

Better Synthetic Data by Retrieving and Transforming Existing Datasets

Saumya Gandhi*, Ritu Gala*, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig

Problem

Generating synthetic data for new tasks is hard!

Problem

Generating synthetic data for new tasks is hard!

Diversity

Easy to generate a small amount of high-confidence examples

Quality

Easy to generate a *large amount* of *diverse* low-quality examples

Problem

Generating synthetic data for new tasks is hard!

Diversity

Easy to generate a small amount of high-confidence examples

Quality

Easy to generate a *large amount* of *diverse* low-quality examples

It's hard to achieve both!

- Can we use *existing datasets* as a *starting point* for automatic synthetic data generation?

Input Prompt Give an English language description of Python code Data Curation (Manual or Synthetic)

Leads to high cost / low diversity

Input	Prompt
-------	--------

Give an English language description of Python code				
	Retrieval (cross-task transfer using existing datasets)			

ID	Question	Solution	Test Cases	•••
1	write an efficient algm for searching a number in sorted array	{binary search code}	in=[1,3,4,9],4 out=2	
2	consider a circle	{area_of_circle}	r=3, out=9	•••
3	What is count of each char in a string	{str_char_count}	str="acaa" out={a:3, c:1}	•••

Input	Prompt
-------	--------

Give an English language description of Python code				
	Retrieval (cross-task transfer using existing datasets)			

ID	Question	Solution	Test Cases	•••
1	write an efficient algm for searching a number in sorted array	{binary search code}	in=[1,3,4,9],4 out=2	
2	consider a circle	{area_of_circle}	r=3, out=9	
3	What is count of each char in a string	{str_char_count}	str="acaa" out={a:3, c:1}	•••

Need not follow the task exactly

DataTune: Synthetically transform retrieved datasets!

Input Prompt

Give an English language description of Python code

Retrieval (cross-task transfer using existing datasets)

	ID	Question	Solution	Test Cases	
	1	write an efficient algm for searching a number in sorted array	{binary search code}	in=[1,3,4,9],4 out=2	
	2	consider a circle	{area_of_circle}	r=3, out=9	
	3 What is count of each char in a string		{str_char_count}	str="acaa" out={a:3, c:1}	
		+ (synthetically	• Transformatio / adapt dataset	n s)	
		Inpu	t_col	Output_col	
			an english language ription of this code: ary search code}	Performs bina search on a sorted array	
Xa	X				
CYY	\mathcal{D}				

DataTune: Synthetically transform retrieved datasets!

Input Prompt

Give an English language description of Python code

Retrieval (cross-task transfer using existing datasets)

	ID	Question	Solution	Test Cases	
	1	write an efficient algm for searching a number in sorted array	{binary search code}	in=[1,3,4,9],4 out=2	
	2	consider a circle	{area_of_circle}	r=3, out=9	
	3	What is count of each char in a string	{str_char_count}	str="acaa" out={a:3, c:1}	
		+ (synthetically	/ adapt dataset	s)	
		Inpu	ıt_col	Output_col	
		Give desc {bin	an english language ription of this code: ary search code}	Performs bina search on a sorted array	
Xo	X				
UY4	\mathcal{L}				

Best of Both Worlds

Dataset Retrieval

Vijay Viswanathan, Luyu Gao, Tongshuang Wu, Pengfei Liu, and Graham Neubig. 2023. **DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions**. In *The 61st Annual Meeting of the Association for Computational Linguistics*.

https://aclanthology.org/2023.acl-long.573/

Dataset Transformation

Dataset Transformation Example

Dataset Transformation Example - Retrieved Dataset

Dataset Transformation Example - Plan

Sample Plan

1. Extract the "solutions" field from the dataset as this contains the Python code snippets.

2. For each "solutions" entry, identify the primary operation or functionality of the Python code. This may require parsing the code and understanding its logic.

Generate a set of multiple-choice descriptions ("choices") for each code snippet. These should include one correct description of what the code does and several incorrect descriptions. The incorrect descriptions can be plausible but should not accurately describe the code's functionality.
 Format the "input" field by labeling it as "Python code:" followed by the actual code snippet from the "solutions" field. Below the code, list the generated "choices" with the label "choice:" preceding each option.

