiency due to fair utility function

u(M*) — u(My)
u(M*)

POF(M,us) =



* Vi i - lowly-, highly-sensitized vertices

e \: fraction of pool that is lowly-sensitized

* Py - prob. ABO-compatible is tissue-type incompatible
* p=Ap, +(1-A)p, : average level of sensitization

* “Most stringent” fairness rule:

o u(M) if |MH| = maxps e M lMlltfl
um>-1(M) _{ 0 otherwise

Theorem

Assume p < 2/5, A = 1-p, and “reasonable” distribution of blood types.
Then, almost surely as n = oo,

2
POF(M,’U;H}L) S @

(And this is achieved using cycles of length at most 3.)
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In theory, the price of
fairness is low

VX

AB-B PHABHO
I

«
’
’
’
¥
/s

I
I
I
i

As many highly-sensitized patients as possible are matched; loss
compared to the efficient matching of [Ashlagi & Roth EC-11] is shown
with wavy lines.
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From theory to practice

* Theoretical assumptions (standard):
* Big graphs (“n = oo”
* Dense graphs (constant p, p,, p,)
e Cycles (no chains)
* No post-match failures
* Simplified patient-donor features

* Fairness criterion was extremely strict

* In healthcare, important to work within (or near to)
the constraints of the fielded system

e [Bertsimas, Farias, Trichakis 2013]
e Our experience with UNOS



Two fairness definitions

* Lexicographic:
* Generalizes strict u,,,, used in theoretical
result

* Requires fraction a of the maximum number
of highly-sensitized patients that could be
matched over all possible matchings

* Chooses the largest matching among those

* Weighted:

* A highly-sensitized patient counts for (1+p)
times as much as a lowly-sensitized patient



Implementing the two fairness
notions within branch-and-price

* Lexicographic: difficult
e Requires a matching-wide constraint
* Finding a positive price cycle now requires solving an
integer program (at every node in search tree)
* In experiments we used CPLEX

 Weighted: easy
e Re-weight edges according to fairness function
* Match using our solver



Fairness experiments on UNOS data

* Our algorithm and code run the UNOS nationwide
exchange

* Algorithm computes a weighted efficient matching

* Applied both fairness definitions to 73 match runs,
compared against fielded version

* (All match runs from inception of exchange in Oct. 2010
through early Oct 2013)



Strict lexicographic fairness on UNOS data

Efficiency Loss (No Failure Prob)

=
o0
T

L

Frac. Match Runs

0.4

Frac. Match Runs

b

"800

Efficiency Loss (Constant Failure P]rob.)
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Efficiency Loss (Bimodal Failure Prob.)
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0.2 9
L
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Efficiency Loss (Frac. Objectizle)
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Weighted fairness on real UNOS data
Pareto Frontier (No Failure Prob)

9.9 Pareto Frontier (Constant Failure Prob)
— ossi_ Pareto Frontier (Bimodal Failure Prob.)
@ 28T ST
E .,TE +0.0
~— 97| O =
O ) t”‘% M 240
o o "5
:(C;') 9.6 'E' t/
T = 0.81 2, 35
= g% =
E 12 |2
> 94 — 0.8 % 2.30
o —
9.3 % I_
L > 225
2.¢ 0.80 Lu
0.%
2'2%,13.5 0.40 0.45 0.50 0.55 0.60 0.65

Exp. Transplants (Sensitized)
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Experiments on generated data

* Two standard kidney exchange models:
e [Saidman et al. 2006]: dense, parameterized by full US
population, considers ABO and 3 levels of sensitization, etc.
* [Ashlagi et al. EC-12+]: adaptation of sparse Erdos-Renyi
graphs:
* no blood type

* high and low sensitization
e constant prob of incoming edge to low-sensitized patients
* O(1/n) prob to high-sensitized patients

* Created a third distribution, “Saidman-UNOS”:
* Saidman model parameterized by UNOS pool data (Oct 2013)



Avg (St.Dev.) efficiency loss under the
strict fairness, for generated data

25

50
100
150
200
250
500

0.24% (1.98%)
0.58% (1.90%)
1.18% (2.34%)
1.46% (1.80%)
1.20% (1.86%)
1.43% (2.08%)
0.80% (1.24%)
0.72% (0.74%)

