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Topic modeling has become a popular method used for data analysis in various domains including text
documents. Previous topic model approaches, such as probabilistic Latent Semantic Analysis (pLSA) and
Latent Dirichlet Allocation (LDA), have shown impressive success in discovering low-rank hidden structures
for modeling text documents. These approaches, however do not take into account the manifold structure of
the data, which is generally informative for nonlinear dimensionality reduction mapping. More recent topic
model approaches, Laplacian PLSI (LapPLSI) and Locally-consistent Topic Model (LTM), have incorporated
the local manifold structure into topic models and have shown resulting benefits. But they fall short of
achieving full discriminating power of manifold learning as they only enhance the proximity between the
low-rank representations of neighboring pairs without any consideration for non-neighboring pairs. In this
article, we propose a new approach, Discriminative Topic Model (DTM), which separates non-neighboring
pairs from each other in addition to bringing neighboring pairs closer together, thereby preserving the global
manifold structure as well as improving local consistency. We also present a novel model-fitting algorithm
based on the generalized EM algorithm and the concept of Pareto improvement. We empirically demonstrate
the success of DTM in terms of unsupervised clustering and semisupervised classification accuracies on text
corpora and robustness to parameters compared to state-of-the-art techniques.
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1. INTRODUCTION

Topic models are based on the notion that each data component (e.g., a document)
can be represented by a mixture of basic components (or topics). In text analysis,
topic models typically adopt the bag-of-words assumption, which ignores information
regarding the ordering of words. Each document in a given corpus thus has a repre-
sentation in the form of a histogram containing the occurrence of words. The form of
this histogram comes from a distribution over a certain number of topics, each of which
is a distribution over words in the vocabulary. By learning the distributions, we can
create a corresponding low-rank representation of the high-dimensional histogram for
each document. Topic models, such as probabilistic Latent Semantic Analysis (pLSA)
[Hofmann 1999] and Latent Dirichlet Allocation (LDA) [Blei et al. 2003] have shown
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impressive empirical success by improving classification accuracy through the discov-
ery of low-rank hidden structures. In addition, these models provide probabilistic
interpretations of the generative process of data.

Recently, several topic models, namely, Laplacian Probabilistic Latent Semantic In-
dexing (LapPLSI) [Cai et al. 2008] and Locally-consistent Topic Modeling (LTM) [Cai
et al. 2009], were developed by additionally considering the manifold structure of data.
Since data from texts or images are often found to be placed on a low-rank nonlinear
manifold within the high-dimensional space of the original data, learning the man-
ifold structure can provide better dimensionality reduction mapping and visualiza-
tion [Belkin and Niyogi 2001; Roweis and Saul 2000; Tenenbaum et al. 2000]. Both the
topic models increase the proximity between the probability distributions of the data
pairs with favorable relationships (i.e., within-class pairs or neighbors in manifolds)
by adding proximity as a regularization term to the log-likelihood function of pLSA. As
a result, these models obtain probabilistic distributions concentrated around the man-
ifold and show higher accuracy than pLLSA and LDA for text clustering and classifica-
tion tasks. However, LapPLSI and LTM fall short of achieving the full discriminating
power of manifold learning because the global manifold structure is often not well pre-
served by only enhancing the proximity between favorable pairs. To achieve the full
benefit, they would also need to consider unfavorable relationships (i.e., between-class
pairs or non-neighbors in manifolds) between data pairs.

In this work, we propose a new topic model to focus more on discriminating power,
which we refer to as Discriminative Topic Model (DTM). In order to address clustering
or classification problems in an unsupervised or semisupervised setting, i.e., using no,
or a small amount, of labeled data with a large amount of unlabeled data, DTM main-
tains the local consistency of data by increasing the proximity between the probability
distributions of the data pairs with favorable relationships, as do LapPLSI and LTM.
In addition, in contrast to the previous models, DTM explicitly aims to increase the
separability between those of the data pairs with unfavorable relationships. Due to the
effectiveness of this more complete manifold learning formulation, DTM also preserves
the global manifold structure, showing better performance in document clustering and
classification tasks than the previous approaches. We also present an efficient algo-
rithm to solve the proposed regularized log-likelihood maximization problem based on
a generalized Expectation-Maximization algorithm [Dempster et al. 1977] and the con-
cept of Pareto improvement [Barr 2004]. Our model-fitting algorithm does not require
a regularization parameter to which the clustering and classification performance can
be sensitive. We offer empirical evidence on three real-world text corpora (20 news-
groups, Yahoo! News K-series, and Reuters-21578) and demonstrate the superiority of
DTM to state-of-the-art techniques.

It is worth mentioning that this work is an enlarged version of the paper with
the same title, which appeared in the proceeding of ACM Special Interest Group
on Knowledge Discovery and Data Mining (SIGKDD) [Huh and Fienberg 2010]. In
this extended version: (1) the formulation of DTM is generalized to adopt any user-
defined unfavorable relationships; (2) the reestimation equations for the parameter
set representing topic distributions are presented in complete matrix form; (3) an ef-
fective binary search replaces a typical line search when a Pareto optimum is explored;
(4) a dynamic weighting scheme on unfavorable relationships is newly proposed; and
(5) the clustering performance is reported in addition to the classification performance.

The remainder of this article is organized as follows. Section 2 provides the back-
ground and notation. Section 3 gives an overview of the previous work. In Section 4,
we formulate DTM and describe how to fit the proposed model. We present the exper-
imental setup and discuss the experimental results in Sections 5 and 6, respectively,
followed by conclusions in Section 7.
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2. BACKGROUND AND NOTATION

We begin by describing the two basic components of our method: probabilistic
Latent Semantic Analysis (pLSA) [Hofmann 1999] as a topic model and Laplacian
Eigenmaps [Belkin and Niyogi 2001] or graph embedding [Yan et al. 2007] as a mani-
fold learning algorithm.

2.1 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (pL.SA) [Hofmann 1999] evolved from Latent
Semantic Indexing (LSA) [Deerwester et al. 1990], and defines a proper generative
model based on a solid statistical foundation.

Suppose that we have a corpus that consists of N documents {d;, ds, - - - , dy} with
words from a vocabulary containing M words {wq, we, --- , wys}. In pLSA, we associate
the occurrence of a word w in a particular document d with one of K unobserved topic
variables {z1, zg, - - - , zg}. More formally, we can define pLSA by the following genera-
tive process:

— select a document d with probability P(d);
— pick a latent class z with probability P(z|d);
— generate a word w with probability P(w|z).

