
What You Say = What You Want?
Teaching Humans to Articulate Requirements for LLMs

Qianou Ma
qianouma@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Weirui Peng
wp2297@columbia.edu
Columbia University
New York, NY, USA

Hua Shen
huashen@umich.edu
University of Michigan
Ann Arbor, MI, USA

Kenneth Koedinger
koedinger@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Tongshuang Wu
sherryw@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Pre-training assessments Post-training assessments

If I am planning a trip, some info to ask me if I did
not provide: A. How long is your trip? [redacted]

Format the output, starting with "Tl;dr:". If I
wrote [Itinerary=False], don't show the itinerary.
Format the output as Tl;dr, What to Do, Where to
Stay, What to eat. One para per section.
redacted]

based on my answer, ask me to specify the
answer, eg if I say short, ask me how short it
would be, a weekend or 3-4 days?) [redacted]

Program a Tic-Tac-Toe game in Python. The
game is based on a 3x3 grid where 2
players (red and blue) take turns to select a
cell. When one player have selected 3 cells
in a row (horizontal, vertical, or diagonally),
declare that player the winner. Once winner
is declared, user has the option to restart
the game with pressing "r".

Overall score
Requirement quality
LLM output quality

20%
16%
24%

Complex Task

Novice prompt
For task replication

Assessment
Does the prompt…

contain good reqs?
drive good LLM gen?

➡
Overall score

Requirement quality
LLM output quality

40%
41%
38%

Requirement-Oriented Prompt Engineering

Training Session

ROPE training significant gains (20%) VS.
Control (1%): standard prompt engineering tutorial
+ self-practice with ChatGPT

Intervention grounded by CS + GPTs requirements
Deliberate practice + feedback in various forms

Get LLM output

“Write prompts to
instruct ChatGPT

replicate key features
of this customized…”

A

B

C

D

D

E

Requirements:
Render the title Tic-Tac-Toe.
Key press ‘r’ to restart the game.
...

Goal: to hit custom
requirements!

Requirements:
Ask follow-ups to clarify use needs.
Start the output with a Tl;dr.
...

Figure 1: We propose Requirement-Oriented-Prompt Engineering (ROPE) to help novices write effective prompt programs

by focusing on articulating good requirements. (A) Our training provides deliberate practice in refining requirements, with

automated feedback across various modalities. (B) We provide assessments that link requirement quality to LLM output and

evaluate on these assessments, in a counter-balanced pre-post experimental design. (C) Through pre-post assessments where

novices write prompts to replicate existing programs (e.g. replicating Trip Advisor in D through a prompt in E), we observe

that ROPE significantly improves novices’ prompts and requirements compared to traditional prompt engineering training.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ABSTRACT

Prompting ChatGPT to achieve complex goals (e.g., creating a cus-
tomer support chatbot) often demands meticulous prompt engineer-
ing, including aspects like fluent writing and chain-of-thought tech-
niques. While emerging prompt optimizers can automatically refine
many of these aspects, we argue that clearly conveying customized
requirements (e.g., how to handle diverse inputs) remains a human-
centric challenge. In this work, we introduce Requirement-Oriented
Prompt Engineering (ROPE), a paradigm that focuses human atten-
tion on generating clear, complete requirements during prompting.

ar
X

iv
:2

40
9.

08
77

5v
1

 [
cs

.H
C

]
 1

3
Se

p
20

24

https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Ma, et al.

We implement ROPE through an assessment and training suite
that provides deliberate practice with LLM-generated feedback.
In a study with 30 novices, we show that requirement-focused
training doubles novices’ prompting performance, significantly out-
performing conventional prompt engineering training and prompt
optimization. We also demonstrate that high-quality LLM outputs
are directly tied to the quality of input requirements. Our work
paves the way for more effective task delegation in human-LLM
collaborative prompting.

CCS CONCEPTS

• Human-centered computing → Interactive systems and

tools; •Applied computing→Computer-assisted instruction;
• Computing methodologies→ Natural language generation.

KEYWORDS

LLM, prompt engineering, requirement engineering, end-user pro-
gramming
ACM Reference Format:

Qianou Ma, Weirui Peng, Hua Shen, Kenneth Koedinger, and Tongshuang
Wu. 2018. What You Say = What You Want? Teaching Humans to Articulate
Requirements for LLMs. In Woodstock ’18: ACM Symposium on Neural Gaze
Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA,
15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

General-purposeAIs like large-languagemodels (LLMs) have evolved
from simple next-word predictors [7] to powerful assistants capa-
ble of fulfilling complex user needs [23, 48, 53]. This improvement
in LLM instruction-following has encouraged users to delegate
increasingly intricate tasks to these models. In the early days of
prompt engineering, users primarily focused on refining the word-
ing of simple instructions to improve LLM output quality [26, 61].
Today, prompts resemble detailed “essays” that define LLM roles,
human preferences, and other task-specific requirements. Rather
than one-off small requests, these prompts start to power the gen-
eration of programs. On one hand, designers and developers now
write functional descriptions for LLM agents (e.g., Devin, SWE-
Agent) to translate into executable software code [27, 58, 68, 72].
On the other hand, everyday users can write complex prompts to
tailor general-purpose LLMs into special purpose LLM Applica-
tions. For instance, an LLM app (or a GPTs) like Trip Advisor1

(Figure 1D) can be built solely using prompts similar to Figure 1E.
These LLM applications function similarly to traditional software
and are accessible through LLM App Stores like GPT Store [1] and
FlowGPT [20], where they can be reused with a single click. In
just a few months, over 30,000 “LLM app developers” have created
millions of GPT apps, with the most popular ones being used more
than 5 million times [63, 78]. This trend signals a future of end-
user programming through natural language, where anyone
can create reusable programs just by writing prompts.

The future of writing prompt programs looks promising, but
status quo prompt engineering remains a challenge. Various studies
show that optimizing LLM outputs requires well-rounded prompts,
involving fluent writing, clear instructions, personas, formats, and
1https://chatgpt.com/g/g-K38J9feSL-trip-advisor

effective adaption of prompting techniques like Chain-of-Thought [8,
16, 21, 40, 41, 57]. These complexities often confuse novices, caus-
ing them to make ad hoc revisions to prompts without a clear
understanding of what needs improvement [77]. Recognizing the
challenge, the NLP community is developing prompt optimizers
to automate some prompt refinement steps, e.g., incorporating
role-plays, applying effective techniques, structuring prompts, and
enhancing text fluency (e.g., Figure 2, discussions in Section 2.2).

The rise of optimizers makes us think: What aspects of prompt
engineering should humans still master? We argue that the re-
maining part of manual prompt creation is akin to the core step
before programming: requirement articulation, where natural
language requirements are used to define and document how a sys-
tem should behave, including expected inputs and outputs [35] (e.g.,
“Ask follow-ups” for Trip Advisor app in Figure 1). Require-
ments are the backbone of program functionalities. The prompt in
Figure 2 drives a complex LLM adaptation because the user manu-
ally provided specific requirements. Customized requirements

are hard to predict, and thus difficult to fully automate and

must be written by humans. We argue that in a future where
prompt programs are common, individuals should develop profi-
ciency in requirement articulation. In other words, we need to

shift our focus towards Requirement-Oriented Prompt Engi-

neering, a novel paradigm that we call “ROPE”.
Articulating clear and complete requirements is a known chal-

lenge in software engineering [37, 44, 46], and poor requirements
often cause software failures [42]. This difficulty is amplified by
the unpredictable nature of LLMs, which complicates controlling
outputs [12, 15]. Even experts need multiple iterations to refine
requirements [59], and novices frequently make requirement mis-
takes [5]. Recognizing both the importance and difficulty of this
task, we pose the research question:Canwehelp end-users better

instruct LLMs to achieve their goals through ROPE training?