0.00% (0.00%)
0.19% (1.75%)
1.96% (6.69%)
1.66% (3.64%)
2.04% (2.51%)
1.55% (1.79%)
1.86% (1.63%)
1.67% (0.82%)

0.98% (5.27%)
0.00% (0.00%)
0.00% (0.00%)
0.00% (0.00%)
0.00% (0.00%)
0.00% (0.00%)
0.00% (0.00%)
0.00% (0.00%)

Distributions align more with our theoretical model (of
a larger, stable exchange) than UNOS data does

— Thus the price of fairness is much lower
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Experiments on the interaction
between failure-aware matching and
fairness rules



UNOS Individual Matches (Constant)
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UNOS Generator, |V| = 50 (Constant) UNQOS Generator, |V| = 250 (Constant)

+15%
— Failure-Aware — Failure-Aware
= Max Cardinality 4259%| | == Max Cardinality
9 et A 1 §2] A ])
c — B=2 C 2ol — =2
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Generated UNOS runs, weighted fairness, constant
probability of failure (x-axis%, increase in expected
transplants over deterministic matching (y-axis)
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UNQOS Generator, |V| = 250 (APD Bimodal UNOS Generator, V| = 250 (UNOS Bimodal)

32
[ ———
== Fraiure-Aware
Fao — Max Cardinality
“

"""" - | == Failure-Aware

’

— Max Cardinality

=

L
’
.

s

’

Expected Transplants (Average)
Expected Transplants (Average)

-
x

j 3 3 ) 2 J,
UNOS Individual Matches (APD Bimodal) _ UNOS Individual Matches (UNOS Bimodal

5.0
== Failure-Aware
""""""""""""""" — Max Cardinality

~e == Failure-Aware
— Max Cardinality

%

=
-

-

o0
s

Expected Transplants (Average)
Expected Transplants (Average)

1
'

-_———

g L 3

"
e

10

Generated (top row) and real (bottom row) UNOS runs, weighted fairness (x-axis),
bimodal failure probability SAPD failures in left column, UNQOS failures in right column),
increase in expected transplants over deterministic matching (y-axis)
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Take-home message

* In theory, the price of fairness is small

* In practice, the situation is trickier — but some
emphasis on fairness can be added without much
drop in overall efficiency

* Present-day kidney exchange models and solvers
are amenable to fairness criteria



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty
* Fairness vs economic efficiency
* Long-term uncertainty & dynamic optimization



Dynamic kidney exchange

* Kidney exchange is naturally dynamic

e Can be described by the evolution of its graph:
» Additions, removals of edges and vertices

Vertex Removal Edge Removal Vertex/Edge Add
Transplant, this exchange Matched, positive crossmatch Normal entrance
Transplant, deceased donor
waitlist Matched, candidate refuses donor
Transplant, other exchange
("sniped") Matched, donor refuses candidate
Death or illness Pregnancy, sickness changes HLA
Altruist runs out of patience
Bridge donor reneges




Initial theoretical work

 Unver [RES 2010] studies minimizing avg wait time in kidney exchange
» 2-cycles or no cycle cap; no chains
* No tissue type incompatibility
* No pairs expire
e Poisson arrivals
* Proves that simple dispatch rules are optimal

e Zenios [Mgmt Sci 2002] studies maximizing avg quality-adjusted life
years

e 2-cycles only (no longer cycles, no chains)

* Only two types of patient-donor pairs

* Models exchange as a divisible birth and death process

* No matching aspects of the problem

* No patients expire, but long wait penalized by a fixed cost
* Optimal policy is analytically derived

* Limits the number of patients that can take part in exchange. Patients not admitted queue
for altruistic donors (wait time here assumed zero)



No good prior-free online
algorithm (even without chains)

[Awasthi and Sandholm [JCAI-09]

* Proposition. No deterministic prior-free algorithm can
achieve competitive ratio better than L/2

65:?;1 L

* Proposition. No prior-free algorithm can achieve
competitive ratio better than 2 — (2/L)

e => Have the algorithm use distributional information
 But full stochastic optimization totally unscalable here