By summing out the latent variable z, we can compute the joint probability of an
observed pair (d, w) as
K
P(d, w) = P(d)P(w|d) = P(d) Z P(w|zp)P(z|d).
k=1

Based on this joint probability, we can calculate the log-likelihood as

N M K
L= nld; w)log (P(d) Y Plwjlzn)Pldy), 1
i=1 j=1 k=1

where n(d, w) denotes the number of times word w occurred in document d. Follow-
ing the likelihood principle, we can determine P(w|z) and P(z|d) by maximizing the
relevant part of Eq. (1)

N M K
L= nldi,w)log ) P(w,lzi) Pzz|dy. (2)
i=1 j=1 k=1

2.2 Laplacian Eigenmaps and Graph Embedding

Traditional manifold learning algorithms [Belkin and Niyogi 2001; Hinton and Roweis
2002; Roweis and Saul 2000; Tenenbaum et al. 2000] have given way to graph-based
semisupervised learning algorithms [Belkin et al. 2006; Zhou et al. 2003; Zhu et al.
2003]. The goal of manifold learning is to recover the structure of a given dataset
by a non-linear mapping into a low-dimensional space. One such manifold learning
algorithm, Laplacian Eigenmaps [Belkin and Niyogi 2001], utilizes spectral graph
theory [Chung 1997].
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Suppose that we have N data points {uj, ug, --- , uy}, each of which is an M x 1
vector. From the nearest neighbor graph of these data points, a local similarity matrix
W is defined to contain favorable pair-wise relationships among them, e.g.,

W = 1, ifu; € N(u)) or u; € Ni(w;)
Y710, otherwise ’

where N,(u) is the set of the r nearest neighbors of u.

Let x;, which is a K x 1 vector, be a low-rank representation of u; on the manifold
(K <« M). Intuitively, if two data points u; and u; are close to each other in the orig-
inal space, the corresponding low-rank representations x; and x; should also lie near
each other. From this intuition, Laplacian Eigenmaps solve the following optimization
problem.

3

N
min Y Wyllx; —x,/> st XDXT =1, (4)
ij=1
where X is the matrix the ith column of which is x;, and D is a diagonal matrix such
that Dii = Z]I\il Wij.

The constraint in Eq. (4) plays a role in avoiding all x to converge to 0 as well as
leading to a generalized eigenvalue problem. (Note that without the constraint, the
objective function decreases only by scale reduction.) To avoid a trivial solution, which
is X7 = Xg = --- = Xy = ¢, where ¢ is a nonzero constant vector, the eigenvectors corre-
sponding to a zero eigenvalue are ignored and the ones corresponding to the smallest
nonzero eigenvalues are selected among the eigenvalue solutions [Belkin and Niyogi
2001].

The idea of Laplacian Eigenmaps can be generalized with the idea of graph embed-
ding [Yan et al. 2007], a general framework for dimensionality reduction, as follows.

N
min Y Willx; —x,|>  st. XBX'=I (5)
ij=1
where B is either a diagonal matrix for scale normalization (as in Laplacian
Eigenmaps) or the Laplacian matrix of a graph representing unfavorable relationships
between data points.

From these notations, we can conclude that to control favorable relationships is not
sufficient for learning manifold structure.

3. PREVIOUS WORK

Cai et al. [2008] recently proposed two topic models, Laplacian pLSI (LapPLSI)
and Locally-consistent Topic Modeling (LTM) [Cai et al. 2009], which use manifold
structure information based on pLSA. These models are formalized by regulariz-
ing the original log-likelihood of pLSA with the proximity between low-dimensional
probability distributions of data pairs that are likely to be closely located on the
manifold.

LapPLSI adopts the objective of Laplacian Eigenmaps for the measure

N M K A K N
L= ) nld,wlog)  Plwjlep)Plexld) — 5 > > | Wij(Plaxld) - P(z;ldp)*.  (6)

i=1 j=1 k=1 k=11ij=1

where A is the regularization parameter and W is an N x N matrix measuring the local
similarity of document pairs based on word occurrences.
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LTM uses the Kullback-Leibler divergence (KL divergence) instead of the squared
Euclidean distance

N M K
L =ZZn(di, Wj)IOgZP(Wj|Zk)P(Zk|di) (7
i=1 j=1 k=1
P
—3 > Wij<DKL (P(z|d)||P(z|d)) + DkL (P(Zldj)llp(zldi))),
ij=1
where the KL divergence of probability distributions P(z|d;) and P(z|d)) is
B . Plzild;)
D1 (P(z|d)||P(z|d,) = ; Pz, |di)log 5 i) (8)

By discovering the local neighborhood structure, these two models show higher dis-
criminating power than pLSA and LDA on document clustering and classification
tasks. Both models, however, fall short of the full discriminating power of manifold
learning because the global manifold structure is often not well preserved by only en-
hancing the proximity between favorable pairs without maintaining or increasing the
separability between unfavorable pairs. In addition, these models are limited in that
their performance depends on the choice of the regularization parameter A. It is un-
clear how to appropriately determine the value of A, particularly when no labeled data
is available.

4. DISCRIMINATIVE TOPIC MODEL

Here, we formalize our proposed model, named Discriminative Topic Model (DTM).
We also present an algorithm to solve the proposed regularized log-likelihood max-
imization problem based on the generalized Expectation Maximization (EM) algo-
rithm [Dempster et al. 1977] and the concept of Pareto improvement [Barr 2004].

4.1 Regularized Model
When increasing the local consistency in manifold learning, we also need to maintain
or increase the separability of the low-rank representations of the data that are not

likely to be placed close to each other. To do this, we define two matrices, W and W:
W measures the local similarity of document pairs based on word occurrences; on the

other hand, W measures the local or global dissimilarity of document pairs. We will
introduce the definitions of W and W adopted for our experiments in the following
section. We constrain these two matrices to have only nonnegative elements.

The proximity of favorable pairs can then be expressed by the weighted sum of the
squared Euclidean distances between the low-rank probability distributions

N K

DD Wy(Plzeld) — P(z;ld))”. 9)

ij=1 k=1
Similarly, the separability of unfavorable pairs can be expressed as

N K
Z ZWij(P(Zk|di) — P(Zk|dj))2. (10)

ij=1 k=1
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To minimize the proximity while maintaining or maximizing the separability, we
combine these two objectives as a fraction form and maximize the following objective
function:

sz—l Zk 1 U(P(Zk|d) — P(2k|d ))
ZL_]—]. Zk =1 tJ(P(Zk|d) P(Zk|dj))

Our model is regularized with this term to learn the manifold structure of data, in
addition to adopting the generative process of pLSA. The log-likelihood of our model is
thus as follows:

(11)

N M
L= nld; w)log Z P(wjlzi) P(zx|d;)
=1 j=1 k=1

Azl =1 Zk 1 U(P(2k|d) — P(z;|d ))
Zi,j=1 Zk:l ij(P(Zk|di) — P(zk|dj))

where A is a regularization parameter. Although our model includes the regularization
parameter, we do not need to consider it directly; it is handled implicitly by the nature
of our model-fitting algorithm, as we elaborate in the following subsection.

(12)

4.2 Model-Fitting

When a probabilistic model involves unobserved latent variables, the EM algorithm
offers a general approach for the maximum likelihood estimation of the model. Here
we use the generalized EM algorithm, which finds parameters that improve the ex-
pected value of the log-likelihood function in the M-step rather than maximizing it.
For further details, see Dempster et al. [1977].