To answer this question, we develop the ROPE paradigm (Sec-
tion 3), along with the requirement-focused training and assess-
ments to (1) help users practice writing complete and correct re-
quirements, and (2) deepen our understanding of how requirements
affect the quality of LLM outputs. Specifically, we formalize tasks
(Section 4.1) with complex requirements (e.g., game development),
and design corresponding assessments (Section 4.2) that can mea-
sure the requirement quality, the LLM output quality, and their
correlations. We also design and implement an interactive training
mechanism (Section 4.3) that disentangles requirement articulation
from other adjacent prompting aspects. Our system supports deliber-
ate practice on requirement refinement by generating immediate
feedback grounded on oracle requirements.

We conduct a randomized controlled user study (Section 5) with
30 prompting novices, comparing the requirements users write
before and after training, and against a control group that re-
ceived standard prompt engineering training. We confirm that
our requirement-focused training is effective (Section 6): novices
receiving this training significantly improved their requirement
performances by two-fold in the pre-to-post test, achieved signif-
icantly more gains than the control group, and learned to iterate
on prompts in a more structured way towards requirements. More-
over, we confirm that requirements are indeed important for the
LLM generation: There is a strong positive correlation between the

https://doi.org/XXXXXXX.XXXXXXX
https://chatgpt.com/g/g-K38J9feSL-trip-advisor

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

If I am planning a trip, here is some
further information to ask me if I did
not provide: A. How long is your trip?
[redacted]

Format the output, starting with "Tl;dr:"
If I include [Itinerary=False] in the input,
don't show the itinerary. Format the
output as Tl;dr, What to Do, Where to
Stay, What to eat. One para per section.
If [Itinerary=True], [redacted]

1. Gather Information:
- Start by asking for the trip duration.
- [redacted]

2. Follow-Up Questions:
- If the user provides vague responses (e.g., "short

trip"), ask for clarification (e.g., "Do you mean a
weekend or 3-4 days?") [redacted]

- Avoid asking for lists or bullet points; keep the
interaction conversational and engaging.

4. Handle Missing Information: If after 2 rounds of
questioning the user hasn’t provided certain details,
use the data available to generate the itinerary.

3. Response Formatting:
- If the input includes [Itinerary=False], format

the output into four concise sections: a Tl;dr:
summary, What to Do, Where to Stay, and What
to Eat. Each section should be one paragraph long.

- If the input includes [Itinerary=True], [redacted]

based on my answer, ask me to specify
the answer, eg if I say short, ask me how
short it would be, a weekend or
something like 3-4 days?) [redacted]

don't ask me to give you the
information in a bullet point format,
make it more conversational, and if I
don't provide the answer after 2
rounds, just use the existing information
to give me a plan

● Automated by optimizers (Role play, Chain-of-Thought, rephrase...)
● Customized requirements (conditional input, formatting,...)

Human prompt Optimized prompt

Take a deep breath and work on this step-by-step.

Act like a professional travel advisor with 15 years
of experience in planning customized itineraries.
Objective: You should create a personalized itinerary
that meets all of users’ needs. [redacted]

Figure 2: Automatically refine a user’s prompt for Trip
Advisor using the optimizer Prompt Maker. Customized re-

quirements still need to come from the human prompt, while

the optimizer improves on fluency, role plays, structures, etc.

requirement qualities and the LLM output qualities. Importantly,
the training gains are complementary to potential improvements from
optimizers: Using a popular prompt optimizer, we observe that op-
timizers can indeed improve requirement quality, but they cannot
close the gap between the baseline and the training groups. We con-
clude with an in-depth discussion (Section 7) on future directions
for human training and optimizer design to enhance human-LLM
complementarity in ROPE. In summary, we contribute:
• We identify the significance of requirement-based prompting,

and propose the ROPE paradigm as a foundation for future
human-LLM task delegation in prompt engineering.

• To the best of our knowledge, we are the first to investigate
training specifically for requirement-based prompting. We de-
veloped tasks, assessments, and training systems that effectively
improve requirement generation skills.

• We provide both quantitative and qualitative insights for the
future of prompting, highlight the relationship between the qual-
ity of requirements and LLM performance, and discuss current
optimizers’ limitations and potentials.
As natural language prompt programs become more widespread,

everyone needs the skill to write good requirements.We believe that
with our ROPE paradigm, LLMs can empower anyone to program
reusable AI assistants.

2 RELATEDWORKS

We review three key areas relevant to our work: prompt engi-
neering, prompt optimization in natural language processing, and
requirement engineering in end-user software engineering. We
highlight a significant gap in the literature: the lack of requirement-
oriented prompt engineering training for end users, which we pro-
pose to address in this paper.

2.1 Current Prompt Engineering Practices and

Challenges

Prompt engineering (PE) has been essential for crafting effective
input instructions to guide LLMs toward generating desired out-
puts [6, 38, 77]. However, the non-deterministic nature of LLMs
makes it challenging for humans to predict LLMs’ behavior across
prompts [15, 49]. This leads to wasted time on unproductive strate-
gies, such as trivial wording changes [15, 19, 77]. While some chal-
lenges can be mitigated through automation (see Section 2.2), e.g.,
automating word choices, human requirements remains crucial
for customized or specialized tasks [38]. We define these task as
LLM-hard, as a simple prompt cannot produce a satisfactory re-
sponse. Developing reusable prompts for customized chatbots or
GPTs [6, 77] is a common LLM-hard task. While a prompt is an in-
put to LLMs, a reusable prompt is a set of instructions for recurring
goals, essentially functioning as a prompt program. As more users
create reusable prompts, the ability to write good prompt programs
with clear requirements becomes increasingly important.

However, prompt creation can be complex and inaccessible to
non-experts who lack technical knowledge of LLMs, highlighting
the need for more end-user prompt engineering (EUPE) scaffolding
and training [77]. Various strategies have been developed to support
PE, such as prompt technique catalog [8], chat-based tools like GPT-
builder,2 and toolkit for orchestrating complex tasks [10, 29, 69].
Each tool has trade-offs, balancing flexibility, precision, and techni-
cality. For example, chat-based tools may ask narrow clarifications
without fully understanding the context, leaving users to self-refine
requirements when LLM responses are open-ended [34, 51].

Existing PE training emphasizes the importance of explicitly
stating requirements within prompts [16, 41, 57], yet there is still
a lack of focused training on requirement generation skills for ev-
eryday users. Without training, non-experts often make mistakes
such as missing requirements and writing conflicting requirements
in prompts [15, 19, 44]. Even experts need many iterations to im-
prove their requirements for complicated LLM tasks [59]. However,
training novices on prompt engineering is difficult; for instance,
novice programmers may not improve at prompting within a 75
minute study when provided with test cases and generated code
as feedback [46]. We aim to address this gap by proposing a ROPE
training for end-users to improve their requirement engineering
skills in the context of prompt creation.