Famlly 1 Of appI’OaCheS [Awasthi and Sandholm 1JCAI-09]

* At each step
* Draw sample trajectories

* Leverage our offline algorithm to pick an action, i.e.,
combination of cycles and chains (not policy)



Algorithm 1

Adaptation of REGRETS/CONSENSUS [Bent & van
Hentenryck O4a,b, Mercier & van Hentenryck 07]

* For each cycle cin G,, score(c)=0

* Generate scenarios s, ..., S,

* For each scenario s,

* S =solution to offline problem on {G,, s;}
* For each cyclecin G,
* IfcisinsS, score(c)=score(c)+value(S)
 else score(c)=score(c) - 0
» Using the batch ILP, find a set of vertex-disjoint
cycles with maximum score, and return it
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Algorithm 1 is not optimal

ABCD exist. In step 2, A disappears, and either EF or GH appear.

Optimal solution is cycle ACDB, but that is not optimal on any trajectory!



Algorithm 2

See also [Chang et al. 00]

IDEA: Optimize the scenarios for each action separately instead of each scenario
separately

For each cycle cin G, score(c)=0

Generate scenarios sy, ..., S,

For each cycle cin G,
* For each scenario s,
* S =solution to offline problem on {G,-c, s;}
* score(c)=score(c)+value(S)+value(c)

Using the batch ILP, find a set of vertex-disjoint cycles with maximum score, and
return it



Algorithm 3: Adaptation of AMSAA

[Mercier & van Hentenryck 08]

Global anticipatory gap (GAG) ~ no action good across scenarios
* This problem likely to have large GAG
 AMSAA designed for problems with large GAG; optimal in limit

Generate scenarios sy, ..., S,

For each state o // Construct an approximate MPD
* if ois a final state, then v(o) is offline solution in o

* else v(o) = avg value of offline solution over scenarios {s,, ..., s,,}, assuming no
vertex dies

Solve the MDP using tree search starting at state G,
For each cycle c in G, score(c)=Q(G,,c)

Using the batch ILP, find a set of vertex-disjoint cycles with maximum score, and
return it



Experimental setup for online
tests

e Real data set: 158 pairs, 11 altruistic donors, 4086
edges, highly sensitized

e Artificial data set using [Saidman et al.] generator:
510 pairs, 25 altruistic donors, 15,400 edges

* Death rate set so 12% survive 10 years
* Dummy action (=inaction) allowed



Parameter tuning to scale to the large:
Experiments uncovered interesting tradeoffs

* Number of sample trajectories

* Lookahead depth (number of steps)

* For a given number of sample trajectories, interior
optimum

e Batch size

e Large => can look deep into the future (for given
lookahead depth)
* Small => finer-grained decision making

 We also tuned batch size for offline benchmark
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Experimental results on
trajectory-based algorithms

* Dummy action helps (not needed in Algorithm 1)

* Algorithm 2 outperforms Algorithms 1 and 3
e Also, 3 doesn’t scale

e Qutperforms batch approach
* Scales to 500-600 pairs
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On the large generated data, in steady state, outperformed batch approach by 13.0% (std dev 2.2%)



Family 2 of our approaches:
New approach to dynamic problems

[Dickerson, Procaccia, Sandholm AAAI-12]

* |dea: Learn the potential of each type of graph
element (e.g., vertex type, edge type, cycle type, or

graph type)

* Adjust ILP objective by subtracting potentials of the
elements the solution uses up

* Theory on how much associating potentials to
larger elements can help



Experiment with vertex potentials

Used instance generator by Saidman et al. [2006]
Expiration for pairs & altruists: 12% survive 10 years

* 4 altruistic donor ABO types + 16 patient-donor
pair ABO types

* Learn vertex potentials using ParamlLS (later,
SMAC)

[Hutter, Hoos, Leyton-Brown & Stiitzle JAIR-09]
* Each training instance had 95 pairs and 5 altruists arriving over
25 months



Results on test set

#altruists = 0.05 * |Candidates|
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Could improve further by conditioning potentials on additional patient and donor
attributes?