Let ¢ = [P(wj|zz)] and 6 = [P(z;]d;)], which are parameters of DTM. Thus, we need
to estimate MK + KN parameters, the same as for pLSA.

E-step. The E-step of DTM is exactly the same as that of pLSA [Hofmann 1999]. By
applying Bayes’ formula, we compute posterior probabilities

P(wjlz)P(zr|d;)
Y py P(wjlzi) Pz |di)
M-step. In the M-step of DTM, we improve the expected value of the log-likelihood
function which is

Q. 6) = Qu(e, 0) + 1Q2(0) (14)

P(Zk|di, wj) = (13)

N M K
=YD nldi,w)) Y Pzrldi, w)loglPwjlzs) Pz |dy)]

=1 j=1 k=1
SN S Wyi(Plzsldy) — Plzgld))?
Zi,j=1 Zk:l Wii(P(zp|d;) — P(zpld,; ))2

The M-step reestimation equation for ¢ is exactly the same as those for pLSA
because the regularization term of DTM does not include P(wj|z;); the M-step rees-
timation equation is as follows:

+ A

SN n(d;, w)P(zildi, w))

(15)
Y N nldy, wi) Pzglds, wj)

P(wjlzp) =
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Before describing the M-step reestimation algorithm for 6, we introduce the concept
of Pareto improvement [Barr 2004], based on which, we propose our algorithm. Pareto
improvement is the change from one status to another that can improve at least one
objective without worsening any other objectives. More formally, in our problem, an
update 0¥ — 9%V is a Pareto improvement if either of the following two conditions
holds.

(1) Q1(¢, 0%Y) > Q1(¢, 6?) and Qa(8Y) > Q5(?);
(2) Q1(g, 0“V) > 01(¢, 69) and Qa(8™V) > Qa(8®).

Based on the concepts of generalized EM and Pareto improvement, we re-estimate
0 by (1) increasing Q(¢, 0) rather than maximizing it, and (2) increasing at least one of
Q1(¢, 0) and Q9(0) without decreasing the other.

Among many possible Pareto improvements, we choose the one that has the greatest
improvement of Qy(0) at each iteration, because Qs(0), which is optimized to reveal
manifold structure, is more critical to the discriminative power of the model. One
advantage of this strategy is that O(¢, 0) is improved regardless of the regularization
parameter A whose value affects the performance of previous models, and yet is hard
to determine appropriately.

4.2.1 Reestimation of 6 for each of Q1(¢, 0) and Q»(0). In order to present a reestimating
algorithm for 0 to increase Q(¢, 6) based on Pareto improvement, we first propose rees-
timation equations to increase each of Q1(¢, 9) and Q2(#) in the following theorems.

THEOREM 4.1. If 0%V is computed from 6® by applying the following reestimation
equation

¥ n(di, w)Plzplds, w))
> ¥ nd;, w))

then Q1(¢, 0) monotonically increases when 6 moves from 0 to 6V along the line with

fixed ¢.

PROOF. Q1(¢,0) is the expected value of the log-likelihood function of pLSA and
Eq. (16) is the reestimation equation for P(z;|d;) of pLSA; thus, ¢V maximizes
01(¢, 0) when ¢ is fixed. Since Qi(¢,6) is a concave function of # and 6V is the
maximum solution of Q;(¢, 8), Q1(¢, #) monotonically increases when 6 moves from 6%
to 61 along the line. O

P(zp|d;) = , (16)

THEOREM 4.2. Let o be the estimated value of the regularization term under the
current estimates of the parameters with nonnegative matrices W and W

YN Y Wi(Prld) — Pzrld))?

B : amn
Zf,vj=1 leeil Wii(P(zrld;) — P(Zk|dj))2
and we define Bp; for topic id p and document id i as
§,; = min (EiiP(Zp|di) +o ZJAil W.iP(z,|d;) 1 ) a8
" Z‘I]\il WUP(Zp|dJ) + O[DiiP(Zp|di) ’ P(Zpldi) ’
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where D and D are diagonal matrices such that

N N
Dii = Z Wij and ﬁii = ZWU (19)
J=1 J=1

Then, Qg(0) is nondecreasing by the following reestimation equation for
[P(z1|dy), P(z2ldy), - - -, P(zk|d))]:

BpiP(zp|d)), ifk=p
Plapld;) = —11%2(:2?) P(zp|d;), otherwise (20)
PROOF. See Appendix A. |
In Eq. (18), the minimum operator is used to ensure that [P(z1|d;), - - - , P(zg|d;)] is a

probability distribution after reestimation. It can be easily verified that Z,If: 1 P(zpldy) =
1 and Vk, P(z|d;) > O after the reestimation, when P(z,|d;) # 0. If P(z,|d;) = 0, we
replace P(z,|d;) with a tiny value to avoid a division by zero.

4.2.2 Reestimation Equation of & for Qx(9) in Matrix Form. The reestimation equation in
Theorem 4.2 can be converted into a matrix form and thus the computation of the
equations can be parallelized as follows. Let P be a matrix such that Py; = P(z;|d;).

First, we compute the numerator of « in Eq. (17) as

Z Z Wij(P(zildi) — P(zxld))? Z Z Wi (Py; — Py)?

i,j=1 k=1 i,j=1 k=1
N K
=Y WPy -2 Z Z WPy Py + Z Z WP,
i,j=1 k=1 i,j=1 k=1 i,j=1 k=1
N K
=ZZPkL ZWL]PkL_ZZZPkLWlJPkJ+ZZPkJZ LJPk]
i=1 k=1 i,j=1 k=1 J=1 k=1 =1
TrHPDPT) — 2Tr(PWPT) +Tr(PDPT)
= 2Tr(P(D — W)PT) = 2Tr(PLPT), (21)

where L = D — W, which is the graph Laplacian of the similarity graph. In the same
way, we compute the denominator of « in Eq. (17) as

N K , MK , B
Z Z Wiji(P(zrldy) — P(zpld,)))” = Wii(Pri — Pyj)” = 2Tr(PLPT),  (22)
i1 k=1 i1 k=1

where L = D — W, which is the graph Laplacian of the dissimilarity graph.
Therefore, from Equations (21) and (22), we compute « in Eq. (17) as

B Tr(PLPT)

~ Tr(PLPT)’

Second, we re-express f,; for topic id p and document id i in Eq. (18) in matrix form
(P(E +aW)) ;o1

Bpi = min <_—p, )

(P(W + aD))pl. P

(23)

(24)
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Considering all documents and all topic ids together, we define a matrix B whose

(p, 1) element is
P(D +aW
B = min <( (D +aW)) 1KXN>, 25)
(P(W+aD)) P
where 1k, is the K x N matrix with all ones and the min operation and divisions are
element-wise.

To convert the reestimation equation in Eq. (20) to a matrix form, we reformalize
the equation. The reestimation equation is equivalent to the following two-step update.

Step 1. Update P(z,|d;) with the following equation with g,;.