2.2 Instruction Following for Foundation

Models

Optimizing LLM performance on customized tasks typically follows
two approaches: improving the models directly, or refining prompts
with models fixed. The former has enabled the versatility of models
like GPT-4 [47], Gemini [14], and LLaMA 3 [3], which are fine-tuned
through instruction tuning [48] and further aligned with human
preferences using Reinforcement Learning from Human Feedback
(RLHF) [13]. For the latter, the NLP community has been explor-
ing LLMs’ capabilities to follow requirements (or “constraints”).
Various datasets have been proposed to assess whether LLMs can

2https://chatgpt.com/create

https://chatgpt.com/create

Conference’17, July 2017, Washington, DC, USA Ma, et al.

fulfill constraints, such as IFEval [80], INFOBench [53], and Follow-
Bench [25]. These datasets focus on evaluating models’ abilities to
handle compositional constraints, and have demonstrated promis-
ing advancements.

Our work hypothesizes that requirements can be central to
human-LLM interactions, as we have observed the LLM proficiency
in following instructions. However, existing requirement datasets
are often synthetic, containing prompts that are intentionally tricky
or unrealistic, with requirements generated automatically via tem-
plates and limited to certain categories (e.g., sentence or paragraph
length constraints, format constraints like output in JSON). While
useful for identifying LLM-hard problems for requirement-focused
training, these datasets do not fully capture how LLMs respond to
real-world user prompts. Human prompts may have more diverse
requirements across various tasks and less standardized language
— a gap we seek to fulfill in this paper.

Building on this foundation of instruction following, prompt op-
timizers have been proposed to improve the performance of frozen
LLMs on user-defined downstream tasks by automatically refin-
ing user-written prompts. Automation ranges from simple adjust-
ments like adding role-playing or chain-of-thought prompting [66]
(e.g., Prompt Maker in Figure 2) to more advanced methods like
TextGrad [76], which searches for optimal wording, and DSPy [62],
which extends the search space to few-shot prompts and various
prompting techniques. While these sophisticated methods make
more tailored changes, they are harder to apply and often require
access to labeled datasets. Despite being in early stages, these opti-
mizers aim to relieve humans from exhausting all possibilities in
the natural language prompting space, as automated experiments
with semantically-preserving edits can be more effective. We share
their vision and foresee a future where optimizers play a crucial
role in human-LLM interaction.

2.3 Requirements in Programming and

Software Engineering

In software engineering and end-user software engineering, re-
quirements describe what a human wants to achieve and how a
program should behave in the world [31]. They encompass all the
necessary conditions, constraints, and desired outcomes to ensure
the output aligns with the human’s needs and expectations. Re-
quirement engineering stems as a field that focuses on generating
and documenting requirements for software [64]. Good quality re-
quirements need to be accurate and complete, without commission
(inclusion of irrelevant or incorrect details) and omission (exclusion
of necessary details) defects [4]. Previous studies have identified
requirement engineering as a challenging skill to master. While
training mechanisms have been developed to help students avoid
commission and omission errors [45], a significant skill gap remains
between graduates and professional engineers [18, 54].

Parallels can be drawn between prompt engineering (PE) and
requirements engineering. For example, adapting LLMs to diverse
scenarios demands well-specified requirements, and prompt au-
thors often need to iterate on prompts that are too ambiguous for
the LLM to interpret [50]. While PE training stresses the importance
of clear requirements [16, 41, 57], this is often presented just as
one of many prompting principles (e.g., one of 26 [8]), limiting its

Human Compiler

refine requirements optimize prompts

LLMs

35

Figure 3: Our envisioned ROPE paradigm.

impact on prompt authors. In fact, little attention has been given
to explicitly training end-users on requirement engineering in the
context of prompt programs, including both natural-language-to-
code and natural-language driven GPT applications. While several
tools like EvalLM [30], SPADE [59], and EvalGen [60] have explored
extracting user criteria to support prompt evaluation, the concept
of requirements has not yet been fully emphasized in the context
of prompt construction. We aim to address this gap by introducing
the ROPE paradigm and developing a requirement-focused training
mechanism to help end-users more effectively instruct LLMs to
achieve their desired goals.

3 THE ROPE PARADIGM

We offer our definition of Requirement-Oriented Prompt Engineer-
ing (ROPE) and describe why, when, and who need it, and why
we propose a training toward ROPE in this work. In short, ROPE
represents a paradigm shift in how we interact with LLMs,

focusing on the importance of crafting accurate and com-

plete requirements to achieve better results, especially for

complex, customized tasks.

The definition of requirements. We define a requirement as
a skeleton instruction that communicates an essential condition
or constraint on desired LLMs output (e.g., “Response is less
than 100 words”). Requirements instruct LLMs to perform tasks
that may deviate from their default behavior, guiding LLMs to align
with user’s goals.

In our work, we focus on evaluating requirements quality rather
than quantity, and we operationalize requirement quality in our
work (defined in Section 4.2) by adopting a taxonomy from the
requirement engineering literature (Section 2.3). Ensuring require-
ments are accurate and complete is essential for effective LLM
prompting, as poor-quality requirements can lead to harmful out-
comes — e.g., missing requirement “anonymize the data” may
make LLMs keep identifiable information in data, and vague re-
quirement “delete harmful content” without a clear definition
of “harmful” may cause LLMs to misinterpret sensitive topics like
mental health or race as harmful.

Here we also focus on natural language requirements due to its
universal understanding and tight connection to LLM prompting.
While multi-modal requirements can be compiled into prompts for
different LLMs, we leave this exploration for future work.

The relation between requirements and prompts. We view
a prompt as a super-set of requirements. It contains not only users’
customized requirements, but also other (orthogonal) factors like
fluency and standard prompting tricks. Among these factors, re-
quirements are more user-centered and LLM-agnostic — users’ goals
generally remain consistent across models (e.g., GPT-4, Gemini).

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

Fully articulating these requirements is essential, as omitted cus-
tomized details can be difficult to recover automatically (explored
further below). In contrast, other factors tend to be more LLM-
centered: different models may prefer different writing styles, exam-
ple types, or requirement order. While optimizing these factors can
enhance LLM performance, they are better suited for automation
rather than humans due to their (1) formulaic nature (e.g., wrap-
ping prompts in a template consistently improves Llama-3-8b’s
performance on any task [2, 17]) and (2) idiosyncratic behavior
(e.g., GPT-3 can be sensitive to semantically invariant edits that hu-
mans do not expect to make drastic differences [77]). This division
is crucial given the rapid evolution of LLMs, as developing a mental
model for a specific LLM can be a waste of effort in the long run.

With this distinction, we view ROPE as a task-delegation strat-
egy. In crafting executable prompt programs, users should focus
on iterating and refining requirement-related components, leaving
other aspects automation. We find recent advancements in prompt
optimizers (Section 2.2) particularly promising. With a consistent
set of user requirements, we hope future optimizers could function
like program synthesizers, searching through possible “implementa-
tions” — in terms of phrasing, examples, and structure — to generate
prompts that best align with each LLM’s preferences.

The applicability of ROPE: LLM-hard tasks and prompt

programmers. In theory, any task can have countless require-
ments; for instance, implicit needs like “reply in the same
language” are almost always assumed in LLM applications. How-
ever, not all requirements need to be explicitly stated. For standard
tasks well-represented in LLM training data, e.g., “correct the
grammar in this email”, LLMs can meet expectations relying
on their parametric knowledge without explicit clarification (e.g.,
on what grammatical rules exist).