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty
* Fairness vs economic efficiency
* Long-term uncertainty & dynamic optimization
* Incorporating human expert judgment in better ways



The Big Problem

e What is “best”?

* Maximize matches right now or over time?
* Maximize transplants or matches?
* Prioritization schemes (with fairness)?

Want expert humans in the loop to express value judgment, but
not guessing at priority points or impact of policy changes on
matching results

Human-Al hybrid
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FutureMatch: Learning to match in dynamic environments

[Dickerson & Sandholm, AAAI-15]

Offline Experts Historical Experts Current Online
Data State

; l : l

Historical Mine & Learn || Graph | Learn Clearing |
Data w:FE — RT Generator Potentials Engine

| f

Offline (run once or periodically)
1. Domain expert describes overall goal
2. Take historical data and policy input to learn a weight function w for match quality
3. Take historical data and create a graph generator with edge weights set by w
4. Using this generator and a realistic exchange simulator, learn potentials for graph
elements as a function of the exchange dynamics

Online (run every match)
1. Combine w and potentials to form new edge weights on real input graphs
2. Solve maximum weighted matching and return match



Offline Experts

I
Y

Historical || Mine & Learn
Data w: B — R+

Example objective: MaxLife

* Maximize aggregate length of time donor organs last in patients ...

— ... possibly subject to prioritization schemes, fairness, etc ...

e Learn survival rates from all living donations since 1987

« ~75,000 transplants
» Translate to edge weight

>

Frac. graft success after n days

0.0
[

Perfect HLA Match vs. Mismatch

~— — Perfect HLA Match
B —  HLA Mismatch

]

L] 2000 3000 1000 SO0 GO0 TOM} B0 Q0

Graft survival (days)
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Data 5 :

l

Graph
Generator

* 300+ match runs with real UNOS data
* Important to use realistic distribution

UNOS UNOS
(first match run) (recent snapshot)
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1_ Experts B Historical
Data

I
Y A4

Graph Learn
Generator Potentials

4 & Matched, awaiting transplant . Matched, awaiting transplant .
) e e ) e o e

[New pairs & altruists [New pairs & altruists
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Current
State

Online

Y

Clearing
Engine

Online:
* Adjust solver to take potentials into account at runtime

e Eg.,P.p,=2.1andP,,;=0.1

e Edges between O-altruist and O-AB pair has weight:
1-0.5(2.1+0.1) =-0.1

e Chain must be long enough to offset negative weight

* Also take into account learned weight function w
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Experimental results

* We show it is possible to:

* Increase overall #transplants a lot at a (much) smaller
decrease in #marginalized transplants

* Increase #marginalized transplants a lot at no or very
low decrease in overall #transplants

* Increase both #transplants and #marginalized

* Sweet spot depends on distribution:

* Luckily, we can generate — and learn from — realistic
families of graphs!



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty
* Fairness vs economic efficiency
* Long-term uncertainty & dynamic optimization
* Incorporating human expert judgment in better ways
* Incentives & mechanism design



Transplant centers hide pairs and
NDDs from exchange(s)

Why do centers do this?
* Logistical benefit
* Money

What fraction of locally matchable pairs/NDDs do centers hide?

e A: 100% [Stewart, Leishman, Sleeman, Monstello, Lunsford, Maghirang, Sandholm, Gentry, Formica,
Friedewald, Andreoni. 2013. American Transplant Congress]

No mechanism design solution possible in static setting
[Roth, Sbnmez, Unver (2007a); Ashlagi, Fischer, Kash, Procaccia, GEB-13; Ashlagi & Roth (2014)]

Incentive-compatible, efficient, long-term-IR credit mechanism
[Hajaj, Dickerson, Hassidim, Sandholm, Sarne, AAAI-15]

* Matching favors centers that reveal more than their expected number
of pairs/NDDs, and disfavors those who reveal fewer than that

e Supports chains and long cycles
* Assumes pairs and NDDs last for only one matching period
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Mechanism Desiderata

(Through the lens of kidney exchange)



Individual rationality (IR)

Will | be better off participating in the

mechanism than | would be otherwise?