5. Determine the correct "choice" that accurately describes the code's behavior. This will be the "output" field.

6. Combine the "input" field and the "output" field to create the final data in the required format for the task examples.

7. If a "solutions" entry does not contain a Python code snippet or is not relevant to the task description, ignore the data sample and return null for that entry.

Dataset Transformation Example - Execution

		ID	Question	Solution	Test Cases	•••
Give an English language		1	write an efficient algm for searching a number in sorted array	{binary search code}	in=[1,3,4,9],4 out=2	
		2	consider a circle	{area_of_circle}	r=3, out=9	
		3	What is count of each char in a string	{str_char_count}	str="acaa" out={a:3, c:1}	
	 Sample Plan Extract the "solutions" field from the dataset as this contains the Pyt For each "solutions" entry, identify the primary operation or functi This may require parsing the code and understanding its logic. Generate a set of multiple-choice descriptions ("choices") for each to include one correct description of what the code does and several in incorrect descriptions can be plausible but should not accurately descriptions of the "solutions" field. Below the code, list the generated "choice preceding each option. Determine the correct "choice" that accurately descriptes the code's "output" field. Combine the "input" field and the "output" field to create the final for the task examples. If a "solutions" entry does not contain a Python code snippet or description, ignore the data sample and return null for that entry. 	hon code snippets. snality of the Python code. stode snippet. These should correct descriptions. The be the code's functionality. by the actual code snippet s [*] with the label "choice:" behavior. This will be the tata in the required format is not relevant to the task				
	Input_col	Output_col				
	Give an english language	Performs binary				
	description of this code:	search on a				
	{binary search code}	sorted array				
		•••				

Benchmark: BIG-Bench

Task Name	Task Category	Abbreviation	Task Instruction
Temporal Sequences	Logical Reasoning	Time	Answer questions about which times certain events could have occurred.
Code Line Descriptions	Coding	Code	Give an English language description of Python code.
Elementary Math	Math	Math	Answer a multiple choice mathematical word problem.
Cause and Effect	Causal Reasoning	C&E	Answer multiple-choice questions distinguishing cause and effect.
Medical Questions in Russian	Domain Specific	Russian	Answer a yes/no question about medical text in Russian.
Implicatures	Contextual QA	Impl.	Predict whether Speaker 2's answer to Speaker 1 is affirmative or negative.

Results

	Method	Steps			Tasks					
		Retrieval Type	Generation	Time	Code	Math	C&E	Russian	Impl.	Avg.
	GPT-3.5 (few-shot)	-	-	50.6	75.6	30.4	96.7	90.6	64.2	68.0
	Mistral-7B (few-shot)	-	-	-2.5	62.3	2.9	37.2	39.8	39.0	29.8
*	Existing data	Dense	-	-4.7	62.3	0.8	52.9	0.0	39.9	25.2
- <u>1</u>	Synthetic data	-	Synthetic	2.0	60.8	3.8	37.2	54.0	41.9	33.3
ral	DataTune	+ Reranker	Transformed	-2.1	71.2	1.3	56.9	48.0	41.9	36.2
ist	Prompt2Model	Dense	Synthetic	-2.0	73.4	4.7	33.8	86.0	44.0	40.0
Μ	DataTune+Synthetic	+ Reranker	Both	16.9	84.5	8.1	41.2	68.0	48.0	44.5

- DataTune consistently outperforms few-shot prompting and other existing methods
- DataTune provides complementary benefits to purely synthetic generation

DataTune creates diverse datasets

While still remaining correct

We performed human evaluation across 300 samples

- DataTune is correct 88% of the time
- Synthetic data creation is correct 86% of the time

And creating more difficult samples

Relation Between Synthetic and Transformed Datasets

Learn more about DataTune

Paper Link: https://arxiv.org/abs/2404.14361

Code Link: https://github.com/neulab/prompt2model