We argue that explicitly articulating requirements becomes more
crucial for what we refer to as LLM-hard tasks. These tasks require
significant customization where users must intentionally deviate
LLMs from their default behaviors [25, 53, 59], making autofulfill-
ment impossible (e.g., how many rounds of questions should be
asked in Figure 2). At the time of writing, tasks that involve multi-
step processes, decision-making, or context knowledge are likely
more LLM-hard and thus benefit more from explicit requirements.
However, this is a dynamic concept that evolves as LLMs improve.

Nowadays, LLMs are widely used by end user to create reusable
prompt programs, and these prompt programs are often LLM-hard,
as users frequently seek customization with various requirements,
anticipating diverse inputs and expected outputs. From content
creators crafting prompts for creative graphics, educators tailoring
LLMs as tutors, to office workers automating workflows with GPT,
people across various fields are all building natural language prompt
programs.3 We argue that all these potential prompt programmers
would benefit from articulating better requirements.4

3While a prompt program can output code like traditional natural language programs
[24, 55], it can also produce other outputs such as videos or GPTs applications. Note
that when we refer to natural language program later in the paper, we are generally
describing prompt programs.
4In contrast, more ad-hoc interactions with LLMs, such as casual conversations with
the model, may require a different set of considerations, which we consider beyond
the scope of this discussion.

The challenge ofROPE and the call for requirement-focused

training. Ideally, we hope LLM users would naturally refine re-
quirements in prompts based on unsatisfactory model outputs. In
reality, this is challenging. Novices struggle to understand what
constitutes a requirement in prompt engineering [77], while even
experienced users struggle at extracting and expressing requirements
appropriately. For example, users find it difficult to translate raw
observations on model outputs (“I don’t like how the chatbot didn’t
introduce itself”) to clear requirements (“Introduce yourself at the
start of the conversation, and state what you can helpwith”) [36, 50];
Users also cannot decide on the right level of specificity and ab-
straction [37], e.g., use overly general keywords where more gran-
ular, domain-specific requirements are needed for LLM-hard tasks
[44, 46].

We hypothesize that users need explicit guidance to prioritize
requirements during prompt creation. Effective training should help
users recognize the importance of clear, complete requirements
and develop skills that connect abstract ideas with concrete model
behaviors — goals we address in our training design.

4 TRAINING AND EVALUATION DESIGN FOR

ROPE

We develop a training and assessment suite to help users im-
prove their ability to write accurate and complete requirements
for instructing LLMs. We adopt a backward design method [67], a
well-established instructional design approach that starts by identi-
fying the desired learning outcomes — in our case, writing effective
requirements for LLMs — then works backward to develop assess-
ments and training aligned with goals. Aligned assessments and
training are critical to ensure that what is taught directly prepares
participants for the skills they are expected to demonstrate.

Through multiple pilot studies with novices and experts (𝑛 = 10),
we refine three key components of design: (1) realistic tasks that mir-
ror real-world prompting challenges (Section 4.1); (2) assessments
that connect requirement quality to LLM outcomes (Section 4.2);
and (3) deliberate practices with feedback in a system (Section 4.3).
Beyond training (Section 6), our ROPE assessment and materials
also enable us to build more nuanced understandings on how re-
quirements affect LLM outputs.

4.1 Task Design: LLM-Hard Prompt Programs

for Replication

We aim for novices to eventually develop the ability to articulate
requirements for their own prompt programs. However, to begin
their training, we need to provide a set of concrete sample tasks for
them to practice and for us to evaluate their progress. Below, we
outline the six carefully designed tasks.

Task setup. To ensure the training and evaluation process is
both realistic and representative, our primary objective is to have
users write natural language prompts to instruct LLMs in generating
programs. Instead of focusing on open-ended tasks — which are
difficult to assess and provide consistent feedback on — we aim to
provide clear ground truths for evaluation and training. To this end,
users are asked to write prompts that instruct LLMs to replicate a

Conference’17, July 2017, Washington, DC, USA Ma, et al.

GPTs Task Game Task

Task Type Customized LLM powered directly by natural language Natural Language to code (from CS assignment)

Example &

34 33

Requirements
(Rubrics)

1. Use follow-up questions to let the users clarify and specify their needs,
e.g., target audience, length, focus, tone, and style.
2. Offer advice for potential modification direction.
(6 in total)

1. Render the title Tic-Tac-Toe on top of the board.
2. Display the corresponding message (e.g. Red’s turn)
3. Key press ’r’ to restart the game & reinitialize the board.
(9 in total)

Specificity Higher-level requirements covering diverse category, but can have subjec-
tive interpretations

Lower level requirements akin to implementation specification but more
verifiable

Modality Convey requirements through textual examples — users are given 2-3 chat
histories as interaction examples. It is representative of status-quo prompt
iteration.

Convey requirements visually — users are given an interactive game. The
interaction reduces ambiguity that are common in example-based repre-
sentations and requires less English reading skills.

Table 1: An overview and comparison on the task types in our training.

given reference program. Each task consists of two key compo-
nents: (1) A gold reference program with which users can interact
with to deduce requirements; and (2) A set of gold requirements that
precisely reflect the program’s behavior. Ideally, an expert skilled in
requirement-driven prompt engineering should be able to express
all the gold requirements within their prompts, guiding the LLM to
generate a program that mirrors the reference program’s behavior
exactly.

This setup requires users to derive requirements from provided
examples.While different from generating requirements from scratch,
it captures actual challenges of requirement articulation, especially
for LLM-hard tasks in real-world (as described in Section 3): Users
often have access to partial inputs or examples like a demo or a
user story, often need to refine their requirements by analyzing
available outputs, but do not always know how to connect model
outputs with abstract requirements. We discuss potential future
work of open-ended tasks in Section 7.1.

Task selection and customization. To cover broad types of
realistic prompt programs users may write, we incorporate both
GPTs applications directly powered by natural languages, as well
as natural-language-to-code programs. We prioritize tasks most
suitable for targeted and engaging training, through two dimen-
sions: (1) we prioritize generic tasks over specialized ones (e.g., data
science tasks), to ensure that the challenge lies in specifying require-
ments rather than applying domain-specific expertise, preventing
construct irrelevance; and (2) we opt for tasks with visual interfaces,
enabling users to interact with and visualize outputs in a manner
that is accessible to novices.

With these criteria in mind, we select three GPT-driven tasks
—Outline Assistant, Trip Advisor, and Email Proofreader—

along with three coding tasks presented as visual game interfaces:
Connect4, Tic-Tac-Toe, and Tetris. All these tasks are inspired
by real-world applications and have reference requirements, though
we make necessary adaptations to ensure they are LLM-hard prob-
lems. The three game tasks are sourced from the Introduction to
CS course at our institution, each with reference requirements
provided by the instructor. They require minimal customization,
as instructors have already incorporated LLM-hard requirements
to prevent students from cheating using large language models.
For the three GPTs tasks, we adapt real-world GPTs prompts,5
and make them more LLM-hard by using frameworks like IFEval
to introduce customized requirements such as format constraints
[80]. We then derived the requirements by parsing the underlying
prompts through expert annotation and pilot testing.6

While these tasks are aligned for the training and assessment
design [67], they span a variety of application domains with unique
requirements, preventing novices from relying on memorization
and promoting meaningful learning. As shown in Table 1, the GPTs
and Game tasks also offer complementary coverage on requirement
specificity and modality.