1— P(z,|d;)
P i) = i—p P i 2
(Zp|d) ﬂp 1 —,BpiP(Zp|di) (Zp|d) ( 6)
Step 2. Normalize P(z1|d;), P(zs|d;), - - - , P(zk|d;) to be summed to 1.
Py = KPL for Yk (27)
Zk’:l P

Finally, applying this transformed update to all topics and documents yields a
two-step matrix form reestimation for { P(z;|d;)}:

Step 1.
1K><N_P
P=B ——__— QP 28
© lgxn —BQ®P ® (28)
Step 2.
P
= 29
1g«x P 29)

where ® denotes element-wise multiplication and the divisions are also element-wise.

4.2.3 Reestimation Algorithm for 6. Based on Theorems 4.1 and 4.2, we propose a rees-
timating algorithm for 6. Let the current parameter set 6 be 6;. We first compute 6,
by applying Eqgs. (23) through (29) to 6y. Theorem 4.2 guarantees that Qs(61) > Q2(6p).
0y is then computed from 6; by applying the pLSA M-step in Eq. (16). Theorem 4.1
ensures that Q1(¢, 6) monotonically increases when 6 moves from 6; to 6 along the
line.

On the line segment between 6; and 6,, we find a Pareto optimum between Q; and
Q. Among the possible Pareto optima, we are interested in the Pareto optimum that
maximizes Qg since Qg is decisive for the discriminating power of the model, and Q;
for the generative process. To find the Pareto optimum, we perform a binary search
between 61 and 65 as follows. Let p be the center point between 6; and 65. If Q1(¢, p) <
01(¢, 0y), we exclude the interval between 6; and p from further consideration because
Theorem 4.1 ensures that Q; is not improved and thus there exists no Pareto optimum
in the interval. Otherwise, we compute the directional derivative of Qg at p along the
direction 6y — 61

Tr(PLPT)PL — TH(PLPT)PL
Tr(PL PT)2

where vec denotes the operation of vectorization with the same order of elements as 6;
(or 62), and mat is its inverse operation.

Vor_0, Q2(Oloey = vec( ) Oy = 0D pematipy. (30)
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If this derivative is positive, Q2(0) increases as 0 moves towards 6s; thus, we ex-
clude the interval between 6; and p from further consideration. In the same way, if the
derivative is negative, we exclude the interval between p and 62. Then, by regarding
the remaining interval as [01, 6], we perform the next iteration of the binary search
until the derivative is equal to zero or the length of the remaining interval is suffi-
ciently short. As a result, we obtain a local optimum of Qs that also improves Q; on
the line segment between 6; and 6,.

After obtaining the result, denoted by p*, we examine whether it yields a Pareto
optimum between Q; and Qs, i.e., (Qi(¢, px) > Qi(¢,6) and Qa(p*) > Qa(hp)) or
(Q1(¢, px) > Q1(¢, 6p) and Qa(px) > Qa(6p)). If this is true,, we reestimate 6 with
6 = px. Otherwise, we keep 6 as 6y without updating in the M-step and continue to the
next E-step.

In our model, we iteratively repeat the E-step and M-step until both the parameters
¢ and 6 converge. This convergence is typically evaluated by examining whether the
change of the parameters is less than a small threshold. In our experiments, our model
required approximately 100 to 300 iterations to achieve convergence.

Algorithm 1 summarizes our model-fitting algorithm. As described in lines 6
through 8, we selectively give weights on the elements of W for every, or a certain
number, of interations, which often improves the discriminative power of the model.
The weights can be given based on the low-dimensional representation in order to pri-
oritize the pairs not sufficiently separated from each other. The weighting scheme used
in our experiments will be presented in the following section.

5. EXPERIMENTS

We tested DTM using three widely used text corpora (20 newsgroups, Yahoo! News
K-series, and Reuters-21578) and compared it with other topic models and dimen-
sionality reduction methods. In this section, we describe our experimental setup and
implementation details.

5.1 Datasets and Experimental Setup

The 20 newsgroups corpus is a collection of approximately 20,000 newsgroup docu-
ments, partitioned almost evenly across 20 different newsgroups.! We downloaded the
preprocessed version from R. F. Corréa’s Web page,? which includes 18821 documents
with 8156 distinct words. Among the documents, we randomly selected 100 documents
from each category for each test run; as a result, in total 2000 documents were used
for test. Yahoo! News K-series is a collection of 2340 news articles belonging to one
of 20 different categories, which includes documents of varying sizes ranging from 494
to 9 [Boley 1998]. We downloaded the preprocessed version including 8104 distinct
words from D. L. Boley’s Web page.? For every test run, we used all the 2340 docu-
ments. Reuters-21578 is a corpus of newswire stories made available by Reuters, Ltd.,
and corrected by D. D. Lewis.* The entire Reuters-21578 corpora consists of docu-
ments in 135 categories. Among the documents, we extracted the 10 largest categories
with unique category labels, the sizes of which are unbalanced, ranging from 3923 to
112. We downloaded a preprocessed version of Reuters-21578 from R. F. Corréa’s Web
page, which includes 5180 distinct words. For each test run, we randomly selected

Ihttp://people.csail. mit.edu/jrennie/20Newsgroups/
2http://sites.google.com/site/renatocorrea02/textcategorizationdatasets/
Shttp://www-users.cs.umn.edu/~boley/ftp/PDDPdata/
4http://www.daviddlewis.com/resources/testcollections/reuters21578/

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 20, Publication date: February 2012.



Discriminative Topic Modeling Based on Manifold Learning 20:11

Algorithm 1 Model fitting for DTM

Input:

{n(d;, wj)}: a set of (weighted and normalized) word occurrences,

N: number of documents, M: size of vocabulary, K: number of topics,
MaxIter: the maximum number of iteration allowed,

W: similarity matrix, W: dissimilarity matrix

Output:

¢ = {P(wjlzp)} and 6 = {P(z;|d;)}.

1: Compute D and D as in Eq. (19).
2L« D-W,L«<D-W.
3: Randomly initialize ¢ and 6.

4: iter < 0.

5: repeat

6: Optional step:

7. Give weights on W based on 6.

8: Recompute D and L.

9: E-step:
10:  Compute P(z;|d;, w;) using ¢ and 6 as in Eq. (13).
11: M-step:

12: Reestimate ¢ as in Eq. (15).

13:  Compute 6; from 6 by applying Eqs. (23), (25), (28), and (29).
14:  Compute 05 from 6; by applying Eq. (16).