* Long-term IR:

* In the long-run, a center will receive at least
the same number of matches by participating

e Short-term IR:

» At each time period, a center receives at least
the same number of matches by participating
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Strategy proofness

Do | have any reason to lie to the mechanism?

* |[n any state of the world ...

* time period, past performance, competitors’
strategies, current private type, etc

* ... a center is not worse off reporting its
full private set of pairs than reporting any
other subset

- No reason to strategize
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Efficiency

Does the mechanism result in the absolute best

possible solution?

* Efficiency:

* Produces a maximum (i.e. max global social
welfare) matching given all pairs, regardless of
revelation

* |R-Efficiency:

* Produces a maximum matching constrained by
short-term individual rationality
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The basic kidney exchange game

[Ashlagi & Roth 2014, and earlier]

Set of n transplant centers T_={t, ... t }, each with a
set of incompatible pairs V,

Union of these individual sets is V, which induces the
underlying compatibility graph

Want: all centers participate, submit full set of pairs

An allocation M is k-maximal if there is no allocation
M’ that matches all the vertices in M and also more

Note: k-efficient - k-maximal, but not vice versa



| nd IVId Ua | |y ratIOna | ? [Ashlagi & Roth 2014, and earlier]

. Vertices a,, a, belong to center g,
b,, b, belong to center b

. Center a could match 2 internally

. By participating, matches only 1 of its own
. Entire exchange matches 3 (otherwise only 2)

Center a M
Center b Q Q



't can get much worse

[Ashlagi & Roth 2014, and earlier]

Theorem: For k>2, there exists G s.t. no IR k-

maximal mechanism matches more than 1/(k-1)-
fraction of those matched by k-efficient allocation

Bound is tight

. All but one of a's vertices is
part of another length k
exchange (from different
agents)

. k-maximal and IR if a matches
his k vertices (but then nobody
else matches, so k total)

. k-efficient to match (k-1)*k Example: k=3




Restriction #1

[Ashlagi & Roth 2014, and earlier]

Theorem: For all k and all compatibility

graphs, there exists an IR k-maximal allocation

. Proof sketch: construct k-efficient allocation for each

specific hospital's pool V,
. Repeatedly search for larger cardinality matc

NiNg in

an entire pool that keeps all already-matched vertices

matched (using augmenting matching algorit
Edmonds)

. Once exhausted, done

nm from



Restriction #2

[Ashlagi & Roth 2014, and earlier]

Theorem: For k=2, there exists an IR 2-efficient

allocation in every compatibility graph

. ldea: Every 2-maximal allocation is also 2-efficient

. collection of sets of matched vertices form a matroid

. special independence cases with k=2, also this is a PTIME problem
with the | V|3 bipartite augmenting paths matching algorithm

. By Restriction #1, 2-maximal IR always exists = this 2-
efficient IR always exists



A Dynamic, Credit-Based
Mechanism

(That is strategy proof and efficient, if
some assumptions hold.)



Dynamic, Credit-Based Mechanism

[Hajaj et al. AAAI-2015]

* Repeated game
e Centers are risk neutral, self interested

* Transplant centers have (private) sets of pairs:
* Maximum capacity of 2k;
* General arrival distribution, mean rate is k;
 Exist for one time period

* Centers reveal subset of their pairs at each time
period, can match others internally



Credits

* Clearinghouse maintains a credit balance c;
for each transplant center over time

* High level idea:
* REDUCE c;: center i reveals fewer than expected
* INCREASE c;: center i reveals more than expected

* REDUCE c;: mechanism tiebreaks in center i’s favor
* INCREASE c¢;: mechanism tiebreaks against center /

Also remove centers who misbehave “too much.”