Task validation. We distribute the six tasks in assessments
and training session. We use Tetris and Email Proofreader in
training, and the rest for pre- and post- assessments before and after
training in a counterbalanced design. In pilot studies, we confirmed
that (1) we could distinguish prompting novices and experts using
the tasks, with the average novice performance being 28% and

5Writing Assistant prompt: link, Trip Advisor prompt: link, Email Proofreader prompt:
link
6Detailed instruction to the task, as well as the requirement breakdown are in supple-
mental materials.

https://github.com/linexjlin/GPTs/blob/main/prompts/Writing%20Assistant.md
https://github.com/B3o/GPTS-Prompt-Collection/blob/main/17/Trip%20Advisor.md
https://github.com/linexjlin/GPTs/blob/main/prompts/Email%20Proofreader.md

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

expert achieving full scores, (2) all tasks could be implemented
by LLMs, with the average highest score being 91%, and (3) the
assessment tasks were all comparably challenging for users.

4.2 Assessment Design: Requirement-Focused

Intrinsic and Extrinsic Evaluation

To evaluate users’ ability to instruct LLMs effectively, we assess both
the quality of the user prompts (requirements within the prompt)
and the prompt’s impact on the quality of the LLM’s output. Thus,
for each user task completion, we calculate the Overall Test Score as
is the average of the Requirement Quality and LLM Output Quality
scores:
• Requirement Quality Score: This intrinsic metric assesses, “Does

the user’s prompt accurately and comprehensively cover all re-
quirements?” It measures the completeness and correctness of
the requirements by comparing those extracted from the user’s
prompt to expert-defined reference requirements for each task
(described in 4.1). Drawing from the requirements defect taxon-
omy [4, 43], we track both commission errors (incorrect, inconsis-
tent, or ambiguous requirements) and omission errors (missing
ground-truth requirements). Given the inherent ambiguity in
defining requirements and the varying levels of granularity (Sec-
tion 3), we break the prompt into one-sentence clauses to extract
individual requirements. The requirement quality is then opera-
tionalized as the percentage of requirement clauses that are free
from commission or omission defects.

• LLM Output Quality Score: This extrinsic metric evaluates, “Can
the user’s prompt successfully guide the LLM to achieve the
intended goals?” It measures the proportion of desired features
implemented in the LLM-generated output that align with the
reference (Section 4.1). We pass users’ prompts to GPT-4o and
compare the generated output to the reference program.7 Since
many features are difficult to evaluate automatically (e.g., GPTs
behaviors cannot always be checked via rules), we rely on man-
ual evaluation. For games, an expert interacts with the gener-
ated program to verify whether the requirement features are
correctly implemented. For GPT interactions, an expert grades
whether the GPTs’ replies display expected behaviors (e.g., ask-
ing a follow-up question when the user’s input is ambiguous).
We grade two to three complete conversations per GPTs, with 5
turns of GPTs responses each.

Assessment validation. Three of the authors discuss to iterate
the grading rubrics on the tasks during the pilot study. We confirm
that expert canmeasure requirement quality using the percentage of
correct requirement clauses in novice prompts, and that this corre-
lates positively with the expert’s judgement (Spearman’s 𝜌 = 0.66).
For grading in the user study (Section 5), two authors (one of whom
did not participate in the rubrics development during pilot) indepen-
dently grade 10% of the randomly chosen pre-post test responses.
We check the inter-rater reliability between the authors’ scoring by
calculating the Intraclass Correlation Coefficient (ICC) [33], find-
ing a strong reliability (𝐼𝐶𝐶 = 0.9, 95% Confidence Interval = [0.7,
0.98]). Any discrepancies in scoring are resolved through discussion,

7The output is generated using a prompt similar to “Follow this prompt:
{user_prompt}”. Further details are in the supplemental materials.

after which the authors individually grade half of the participants’
responses. Detailed rubrics are provided in supplemental materials.

4.3 Interactive Training Mechanism: Dedicated

Practice and Feedback on Requirement

Defects

We design a training mechanism to support deliberate practice on
requirement elicitation and refinement by disentangling require-
ment articulation from peripheral tasks like persona crafting or para-
phrasing in existing prompt engineering instructions. We apply key
learning principles like scaffolding and worked example [32], and
we implement the training into an interactive interface as shown
in Figure 4.

In this training, a user (a prompt novice) is asked to replicate
one Game task (Tetris) and one GPTs task (Email Proofreader),
solely by describing the requirements of the given program as accurate
and complete as possible. For example, to reproduce the customized
Tetris game in Figure 4, the user will first start by outlining the
main milestones (e.g., creating the game board, handling piece
placement, etc.), and then provide more detailed specification per
step (e.g., define the size of the game board). Novices are not ex-
pected to achieve full success on their first try; we use three types
of requirement-focused feedback to guide users in continuously
refining their requirements:

• Textual hint and clarification, via chatbot (Figure 4A):We create a
tutor chatbot to offer users a natural, conversational experience
to discuss and reflect on their requirements. For instance, the
chatbot may ask “What’s on top of the board?”, when a novice
misses the requirement for “Tetris title rendering”. The
textual feedback encourages critical thinking on missing or in-
correct requirements.

• Reference requirement example, via requirement working doc-
ument (Figure 4B): We progressively reveal reference require-
ments when users mention them during interaction with the
chatbot. The expert-written reference examples provide rein-
forcement on correct requirements, helping users understand how
to formalize and organize requirements.

• LLM output counterfactual, via generated visualization (Figure 4C):
For incorrect requirements that can be visually demonstrated,
we generate flawed programs by implementing incorrect require-
ments (e.g., wrong board dimensions), or maliciously misinter-
preting ambiguous requirements. For example, a vague require-
ment like “Use keys to move pieces” might result in a flawed
Tetris game where pieces can move upward, exposing the un-
specified allowed movement in requirement. The visual coun-
terfactual is currently limited to the controllable game code
generation; as GPTs outputs tend to be less predictable, we dis-
play static chat histories as illustrative examples for GPTs.

Note that our assessment tasks require users to write complete
prompts similar to those in Figure 2, we deliberately avoided having
users write prompts during training. Instead, users engage in con-
versational interactions designed to continuously encourage them
to think about requirements. Additionally, users’ written responses
do not directly trigger LLM output generations. We use reference re-
quirements to guide the LLM generation, ensuring that all feedback

Conference’17, July 2017, Washington, DC, USA Ma, et al.

C

B

A

Figure 4: Our ROPE training interface, with three types of feedback on requirement defects: (A) Conversation-based hints on
incomplete or inaccurate requirements, (B) Reference requirement examples to reinforce appropriately identified and expressed

requirements, and (C) LLM output counterfactual to support user’s reflection on incorrect or ambiguous requirements.

reflects the quality of the requirements alone. This approach en-
sures that novices remain focused on improving their requirement
articulation skills, without distractions from other factors.

Interaction and feedback implementation. We use OpenAI
GPT-4o to power the interface,8 leveraging its interactive nature
to adaptively provide feedback on the diverse set of possible user
inputs. However, feedback generation does not rely on the model’s
inherent reasoning capabilities but is anchored in our predefined
reference requirements. Specifically, we always haveGPT-4o to com-
pare the current user requirements to the reference, and select the
most critical defect to provide feedback on (roughly, mismatched re-
quirements are considered most critical, then missing requirements,
then ambiguous ones). Then, we have the LLM respond targetedly
to the defect. For example, visual counterfactual examples on game
tasks are generated by having the LLM minimally edit reference
Python code based on the identified incorrect requirement. To en-
hance interaction, we also implement features like highlighting
special variables (e.g., board, keystrokes) in conversations and as
hyperlinks for easy cross-referencing across the interface.