15:  low <« 0, high < 1,8 < 0, — 0,

16:  while high — low > € where € is a tiny value greater than 0 do
17: mid < (low + high)/2

18: p < 01 +mid x §

19: if Q1(¢, p) < Q1(¢, 0) then

20: low < mid

21: else

22: Compute the directional derivative V,, ¢, Q2(0)ls=, as in Eq. (30).
23: if ng,gl Q2(9)|g=p > 0 then
24: low <« mid

25: else

26: if V@z,gl Q2(9)|9=p < 0 then
27: high < mid

28: else

29: high < mid, break

30: end if

31: end if

32: end if

33: end while
34:  px < 61+ high x$§
35: if (Q1(¢7 px) > Q1(¢, 6) and Qa(px) > Qz(g))
or (Qi(¢, px) > Qi1(¢, 0) and Qs(p*) > Qz(6)) then
36: 0 <« px
37: end if
38:  iter < iter + 1.
39: until (¢ and 6 converge) or (iter > MaxIter)
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100 documents from each category; as a result, in total 1000 documents were used for
testing.

We evaluated the performance of DTM and provide comparison with previous
topic models, including LapPLSI and LTM, and other traditional dimension reduction
algorithms:

— Locally-Consistent Topic Modeling (LTM) [Cai et al. 2009];

— Laplacian Probabilistic Latent Semantic Indexing (LapPLSI) [Cai et al. 2008];
— Latent Dirichlet Allocation (LDA) [Blei et al. 2003];

— Probabilistic Latent Semantic Analysis (pLSA) [Hofmann 1999];

— Principal Component Analysis (PCA) [Jolliffe 2002];

— Non-Negative Matrix Factorization (NMF) [Lee and Seung 2000].

Additionally, we tested the approach using word histograms with the tf-idf weight
scheme [Salton and Buckley 1988] and L1-normalization but without any dimension
reduction.

5.2 Implementation Details

Given the word occurrences of each document in a text corpus, we applied the tf-idf
weight scheme [Salton and Buckley 1988] and subsequently L1-normalization. This
preprocessing is optional, but we found that it generally improves overall clustering
and classification performance. We then computed the histogram intersection to mea-
sure the similarity of two documents. More formally, we calculated the histogram
intersection of two documents d; and d; as

M
HI(d;,d) = Y min(n(d;, wy), n(d, wy)), (31)
k=1

where n(d, w) is the occurrence of word w in document d, which is obtained by applying
the tf-idf weight scheme and L1l-normalization to the original word occurrence. We
found that this histogram intersection is more effective than the Euclidean distance or
cosine distance in discovering the nearest neighbors in documents.

Based on this similarity measure, we define a local similarity matrix W as

Wij _ HI(di, dj), lfdi € ./\/r(dj) or dj S ./\fr(dl), (32)
0, otherwise
where N(d) is the set of the r nearest neighbors of document d that have the r highest
HI values. In addition, we define a local dissimilarity matrix e as

—original _ {1, if 3k Wy, > 0, W;; > 0, and W;; =0

Wi “ 10, otherwise (33)

Y

In other words, if two documents that are not directly neighboring each other are
connected through another document, the two documents are linked in the local dis-
similarity graph. We can reexpress Eq. (33) in matrix form:

L. . 2Y.. =
——original _ {1, if (W )U > 0 and WLJ =0 (34)

W =
Y 0, otherwise
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We give weights on the elements of this dissimilarity matrix during model-fitting,
based on the current topic distributions of documents, which are the low-dimensional
representation of the documents, in order to more focus on relatively less separated
pairs as follows:

—original

Wi =Wy /((PGrld) - PGzyldp)* + o), (35)

1)

where o is a small positive value for avoiding a division by zero. We set o to be 0.1 in
our experiment.

The locally-defined dissimilarity matrix and weighting scheme are effective in sep-
arating unfavorable data pairs in a global manner, as we will empirically show in
the following result section. Although we used the same definitions of W and W and
weight scheme for all three text corpora in our experiments, we could find more effec-
tive definitions for each of the data based on their intrinsic properties or experimental
results.

It is worth mentioning that class label information can be additionally used for con-
struction of similarity matrix W, as described in the previous work [Cai et al. 2009].
More specifically, after an r-nearest neighbor graph is generated in an unsupervised
manner, edges can be added between documents belonging to the same category and
removed between documents belonging to different categories. This scheme can be
extended to the construction of dissimilarity matrix W in the opposite way: after con-
structing a dissimilarity graph, edges can be removed between documents belonging
to the same category and added between documents belonging to different categories.
We did not apply this scheme in our implementation because the performance gain is
marginal due to the lack of labeled documents in our setting.

For performance comparison, we implemented the other approaches as follows. For
pLSA, we downloaded the source codes from Peter Gehler’s code and dataset page.’
For LDA, we used Matlab Topic Modeling Toolbox 1.3.2.% For LapPLSI and LTM, we
downloaded the source codes from the author’s Web page.” We directly implemented
the other two methods: PCA and NMF. For pLSA and LDA, we did not apply the tf-
idf scheme and L1l-normalization; higher performances were achieved without these
schemes in our experiments.

In LTM and LapPLSI, the regularization parameter needs to be determined. In-
stead of tuning the parameter, we tested four values (1, 10, 100, and 1000) and se-
lected the best one based on the average performance. Although we found the best
parameter by referring to the results, this parameter can be tuned through a typical
validation scheme if more than one labeled document is given per category. However,
if no, or only one, labeled document is available, it is unclear how to tune the pa-
rameter. We will discuss the performance variation of LTM and LapPLSI due to this
choice of regularization parameter in the following section. For LTM and LapPLSI,
the same W is used as DTM. To determine r, which is the number of the nearest
neighbors, we tested two values, 10 and 20, and selected the better one based on the
performance.

Source codes of DTM are available online.®

Shttp://www.kyb.mpg.de/bs/people/pgehler/code/index.html
Shttp://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
Thttp://www.zjucadcg.cn/dengcai/LapPLSA/index. html
Shttp://www.cs.cmu.edu/~seungilh

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 20, Publication date: February 2012.



20:14 S. Huh and S. E. Fienberg

Table I. Fifty Topics of 20 Newsgroups Discovered by DTM

T1 T2 T3 T4 T5 T6 T7 T8 T9 T 10
year drive people sale software | card computer | move god dog
night disk kill ship error mac system clutch christian | front
ohio scsi mormon sell fax driver phone speed jesu ground
won install | question price message | video modem trade church disclaim
job hard word mail read model ibm condition | bible back

T11 T 12 T 13 T 14 T 15 T 16 T 17 T 18 T 19 T 20
list bill homosex mhz israel money change good car current
mail article | view test isra gov make day oil circuit
post expect | cramer chip arab station status friend insurance | audio
scott apr optilink design | muslim cost handle article brake electron
reply rule men replace | jew base problem hour detector sound

T 21 T 22 T 23 T 24 T 25 T 26 T 27 T 28 T 29 T 30
test wing code mike access gun state buy key tax
ignore hawk | process georgia | copy waco back mile clipper uiuc
article blue standard gatech | product fire report wave encrypt opinion
done cup routine eng toni batf number engine chip talk
apr leaf keyboard blah protect koresh call live phone new

T 31 T 32 T 33 T 34 T 35 T 36 T 37 T 38 T 39 T 40
sun group | info graphic | post school satan read window program
time lot advance bit member answer make mean file printer
run honda | appreciate | color freenet colleague | man reason font run
math new inform image cleveland | book human belief manage server
start mirror | find version | jewish include life believe ftp print

T 41 T 42 T 43 T 44 T 45 T 46 T 47 T 48 T 49 T 50
drug time bike bob moral law religion space game question
doctor stop dod owner atheist david islam nasa player gif
disease gui ride steve keith hand exist shuttle stat wonder
medicine | hole bnr fenwai | object issue act orbit yankee surface
food sort motorcycle | people mathew agree accept gov play internet

6. RESULTS AND DISCUSSIONS

In this section, we provide qualitative and quantitative evaluations of DTM, showing
that DTM produces discriminative topics and is thus superior to other topic models and
dimensionality reduction methods in document clustering and classification tasks.