Credits now = matches in the future
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The dynamic mechanism

1. Initial credit update
 Centers reveal pairs
* Mechanism updates credits according to k;

2. Compute maximum global matching
* Gives the utility U, of a max matching

3. Selection of a final matching
* Constrained to those matchings of utility U,

* Take c;into account to (dis)favor utility given by
matching to a specific center i

* Update c; based on this round’s (dis)favoring

4. Removal phase if center is negative for “too long”



Theoretical guarantees

Theorem: No mechanism that supports cycles and
chains can be both long-term IR and efficient

Theorem: Under reasonable assumptions, the prior
mechanism is both long-term IR and efficient




Experiments on Real Data

(Uses data from UNOS exchange, first ~100 match runs)



UNQOS Generator, Efficient

| UNQOS Generator, IB-Efficient |

| F-1 U5 F-I ©U[15,25]
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Experiments on Simulated

D a ta (Uses data generated according to [Saidman et al. 2006])
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This is still a very open problem!

e All models are still limited:

e Agency attributed only to transplant centers, not
 Patient-donor pairs (generally)
* Central bodies like a government

* Money?

* Most results in the static setting

* Determinism

* Unreasonable knowledge of agents (e.g., avg. entry)

* Clear policy implications



Competing dynamic matching
markets

[Das et al. AMMA-15]

* Dynamic matching markets are typically modeled
in isolation, with each agent entering a single
market.

» Real-world applications (e.g kidney exchange)
often involve multiple matching platforms drawing

from overlapping pools. Questions:
*  Whether competing platforms increase global loss relative to a single
centralized matching platform.
* How does one platform’s matching policy affect global loss in a multi-
platform setting?




Kidney exchange is dynamic

* Patient-donor pairs (agents) arrive gradually over
time
e Stay in the market to find a compatible pair

* May leave if the patient’s condition deteriorates to the
point where kidney transplants become infeasible

* Only considering undirected 2-matching so far



Planner / Clearinghouse platform

* Minimizes the number of agents who perish (leave
the exchange without finding a match)

* Knows agent’s expiration time

* Has only probabilistic knowledge about future
Incoming agents

 Selects a subset of acceptable transactions at any
point in time



Greedy and patient exchanges

[Akbarpour et al., EC-14]




Greedy exchange

}
t(
% N




Patient exchange

itical
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Greedy and patient exchanges

Loss
>

[Akbarpour et al., EC-14]

£
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Competing exchanges

[Das et al. AMMA-15]

(1-a)(1-y)

How do interactions
between overlapping
pools, different
policies affect social
welfare?

a(1-y)

Poisson agent

arrival, departure 196



Model details

* Agents (patient-donor pairs) arrive at the market
according to a Poisson process, with rate parameter
m21

* The sojourn of an agent is drawn from an
exponential distribution, with rate parameter A = 1

* Pr(acceptable transaction) = d/m, 0 <|d|< m

Average degree of
node in graph



Model details

(1-a)(1-y) -7
../ Patient algorithm

o °® J

a(1-y) \ * ; /?}Greedy algorithm




Three pools

— Patient,
\ Zp 1 size of Patient,

——Both,
\ Zp 4 size of Both,

— Greedy,
Zg 1 size of Greedy,



Proof sketch - bound on overall loss
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Proof sketch - bound on overall loss




Expression for overall loss

—Patient,
\ Zp 4 size of Patient,

—Both,
Zp¢: size of Both,

—— Greedy,
Zg1: size of Greedy.
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Expression for overall loss

—Patient,
\ Zp 4 size of Patient,

—Both,
Zp¢: size of Both,

—— Greedy,
Zg1: size of Greedy.
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Simulation setup

* Agents (patient-donor pairs) arrive at
the market according to a Poisson
process, with rate parameter m = 100

 The sojourn of an agent is drawn
from an exponential distribution,
with rate parameter A = 1

* Pr(acceptable transaction) = 0.02

* {6, and & can be approximated well
using Monte Carlo simulations



Simulation results

Matching, m=100, A=1

Patient

Greedy
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a=01  Pr(Greedy,)
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Kidney exchange experiments

* Edges are determined by medical characteristics
(Pr(acceptable transaction) # d/m)

UNOS (Real patient profiles)
SAIDMAN (Simulated patient profiles)

e Can incorporate longer cycles, chains, etc.
We consider 2- and 3-cycles



Experimental results

Average Loss

Experiment
i UNQGS, 2-cycles, m=100, A=1 -
=== Patient
nm Greedy
" — a=00 0.35
0.8 x
{ \ —_— a=0.1
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— =00 D
©
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L \".\
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Greedy
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a=09
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Experimental results

UNQS, 2- and 3-cycles, m=100, A=1

Patient
Greedy

a=0.0
a=0.1"

0.85

9 0.83 a=03 Pr(Greedy.)
e a=05 =a(l-7)
(1)) a0
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o _o.
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S
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v <+—— Pr(Both exchanges)
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Problem still very open, very
elevant!