Validation on feedback generation. We analyze the interface
log data to evaluate the feedback quality In our user study (Sec-
tion 5), we collected a total of 635 interaction turns from Tetris
(ranging from 11 to 73 turns per user) and 180 turns from Email
Proofreader (ranging from 4 to 20 turns per user). From this,

8The state-of-the-art LLM at the time of writing: https://openai.com/index/hello-gpt-
4o/. We used a temperature of 0.3 for code generation and 0.7 for other tasks. Refer to
supplemental materials for our prompts.

we randomly selected 10 different users and annotated conver-
sations for 5 users per task, resulting in 151 Tetris turns, 66 Email
Proofreader turns, and a total of 113 annotations per feedback
type. For each LLM turn, we assess: 1) Is the feedback needed? 2)
Is the feedback provided? 3) Is the feedback right? Each feedback
was categorized as correct, incorrect, irrelevant, missing, or not
provided. Note that the correct feedback includes both feedback
that was correctly provided when needed, and feedback that was
correctly not provided when unnecessary.

Two authors independently annotated one participant’s chat
log for each task, and we measured Inter-Rater Reliability (IRR) by
calculating Krippendorff’s 𝛼 [9], achieving a high agreement rate
(𝛼 = 0.87) across all feedback types (see Table 2 for the detailed
breakdown). Any discrepancies were discussed and resolved, after
which one author completed the remaining annotations. The final
analysis revealed a correct feedback rate of 88.6%.

5 USER STUDY DESIGN

We conducted a user study to understand whether our requirement-
focused training is effective in improving novices on writing re-
quirements in prompts, and whether requirement-focused training
is more effective than status-quo prompt engineering training. We
also examined how automatic prompt optimization affects perfor-
mance.

Study procedure. Weemployed bothwithin-subject and between-
subject designs in our study. To capture the requirement-focused
training gains, we utilized a pre-test and post-test approach, a

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

Table 2: Proportions of feedback types across different feedback sources and IRR (Krippendorff’s 𝛼) of human annotations

Feedback Source

Right Feedback Wrong Feedback IRR (𝛼)
Correct Not Provided Total Incorrect Irrelevant Missing Total

Text 69.03% 20.35% 89.38% 10.62% 0.00% 0.00% 10.62% 0.86
Requirement Doc 48.67% 38.05% 86.73% 1.77% 5.31% 6.19% 13.27% 0.88
LLM Output 3.75% 86.25% 90.00% 0.00% 5.00% 5.00% 10.00% 0.68

Total Feedback 44.44% 44.12% 88.56% 4.58% 3.27% 3.59% 11.44% 0.87

standard instruction evaluation method [56], comparing partici-
pants’ performance on isomorphic tasks before and after training.
To compare requirement-focused training with standard training,
we utilized a randomized-control design. We randomly assigned
participants to either the experimental condition (ROPE group),
where they receive requirement-focused training in our interface,
or the control condition (PE group), where they receive a standard
prompt engineering tutorial and then self-practice using ChatGPT.

Our user study — for either the ROPE or the PE group — is
1.5 hours long. In the study, participants first completed a two-
minute pre-survey, providing demographic information and rating
their prior prompting experiences with 7-level Likert Scale ques-
tions. Then, they started a pre-test (20 minutes) to write prompts to
replicate key features on existing programs (Table 1) — one Game
(Tic-Tac-Toe or Connect4) and one GPTs (Outline Assistant
or Trip Advisor). They proceeded to the 40-minute training ses-
sion (different interfaces depending on experiment group) on two
tasks (Tetris and Email Proofreader), followed by a post-test
that contained different Game and GPTs tasks (20 minutes). To
further capture participants’ iterative prompting behaviors, for
the post-test GPTs task, participants were also asked to feed their
prompt into ChatGPT and iterate their original prompt by observ-
ing the ChatGPT outputs. They completed the study with another
two-minute post-survey, providing feedback with open-ended or
Likert Scale questions on their experience and perceptions during
the training. Participants were compensated with a $20 Gift Card.

Control group (PE) design. We designed the PE group to repli-
cate the “business-as-usual” scenario, where novices learn prompt
engineering through publicly available resources and self-practice.
Specifically, PE group participants first watched a 20-minute YouTube
tutorial,9 covering best prompting practices including clear instruc-
tions, adopting personas, specifying format, limiting the scope, and
few-shot prompting. The tutorial included various prompting ex-
amples such as poem writing, code-based data processing, essay
summarizing, etc. Afterward, participants self-practiced writing
prompts for the two training tasks, iterating with ChatGPT directly.
For the game task, we offered participants an online code compiler
so participants could see games rendered in real-time, similar to
the visual feedback in our interface (Figure 4C). Similar to the ROPE
group setup, our PE group offers practices on coding and GPTs
tasks to establish task familiarity. However, unlike our requirement-
focused training where users practice writing only requirements
without actually writing prompts, the conventional practice for
PE group directly train participants on writing prompts, which is
closer to what users actually write in pre-post tests, and the direct
9Relevant sections from Prompt Engineering Tutorial – Master ChatGPT and LLM
Responses

interaction with ChatGPT might help users build a better mental
model on LLM behaviors.

Data collection. We collected participants’ responses (prompts),
time on task, as well as interaction log data during the training
phase. Afterward, we collected the LLM outputs by feeding partici-
pant prompts into OpenAI GPT-4o.10 Using the evaluation method
and rubrics we developed for each of the assessment tasks Sec-
tion 4.2, we graded the pre- and post- tests using users’ original
prompts for all tasks from the test, on a scale of 0% to 100%. We
calculated the Overall Test Scores as the average of the Require-
ment Quality and LLM Output Quality scores. The pre- and post-
assessments each contained one Game task and one GPTs task (Sec-
tion 4.1), counterbalanced to mitigate problem sequencing bias or
different task difficulties. We found that the two versions of the
tests have comparable difficulties from pre-test results (an average
of 22.9% and 18.3% for each version).

To understand the effect of an optimizer on prompt (as discussed
in Section 2.2), we further use the Prompt Maker,11 a popular opti-
mizer with 50k usages in GPT Store, to refine participants’ original
prompts into optimized prompts. This optimizer is easily applicable
to any kinds of prompts (Figure 2 shows an example of its out-
put), though it is a rather preliminary version, as it rephrases user
prompts in a rule-based manner without criticizing the LLM out-
puts of the original prompt. We evaluated the optimized prompts
in the same way as the human prompts (Section 4.2), including
generating and grading corresponding LLM outputs.

Participants. We recruited users with limited or no NLP back-
ground from different institutions in the United States. We con-
ducted studies with 32 participants randomly assigned to the ROPE
or PE group, and we removed two participants who disengaged
during the study from the analysis. In total, we have 30 participants
(S1-30, 𝑛 = 15 for each condition) — 19 female, 10 male, 1 agender,
and 18 non-native English speakers, with an average age of 26.