6.1 Topic-Modeling

First we study the topic-modeling capability of DTM on 20 newsgroups. Table I lists
50 topics produced by DTM, where the most frequent five words are reported. Table IT
shows the three major topics for each newsgroup with the largest proportions among
the 50 topics. The proportion of topic z for newsgroup ¢ is computed by averaging
P(z|d) over all documents d belonging to newsgroup c.

These results show that the discriminative learning idea of DTM does not damage
the statistical structure of the generative topic modeling. For example, topics 4, 15,
19, 26, 29, 41, 43, and 48 obviously represent sale, the middle east, car, gun, cryptog-
raphy, motorcycle, medical treatment, and space development, respectively. Therefore,
it is consequent that these topics are the first major topics of newsgroups misc.forsale,
talk.politics.mideast, rec.autos, talk.politics.guns, sci.crypt, rec.motorcycles, sci.med,
and sci.space. Topics 3, 9, 38, and 47 are related to religion and the major topics of
newsgroups alt.atheism, soc.religion.christian, and talk.religion.misc. Topics 2, 6, 7,
14, 34, 39, and 40 contain computer terminologies and are associated with computer
related newsgroups.

Figure 1 demonstrates topic distributions of five documents from each of categories
misc.forsale and sci.electronics generated by DTM, LTM, and pLSA. In the results of
DTM, not only do documents in the same category show similar topic distributions,
but also topic distributions in the different categories are distinguishable from one
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Table Il. Three Major Topics for each Category of 20 Newsgroups and their Proportions

Newsgroup Three major topics and their proportions
alt.atheism T9 0.1116 | T3 0.0948 | T 47 0.0880
comp.graphics T39 0.0961 | T40 0.0636 | T34 0.0595
comp.os.ms-windows.misc | T39 0.1393 | T40 0.0794 | T2 0.0765
comp.sys.ibm.pc.hardware | T 2 0.1305 | T6 0.1028 | T 39 0.0696
comp.sys.mac.hardware T2 0.1112 | T6 0.1026 | T7 0.0592
comp.windows.x T39 0.1410 | T40 0.0972 | T34 0.0735
misc.forsale T4 0.0806 | T2 0.0793 | T6 0.0665
rec.autos T19 0.0841 | T28 0.0790 | T8 0.0692
rec.motorcycles T43 0.1147 | T28 0.1067 | T8 0.0728
rec.sport.baseball T49 0.1948 | T22 0.0883 | T44 0.0553
rec.sport.hockey T49 0.2317 | T22 0.1279 | T24 0.0682
sci.crypt T29 0.1944 | T25 0.0574 | T46 0.0516
sci.electronics T 2 0.0679 | T6 0.0584 | T14 0.0532
sci.med T41 0.1479 | T13 0.0452 | T 37 0.0449
sci.space T48 0.1116 | T16 0.0386 | T42 0.0361
soc.religion.christian T9 0.1595 | T3 0.1099 | T38 0.0904
talk.politics.guns T26 0.1590 | T3 0.0749 | T15 0.0535
talk.politics.mideast T15 0.1821 | T3 0.0759 | T47 0.0570
talk.politics.misc T13 0.1329 | T26 0.0703 | T3 0.0484
talk.religion.misc T9 0.1187 | T3 0.0975 | T38 0.0712

For each category and a given topic z, the topic proportion is computed
by averaging P(z|d) over all documents in the category.

DTM LT™M pLSA
misc.forsale sci.electronics misc.forsale sci.electronics misc.forsale sci.electronics
T T PR 70 OR[N PSRN FORPOP | AP S I N W
bl el ol | “|||| I . | Lo heetientd, L, L ol 1
\IIIIIII ..||||lll |1d|| P | — POY I PP N L4||| 1
\”“ l I T ilm st ] . |.|. L. |
| AR | R U

Fig. 1. Topic distributions of five documents from each of categories misc.forsale and sci.electronics gener-
ated by DTM (left), LTM (center), and pLSA (right), on 20 newsgroups.

another. In contrast, in the results of LTM, although topic distributions in the same
category are similar as in DTM, topic distributions in the different categories are not
quite separable. This phenomenon often happens when different categories share ma-
jor topics because LTM does not explicitly take into account the separability of dif-
ferent categories. pLSA does not consider manifold structure at all so that even the
documents in the same category often do not show similar topic distributions.

6.2 Clustering

For clustering, after performing topic modeling or dimensionality reduction, we applied
K-means clustering to the low-dimensional representations (P(z;|d;) for topic models).
For each approach, we explored several numbers of topics or dimensionalities of the
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Fig. 2. Clustering performance of the K-means algorithm after various topic models and dimensionality re-
duction methods are applied on three text corpora: 20 newsgroups (left), Yahoo! News K-series (center), and
Reuters-21578 (right) (best viewed in color). “Words” indicates that no dimensionality reduction is applied;
word histograms weighted by the td-idf weight scheme and subsequently normalized by L1-normalization
are used as features.

embedding space (10, 20, 30, 40, and 50). We evaluated the clustering results by
referring to the labels in terms of clustering accuracy [Xu et al. 2003], defined as

N
clustering accuracy = max M
P, N

where P, is a C x C permutation matrix (C is the number of categories), P,(j, k) is
the (j, k) element of P, y; is the original label of document i, and ¢; is the cluster id of
document i as a result of K-means clustering; both of y; and ¢; are one of {1,2,---,C}.
We used the Hungarian method [Kuhn 1955] to find the best permutation matrix that
maximizes Z;Z'L P, (y;,c;). We report the average of the clustering accuracies after 20
test runs.

Figure 2 demonstrates that DTM outperforms the other approaches, including
LapPLSI and LTM, in the document clustering task. On all the three corpora, DTM
achieves approximately 5 to 10% higher performance than the subsequent methods.
From these results, we can conclude that DTM is more successful in exposing the
manifold structures inherent in the text corpora. On the other hand, LapPLSI and
LTM are not as effective as DTM because unfavorable pairs are not taken into account
in discovering the manifold structures.