* Relax assumptions:

e agents select subset of platforms to enter
* platforms select matching policy
e 2-vs 3-cycles, chains?

* Bounds on loss: generalize, tighten, n > 2
platforms



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty
* Fairness vs economic efficiency
* Long-term uncertainty & dynamic optimization

* Incorporating human expert judgment in better ways
* Incentives & mechanism design

e Other organ exchanges



Moving beyond kidneys: Livers

[Ergin, S6nmez, Unver w.p. 2015]

* Similar matching problem (mathematically)

Right Lobe Left + Caudate Lobes  Left Lateral Segment
Segments 5-8 Segments 2-4 Segments 2-3

Donor Mortality: 0.5% Donor Mortality: 0.1%  Donor Mortality: Rare
Size: 60% Size: 40% Size: 20%
Most risky! Often too small Only pediatric ~ [S6nmez 2014]

* Right lobe is biggest but riskiest; exchange may
reduce right lobe usage and increase transplants



Moving beyond kidneys: Lungs

[Ergin, S6nmez, Unver w.p. 2014]

* Fundamentally different matching problem
* Two donors needed Donor 1 Donor 2

/

[Date et al. 2005;
S6nmez 2014]

3-way lung exchange configurations

Recipient

(Compare to the single configuration
for a “3-cycle” in kidney exchange.)



Mechanism design: Lung
eXChaNEe (o rang uear s

Theorem: Even the problem of finding a non-
empty feasible swap is NP-hard

(Reduction from 3D-Matching)

They give a Pareto-efficient, IR, IC mechanism
for the static setting

(where the agents are patient-donor-donor triples,
not the transplant centers)




Moving beyond a organ

[Dickerson Sandholm AAAI-14, JAIR-2016]

¢ Cha | NS are greatl [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]

* Kidney transplants are “easy” and popular:
* Many altruistic donors

* Liver transplants: higher mortality, morbidity:
 (Essentially) no altruistic donors

P1 P2 P4
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Would this help?

* Theory: adapted Erd6s-Rényi models

i Dense mOdEI [Saidman et al. 2006]
* Constant probability of edge existing
¢ LeSS USEfUl in practice [Ashlagi et al. 2012, Ashlagi Jaillet Manshadi 2013]

[Dickerson Procaccia Sandholm 2013, 2014]

* Sparse model e 200
* 1-A fraction is highly-sensitized (p, = ¢/n)
* \fraction is lowly-sensitized (p, > 0, constant)

* Not all kidney donors want to give livers
* Constant probability p, 5, >0



Sparse graph, many altruists

* n,kidney pairs in graph D,
* n, =ynliver pairs in graph D,
* Number of altruists t(n,)

* Constant cycle cap z

Theorem

Assume t(n,) = Bn, for some constant B>0. Then, with probability 1 as n, = o,

Any efficient matching on D = join(D,,D,) matches Q(n,) more
pairs than the aggregate of efficient matchings on D, and D,.

Building on [Ashlagi et al. 2012]

216



Intultion

* Find a linear number of “good cycles” in D, that are length > z
* Good cycles = isolated path in highly- sen5|t|zed portion of pool and
exactly one node in low portion

 Extend chains from D, into the isolated paths (aka can’t be
matched otherwise) i in D, of which there are linearly many

* Have to worry about p, 5, and compatibility between vertices

* Show that a subset of the dotted edges below results in a linear-
in-number-of-altruists max matching

* > linear number of D, chains extended into D,
* > linear number of previously unmatched D, vertices matched

PH,L = CL/nL

.—'®*®*®"®’:
A-®-®-®-® :k AO-0-0-®

Unx) | [A-®—~B®—~®—®): ‘f <~f,@4}@}@  Q(nz)
E@@@@ -------- @ ®~®~®

>z (cycle cap) > 2 (cycle cap) 2



Sparse graph, few altruists

* n,kidney pairs in graph D,

* n, =yn,liver pairs in graph D,

* Number of altruists t — no longer depends on n,!
e M\is frac. lowly-sensitized

* Constant cycle cap z

Theorem

Assume constant t. Then there exists A’ >0s.t. forall A<\’

Any efficient matching on D = join(D,,D,) matches Q(n,) more
pairs than the aggregate of efficient matchings on D, and D,.