6 USER STUDY RESULTS

6.1 Learning Gain: Requirement-focused

Training Helps Students Instruct LLMs

We start by answering our central research questions: Can we help
end-users better instruct LLMs through requirement-focused train-
ing? We quantitatively measured learning gains by capturing par-
ticipant performances from the pre-test to post-test within each

10We used default settings such as a temperature of 1, please refer to our supplemental
materials for more details.
11https://chatgpt.com/g/g-hhh4w3eov-prompt-maker: from a simple prompt to an
optimized prompt.

https://www.youtube.com/watch?v=_ZvnD73m40o
https://www.youtube.com/watch?v=_ZvnD73m40o
https://chatgpt.com/g/g-hhh4w3eov-prompt-maker

Conference’17, July 2017, Washington, DC, USA Ma, et al.

experiment group, and evaluated the effectiveness of the two train-
ing approaches by comparing the ROPE and PE group. We further
unpacked the quantitative results through analyses of participants’
Likert Scale ratings, as well as the transcribed comments during
their training session and in post surveys.

Requirement-focused training is effective. Using a two-
tailed paired t-test,12 we found that test scores for participants in
the ROPE group significantly improved by 19.8% from pre- to post-
test (𝑝 < 0.001, from 20.0% ± 14.6% to 39.8% ± 18.8%), a two-fold
increase. This demonstrated that requirement-focused training en-
abled participants to instruct LLMs more effectively, and we achieved
our desired goal: to concentrate users’ attention on only requirement
iterations during the training, but make sure users can still apply their
learning in overall prompt writing. Analyzing requirement defects
in ROPE participants’ prompts, we observed a noticeable decrease
in omission errors (from 5.6 to 3.2 per participant), but a slight
increase in commission errors (from 0.5 to 0.7 per participant). This
indicated that participants became more aware of requirements, but
need additional training for requirements clarity and accuracy.

ROPE participants’ self-reflection highlighted that they under-
stand the value of emphasizing and iterating on requirements, which
may contribute to their improvement. Six ROPE participants explic-
itly noted the connection between requirements and prompts in
their post-survey. For example, S30 described requirements as a way
“to be more clear and not confuse the system by giving too much
unnecessary information”, and S8 noted that a requirement-focused
approach helped them organize their thoughts: “I learned to orga-
nize my requirements logically so we can easily revise and improve
them”. S10 neatly described their shift towards requirement-focused
prompting strategy: “sometimes when I write prompts, [I find] steps
are hard to be clearly divided, or I didn’t consider to divide them
that detailed. However, it’s important to do so, as it appears to give
LLM more direct and clear instruction. When the steps are divided,
it’s easier to see the missing details in my original prompts too”.

Requirement-focused training is more effective than stan-

dard prompt engineering practice. From the post-test prompt
data, we observed that requirement-focused training and standard
practice had distinct effects on how participants wrote prompts.
ROPE group spent more time (19 minutes vs. 14 minutes) and wrote
longer prompts (796 vs. 458 characters) than the PE group. In 100
randomly selected pairwise comparisons, ROPE participants pro-
duced more structured prompts 87% of the time, consistent with
their self reflections reported above.

These prompt also revealed learning gain differences. A two-
sample t-test showed that the ROPE achieved significantly higher
learning gains compared to the PE group (𝑝 < 0.001). In fact, while
ROPE significantly improved (19.8% as mentioned above), we did
not observe much gain in PE group’s pre-to-post score (1.2%). The
contrast suggested that novices indeed could not acquire requirement
articulation skills through standard prompting training alone.

12We did a linear mixed effects regression to account for the correlation across par-
ticipants and task (both as random effects) of the repeated measures for the pre- and
post-test times and for the requirement and LLM output scores. We found the same
pattern of significant results as revealed by the t-tests.

Participant feedback supported our hypothesis that requirement
articulation skills do not naturally emerge. While we hoped inter-
acting with LLMs would help participants build mental models of
LLM behaviors, PE participants found the LLM response too unpre-
dictable for effective self-practice. Similar to prior work reporting
the challenges of prompting nondeterministic LLM [46, 77], many
got frustrated during their unfruitful self-practice sessions: “I was
confident with my communication ability at first but later during
the tasks I was frustrated with my communication skill with AI”
(S11). The unpredictability distracted participants from applying
the best practices taught in the tutorial, as S19 noted: “I lost some
of the concepts at the end that looked very minor in determining
the effectiveness of the prompt”.

Requirement-focused training encouraged more targeted

and iterative prompting. The aforementioned pre- and post-tests
analyses revealed participants’ learning gains in writing initial
prompts for natural language programs. Beyond initial prompts,
we analyzed participants’ prompt iteration behaviors on the GPTs
tasks at the end of post-tests. We observed that requirement-focused
training led users’ to make more requirement-related changes during
iterations.

In the PE group, most participants either chose not to make any
iterations (5 out of 15) or only made superficial edits (e.g., altering
wording or grammar, 8 out of 15), with only 2 adjusting prompt re-
quirements. In contrast, after ROPE training, participants were more
likely to engage in substantive requirement engineering, updating or
adding specific requirements instead of making random edits typi-
cal of end-user prompt engineering. Eight of 15 ROPE participants
made meaningful requirement adjustments (5 were fully successful,
2 made partial progress, and 1 introduced an incorrect requirement).
Participants were also aware of their requirement-centric iterations:
“[My strategies were to] break down my requirement into several
key points, use examples, iterate, self-check if more details are
needed, or if more steps should be elaborated, ..., see the test result
using examples” (S10). Overall, ROPE training effectively equipped
users with a more structured and systematic approach to prompt
generation.

Key to success: deterministic feedback as a jump start.
Looking at both learning gains and behavioral changes, we spec-
ulate that the success of requirement-focused training stemmed
from our use of requirement-focused feedback.

Requirement articulation was challenging for all participants,
as shown by the low pre-test scores (20% for the ROPE and 23% for
the PE). This poor starting point likely hindered the PE’s ability to
receive useful feedback during self-practice, as their requirements
were too weak for the LLM to generate “good enough” model out-
put with clear indicators on what to improve. Consequently, PE
participants were trapped and frustrated by LLM unpredictability
— S6 noted that “ChatGPT is a very malleable tool and can change
responses pretty drastically depending on the prompt”, and S7 com-
mented that “if ChatGPT doesn’t get it, I might not be patient”.

In contrast, our feedback loop for ROPE (Section 4.3) provided
tightly controlled feedback and program output based on the re-
quirements users specified, regardless of grammatical issues or
natural language variances. S8 highlighted that: “It’s easy to un-
derstand (very logical) and can see how the changes and revises

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

influences the system immediately”. This deterministic feedback
reinforced ROPE participants’ believes on the importance of clear
requirements, leading to them writing better initial prompts with
more requirements in the post-test.We hypothesize that these better
initial prompts might also becomemore suitable for further iteration.
Although still imperfect, ROPE participants’ prompts might allow
the LLM to generate partially correct outputs that contain enough
signal towards future improvements.

We suspect that effective prompt engineering training does re-
quire deterministic scaffolding. Novices may need reinforcement
outside of LLM feedback until they reach a level where interpreting
LLM responses becomes valuable.

6.2 In-depth Analysis: The Validity of ROPE

Paradigm

Going beyond learning gains, we dive deeper into the connections
between requirement in prompts and LLM output quality, as well
as the role of optimizers.