Figure 3 illustrates the distributions of low-dimensional representations of 20 news-
group documents generated by DTM, LTM, and pL.SA, where each dot represents a doc-
ument and each marker indicates a category. To produce 2D embeddings, we applied
t-Distributed Stochastic Neighbor Embedding (t-SNE) [van der Maaten and Hilton
2008] using Matlab Toolbox for Dimensionality Reduction.?® When both favorable and
unfavorable relationships are taken into account (DTM), documents belonging to the
same category tend to be more separately grouped from those in the other categories.
On the other hand, if only favorable relationships are considered (LTM), documents in
different categories often overlap one another, resulting in less effective separation of
categories. When neither of the relationships are considered (pLLSA), documents in the
same category are often divided into several groups and those in different categories
are jumbled together, which leads to the worst clustering performance among the three
models.

(36)

9http:/homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
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Fig. 3. 2D embeddings of the low-dimensional representations of 20 newsgroup documents generated by
DTM (left), LTM (center), and pLSA (right). Different markers indicate different categories (best viewed in
color).

6.3 Classification

For classification, in order to address real-world problems in a semisupervised set-
ting, we randomly selected a small number of documents (one of 1, 3, and 5) from
each category as labeled data and considered the remainder to be unlabeled. After
we obtained low-dimensional representations through topic modeling or dimensional-
ity reduction, we applied 1-nearest neighbor (1-NN) and linear-kernel Support Vector
Machine (SVM) to the low-dimensional representations (P(z;|d;) for topic models) for
classification. We tuned the slack parameter of the SVM through leave-one-out-per-
class cross validation when more than one document per category is labeled; when
only one labeled document is available per category, we used the default parameter.
We report the average of the classification accuracies after 20 test runs.

Figures 4 and 5 show that DTM outperforms the other approaches in terms of
document classification accuracy. Among previous approaches, LapPLSI and LTM gen-
erally show higher performance than the other methods, as we expected. Although
LapPLSI and LTM do not reach the full discriminating power of manifold learning,
they can still find a low-rank nonlinear embedding space to which documents are
mapped. On the other hand, pLLSA and LDA, which do not adopt any regularization for
manifold learning, cannot find such a nonlinear embedding space. PCA and NMF also
do not consider manifold structure and thus are not effective for discovering discrim-
inative low-dimensional representation. The performance of pLLSA decreases as the
number of topics increases beyond a certain point; it is well known that pLSA is prone
to overfitting due to the large number of parameters, which grows proportionally with
data size. PCA and NMF also demonstrate similar tendencies in our experiments.

6.4 Discussion

The time complexity of DTM is as follows. As defined previously, let K, M, and N
be the number of topics, the size of the vocabulary, and the number of documents,
respectively. The E-step, reestimation of ¢, and the update of the log-likelihood of
pLSA (Q1) in DTM are the same as the process of pLSA. Since, as known, the worst-
case time complexity of pLSA is O(KMN), the time complexity of these components
of DTM is O(KMN). The update of the regularization term (Qg) can be conducted by
the matrix computation in Eqs. (23), (25), (28), and (29). Hence, the time complexity
of this update is O(KN?). The number of binary search steps is bounded by a constant
because the search is performed in the range [0, 1] (more precisely, between 6;+0-5 and
01+1-8, where § = 62 —61) and the precision is constant. Therefore, the time complexity
of reestimation 6 after the updates of Q; and Qp is O(KN?) due to computation of the
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Fig. 4. Classification performance of the 1-Nearest Neighbor (1-NN) classifier after various topic models
and dimensionality reduction methods are applied on three text corpora: 20 newsgroups (top), Yahoo! News
K-series (middle), and Reuters-21578 (bottom) (best viewed in color). We selected a small number of docu-
ments among one (left), three (center), and five (right) from each category as labeled data for training. In
each subplot, x-axis represents the number of topics or reduced dimensionality, and y-axis represents classi-
fication accuracy. “Words” indicates that no dimensionality reduction is applied; word histograms weighted
by the td-idf weight scheme and subsequently normalized by LL1-normalization are used as features.

directional derivative. By summing up all these time complexities, we arrive at the
time complexity of DTM as O(KMN + KN?). In our experiments, the parameters of
DTM converge in 300 iterations and clustering/classification accuracies reach their
peaks in 30 to 50 iterations. The practical running time of DTM is comparable to that
of LTM or LapPLSI.

DTM iteratively finds the Pareto improvement between Q1 and Q5. In the early it-
erations, Q; and Qg tend to move together because discovering a generative process of
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Fig. 5. Classification performance of the Support Vector Machine (SVM) classifier after topic models and
dimensionality reduction methods are applied on three text corpora: 20 newsgroups (top), Yahoo! News
K-series (middle), and Reuters-21578 (bottom) (best viewed in color). We selected a small number of docu-
ments among one (left), three (center), and five (right) from each category as labeled data for training. In
each subplot, x-axis represents the number of topics or reduced dimensionality, and y-axis represents classi-
fication accuracy. “Words” indicates that no dimensionality reduction is applied; word histograms weighted
by the td-idf weight scheme and subsequently normalized by L.1-normalization are used as features.

data contributes to categorizing them. As the iteration increases, discriminative power
is decoupled from generative power so that the improvement on Q; is restricted by the
regularization effect of Q. As a result, DTM avoids modeling the details of the gener-
ative process of data that undermine discriminative power. This Pareto optimization
strategy is different from general regularization schemes in that the optimization of
Q1 and Qs is constrained by current Q; and Qy at each iteration. In other words, the
improvement on Q7 or Qy is irreversible.
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Fig. 6. Performance change of LTM and LapPLSI as the regularization parameter varies, on three text
corpora: 20 newsgroups (top), Yahoo! News K-series (middle), and Reuters-21578 (bottom) (best viewed in
color). K denotes the number of topics or reduced dimensionality. In each subplot, x-axis represents the
value of the regularization parameter and y-axis represents clustering or classification accuracy.

DTM does not involve the tuning of the regularization parameter that balances be-
tween Q; and Oy because the updates are conducted to maximize Qs among Pareto
improvements between Q; and Qg, which implies maximizing discriminative power
without sacrificing generative power already obtained. Therefore, the balance between
Q1 and Qy is not fixed, but is determined by current Q; and Q, at each iteration. On
the other hand, LapPLSI and LTM require setting the parameter before optimization,
but it is not clear how to perform the tuning particularly with little label informa-
tion available, e.g., unsupervised clustering or classification with one label per class.
Figure 6 shows the clustering and classification performance of LTM and LapPLSI
with four different regularization parameters compared to the performance of DTM,
which does not vary due to the irrelevance of the parameter. As can be seen, the per-
formance changes of LTM and LapPLSI due to the parameter are sometimes not neg-
ligible and the best parameter is not constant but varies according to the text corpus,
the amount of labels, and the number of topics or reduced dimensionality.

Out-of-sample data can be handled in two ways as with other semisupervised learn-
ing methods: inclusive and exclusive approaches [Trosset et al. 2008]. The former
approach reconstructs similarity and dissimilarity matrices with new data in addition
to in-sample data. Based on the matrices, a new model is then trained. Since this
approach repeats the entire modeling process, it is inefficient, but it is effective when
the distribution of out-of-sample data is not consistent with that of in-sample data. The
latter approach maintains the model trained with in-sample data and extrapolates the
topic distribution for all new data. One way to perform extrapolation is to apply the
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formalized out-of-sample extension for spectral clustering presented in Bengio et al.
[2004] and normalize the result.