With constant positive probability. Building on [Ashlagi et al. 2012]
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Intultion

* For large enough A (i.e., lots of sensitized patients),
there exist pairs in D, that can’t be matched in
short cycles, thus onfy in chains

* Same deal with D,, except there are no chains
 Connect a IonF chain (+altruist) in Dghinto an
(0)

unmatchable long chain in D, such that a linear
number of D, pairs are now matched

Fsss
'. Sssne., e o
RN ®W-®-® -8 B®-B-®
®-®-® - B-R-R-B-B-®  -®-®® par e om
) )2 Bk
OO OO~ DO~D O~® 0 00O Ob
4 £r/2 £L/2
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Dense graph, many altruists

Take efficient matching on the kidney exchange graph alone,
extend a linear number of chains into the leftover pairs after
an efficient matching in the liver exchange alone.



FutureMatch + multi-organ

exchange?

 Combination results in
* Linear gain in theory
* Big gains in simulation
* Equity problems

e Kidneys # livers

* Hard to quantify cross-
organ risk vs. reward

Candidates Matched per Month

Y Dense Distribution, f = 0.5, py—z = 0.5

10 15
Time Period



Tutorial outline

* Introduction & preliminaries
* Optimization models & state of the practice

* Deep dive into dimensions of kidney exchange:
e Short-term uncertainty
* Fairness vs economic efficiency
* Long-term uncertainty & dynamic optimization
* Incorporating human expert judgment in better ways
* Incentives & mechanism design

e Other organ exchanges
* Conclusion & open research problems



Conclusions

* Kidney exchanges are a broadly fielded success for Al
* Powered by scalable, flexible batch solvers
* Open chains are powerful

* Real kidney exchanges have cycles, chains, weights, arrivals/departures, edge failures, fairness
considerations, human value judgments, ...

* Dynamic problem
* General-purpose trajectory-based online algorithms
* General purpose idea of how to use “potentials” to capture the future into batch optimization
* Both leverage distributional information and our offline algorithm
* Both outperform batch-based approach

* Failure-aware probabilistic matching

* Fairness

e Futurematch: learning to do generalized matching in complex settings

« Centers hide pairs; impossibility results for static settings, but “credit” mechanisms work

* Liver lobes, multi-organ, lung parts, ...



Future research

 Work on real problem: 2- and 3-cycles, chains, dynamics, edge failures
* We recently open-sourced the most realistic organ-exchange simulator

Still lots to be done

Even faster algorithms, esp. with chains

Better dynamic algorithms that handle arrivals and departures; can one improve
more than 10% over batch approach?

* E.g., potentials based on more donor and patient features [we’re working on this]
Better failure-aware algorithms
Better edge testing policies [we’re working on this]

Matching cadence: Race to bottom among exchanges
[Das, Dickerson, Li, Sandholm, AMMA-15]

Better incentive schemes
* Credit scheme [Hajaj, Dickerson, Hassidim, Sandholm, Sarne, AAAI-15]
Multi-donor kidney exchange [we’re working on this]

Other organs
* Liver & cross-organ exchange [Dickerson & Sandholm, GREEN-COPLAS-13, AAAI-14]
e Lung “components” [Ergin, SGnmez, Unver, draft 2014-15; Tang et al. 2015]



Future work regarding fielding

e Getting dynamic and failure-aware approach fielded
e Better crossmatch prediction

* Better edge testing policies

e Getting credit schemes fielded

* Better donor pre-select tools

* Insurance to pay for testing, etc.

* International exchange

* Exchanges beyond kidneys

* |[n the US: Shutting down sniping manual private exchanges,
and having one system (as there is for deceased donors)