The name of our model, discriminant topic model (DTM), may bring attention
to other topic models whose names imply a similar idea, e.g., supervised LDA
(sLDA) [Blei and McAuliffe 2008], discriminatively trained LDA (DiscLLDA) [Lacoste-
Julien et al. 2008], maximum entropy discrimination LDA (MedLDA) [Zhu et al. 2009].
DTM essentially differs from these supervised models in that it does not require label
information. In other words, DTM is an unsupervised topic model developed for clus-
tering or semisupervised classification, while the others are supervised topic models
for supervised classification or regression.

7. CONCLUSIONS

In this article, we have proposed a topic model that incorporates the information from
the manifold structure of data by considering unfavorable relationships in addition
to favorable ones; the former have been ignored in previous work. We have also
presented an efficient model-fitting algorithm, based on generalized EM and Pareto
improvement, which enables reliable discovery of the low-rank hidden structures by
minimizing the sensitivity to parameters. We empirically demonstrated that our ap-
proach outperforms previous topic models in terms of unsupervised clustering and
semisupervised classification accuracies on three popularly used text corpora. We en-
vision other applications of the approach in this article when we combine text with
other data elements and structures, such as references or links.

APPENDIX
In this appendix, we provide the proof of Theorem 2.

A. Proof of Theorem 2
We reintroduce the concept of auxiliary function [Lee and Seung 2000; Sha et al. 2003].

Definition A.1. G(x, x') is an auxiliary function for F(x) if the two following condi-
tions are satisfied.

Gx,x') < F(x), G(x,x)=F(x) (37)
This definition is useful with the following Lemma.

LEMMA A.2. If G(x,x') is an auxiliary function, then F(x) is nonincreasing under
the update

x*! = argmax G(x, x') (38)
PROOF. F(x*1) > G(x*!, x%) > G(x!, x*) = F(x). O
We define % for topic id p and document id i as

D;iP(z,pld) +a Y- WiiP(z,ld)

P —— : (39)
Zj:l WijP(Zp|dj) + O[DiiP(Zp|di)
and also define
N K o 5 N K )
RO) = > Wi(Pkld) — Papld))” —a > > Wy(Pzild) — Pzpldp)”.  (40)
1,j=1 k=1 1,j=1 k=1
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LEMMA A.3. R(0) is nondecreasing after reestimation of [P(z1|d;), --- , P(zk|d;)] b
the following equations with t = 7.

tP(z,|d;), ifk=
P(z|d;) = { 1—rP(§p|di) ! P

szldi)P(Zk|di)v otherwise (41)

PROOF. Let F(z) be the value of R(#) at 6 = 6V that is obtained by applying the
update in Eq. (41) to the current parameters 6 = {P(z|d)}. Then, the first order
derivative of F(7) is

IF(r) L
=2 Z(Wij — aWij)I:(‘L'P(Zp|di) — P(Zp|dj))P(Zp|di)
=1
1—tP(z,|d)) . W\ PGpld)
_ % (T Pla sy PleHd) - Pleyld)) T—po T di)]' (42)

Since Zk#p P(zp|d) =1 — P(z,|d),

Z (MP(ZM(L') - P(2k|dj)> LTl Z Pleyld;) — Z P(zyld))

S\ 1 PG,ld) 1-Plz,ld) 4 o
1—tP(z,|d;)
- Tz,jdi)(l — P(z,ld) — (1= Plzpld)) = (1 - T P(z,ld)) — (1 — P(z,ld))
= —1Pz,|d)) + Pz,|d,) (43)
Putting Eq (43) into Eq. (42) yields
OF () P(z,|d;)
T =2 JZ(WU W)z Pz ,ldy) — P(z1d)) ( Pz, ldy) + #W)
N —_—
=2¢ Y (Wi — aWy)(t Pz,ld) — P(z,|d))
j=1
= 2( Z WPz, ld) —o Z WiiP(z pldp) ) 7 —2¢( Z W,PGz,ld)—a Z WyiP(z,1d)))
J=1 J=1 =1

= 2¢(DyP(zp|d;)—a Dy P(zp|dy)) —2c< ZWijP(zpuj)—a Z W,-J-P(z,,|dj)), (44)
=1 J=1

lf;f(pz 'j";i)) and, D; and D;; are defined in Eq. (19).

In addition, the second order derivative of F(t) is
32F(7)
912
We define G as an auxiliary function of F(r) by replacing the second order derivative
in the Taylor series expansion of F(r) at t = 1.

oF(t)
d

where ¢ = (P(zpldi) +

= ZC(Ei,-P(zp|d,-) — (XDiiP(Zp|di)). (45)

G(r,1)= F(1) + ( -1 - C(Z W,P(z,|dj) + aD;P(z,|d; ))(r —-172  (46)

J=1
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Since ¢ > 0 and all elements of W are nonnegative,

N
G(l’, 1) — F(‘L’) = —C(ZWijP(Zpkij) +ﬁiiP(Zp|di))(‘L' — 1)2 < 0. (47)

=1

Hence, G is indeed an auxiliary function of F. As nonnegativity of the elements of

W and W ensures that G(z, 1) is concave with respect to 7, solving %ﬁ” = 0 yields
in Eq. (39) that maximizes G(z, 1). Therefore, by Lemma A.2,

RE@Y) = F(3) = G+, 1) = G(1,1) = F(1) = R(6Y). (48)

|

LEMMA A.4. R(0) is nondecreasing by the updates in Eq. (20) with Bp; in Eq. (18).

PROOF. For any suchthat 0 < u <1,

G1L,1)=1-wGA,1)+uG1,1) <1 - wGA,1)+uG(z,1). (49)
Since G(t, 1) is concave,
1-wGA, D +uGE, 1) <G —pw+pt, 1). (50)

Thus, G(1,1) < G(v, 1) for any v between 1 and 7 (either 1 <v <forf <v <1).
Let 61 result from applying the updates in Eq. (20) to 6. Since B,; is always
between 1 and 7,

ROY) = F(By) = G(Bpi, 1) = G(1, 1) = F(1) = R(O). (51)
O
Proof of Theorem 2

PROOF. Since o = Q5(6?), R(6”) = 0. By Lemma A .4,

N K
RO = "> "W(Plaxldy) — P(z1d))”
i,7=1 k=1 H=pt+1)
N K
—a ) Y Wiy(Plzrld) ™ — P(zld))* > 0. (52)
i,j=1 k=1 0=0t+1)
Therefore,
W 2
0,0 = SN K Wi(Pealdy) — Plesld))?, e
Zl{iﬁl le@il Wi‘(P(Zk|di) - P(Zk|dj))2|9=e(t+1>
>a= QQ(Q(t)). (53)
|
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