Requirement quality vs. LLM output quality: promising

correlation with nuances. To examine whether more correct and
complete requirements led to better LLM outputs, we calculated
the correlation between the two components of our Overall Test
Scores: Requirement Quality Score and LLM Output Quality Score. We
found a strong positive correlation, with a Spearman’s correlation
coefficient of 𝜌 = 0.72.

However, task-specific analysis revealed nuances. As shown in
Figure 5, while all other tasks achieved 𝜌 ≥ 0.88, Connect4 did
not show any correlation. Besides one ROPE participant who scored
80% on requirement quality and 70% on LLM output in their post-
test Connect4, all other participants’ LLM output scores saturated
around 40% even with high requirement quality ≥ 80%.

Upon reviewing user prompts and LLM outputs, we suspected
that Connect4 had fewer natural-language-to-code mappings in
GPT-4o’s training data.13 Consequently, the model encountered
difficulties implementing uncommon requirements in code for
Connect4, such as “Cross out the winning cells”, which
only succeeded in 1 out of 16 prompts. Moreover, as shown in Fig-
ure 5, Connect4 prompts formatted as code implementation plans
produced better results than casual narrative prompts, even with
the same number of requirements. After we reformatted all game
prompts into similar formats with the optimizer, the correlation
between requirement and LLM output for Connect4 increased from
𝜌 = 0.02 to 𝜌 = 0.3, partially supporting our hypothesis. In con-
trast, Tic-Tac-Toe did not exhibit such sensitivity, likely due to a
broader variety of rules in LLM’s training data. GPTs tasks did not
have this problem since both the prompt and implementation are
in natural language.

We further analyzed how different types of requirement defects
impact LLM output quality. We found that the numbers of omission
errors (incomplete requirements) had a stronger negative impact
on LLM Output Quality Score (𝜌 = −0.4) compared to commission
errors (inaccurate requirements) (𝜌 = 0). This suggests that while
LLMs can correct inaccuracies in requirements, they struggle to

13Confirming these hypotheseswould needmore systematic probing and quantification
[52], which we defer to future work.

fill in missing information — further highlighting the importance of
training humans to express all their necessary requirements.

Our findings complement existing existing instruction follow-
ing research [25, 80], which tend rely on synthetic prompts with
perfectly written requirements of a fixed set of common constraint
types (Section 2.2). Our results highlight the need for further inves-
tigation into how imperfect user requirements — both in content
and format — interact with inherent LLM biases.

Optimizer improves prompts but introduces biases too.
Finally, we evaluated how the optimizer affected prompt quality,
experimenting on a single optimizer to explore feasibility, without
generalizing to all optimizers (Section 7.1).

We first noticed that the Prompt Maker optimizer effectively en-
hanced user prompts by adding elements such as role-playing and
chain-of-thought, making prompts more structured and fluent, as
shown in Figure 2. Besides formatting, the optimizer also made di-
rect modifications to requirements; on average, it added 0.5 missing
requirements and corrected 0.3 inaccurate requirements, reducing
omission errors from 4.4 to 3.9 and commission errors from 0.6 to
0.3 per participant across all prompts. These changes significantly
improved overall test scores, as shown by a paired t-test for all
users’ prompts before and after optimization (𝑝 < 0.001).

It seemed like there exist some requirements that were LLM-hard
but not optimizer-hard. For example, GPT-4o would not implement
“Display messages for a tie game” unless explicitly prompted,
but the optimizer would automatically add this requirement to
user prompts. However, highly customized requirements, such as
“Cross out the winning cells”, were never automatically added
(0 out of 51) without explicit user input.

Importantly, the optimizer could not close the performance gap
between the ROPE and PE group. We computed the gains of PE partici-
pants after using the optimizer (8.8% = optimized prompts’ post-test
scores − original prompts’ pre-test scores). Using a two-sample t-
test, the ROPE’s 19.8% pre- to post-test gains remained significantly
higher (𝑝 = 0.01) than PE group’s optimized gains (8.8%). This sup-
ports the finding that missing, highly customized requirements are
unlikely to be added automatically.

While the optimizer generally had a positive impact, we also
observed instances where it misinterpreted user inputs or added ir-
relevant details. For instance, for four out of five participants who
requested an alphabetic list (A, B, C), the optimizer changed it to a
numbered list. In some cases, these misinterpretations drastically
reduced LLM performance. For example, two participants used
the word “interactive” in their prompt, leading the optimizer to
incorrectly add the role of “intensive interactive web application
developer” and request the use of “Flask and HTML” in the op-
timized prompts, leading to poorly implemented code since it is
much harder to generate a functional web app.

These issues highlight gaps in user-expressed requirements and
LLM-received requirements, suggesting that future training should
address the risks of misinterpretation by either the LLM or the
optimizer (Section 7.2). On a more positive note, such misinterpre-
tations could provide useful feedback in the future, alerting users to
potential misalignment between their requirements and the LLM’s
understanding.

Conference’17, July 2017, Washington, DC, USA Ma, et al.

requirement = 78%, LLM output = 70%

You will help me create a interactable web game using Python. It will
be "Connect4" game.
1. Set up the space

- Put "Connect 4" as a title on top.
- Beneath, put text that indicates status.
- Beneath, draw 6x7 grid. The lines are black.
- Leave the grid as empty. Each cells will be empty (default state)

2. Define the status [redacted]

Implement Connect4 in Python. The user interface should show the
game's name and the player's turn. White background. The game area
is defined by a square divided into 42 equal squares, in a 6x7 array.

There are 2 players in the game, player x and player o. When it is player
x's turn, he will choose a column and an "x" will appear on the first
available (empty) square, starting from the bottom. Then it will be
player o turn and the game will proceed the same way, … [redacted]

You will write a Python code for me. Here you will make a Tic-Tac-Toe
game that can be playable on web. There are in total two players that
are represented as 'red' or 'blue'.

Make a title on the top that says 'Tic-Tac-Toe'. Then break a line. In the
second line, you will display two states of the game. One is which
player's turn it is. Second is after the game is finished, who won the
game. Then beneath that, you will make a 3x3 grid... [redacted]

Step 1: create the game board
- render a 3x3 grid board
- write "Tic-Tac-Toe" on the top
- there are two players in the game with color red or blue; Write

who's turn currently in a smaller font under "Tic-Tac-Toe" title at
the top of the board.

- initialize with all empty cells and Red's Turn
Step 2. Handle player movement … [redacted]

C
o
n
n
e
c
t
4

T
i
c
-
T
a
c
-
T
o
e

Task 𝜌

GPTs tasks

Trip Advisor
Outline Assistant

0.88
0.88

Game tasks

Tic-Tac-Toe
Connect4

0.89
0.02

Overall 0.72

requirement = 89%, LLM output = 78%

requirement = 78%, LLM output = 33%

requirement = 89%, LLM output = 89%

A

B

Figure 5: (A) Spearman correlation (𝜌) between LLM Output and Requirement Score by Tasks. (B) A comparison between the

prompt format sensitivity of Connect4 and Tic-Tac-Toe. We suspect the low correlation Connect4 on requirement vs. LLM

output quality is due to the lack of natural-language-to-code mapping in LLM training on this task, making it more sensitive to

prompt formats.

7 DISCUSSION

In this work, we introduce Requirement-Oriented Prompt Engi-
neering (ROPE), a human-AI collaborative prompting paradigm
where humans focus on effective requirements specification. Our
evaluation shows that requirement-focused training significantly
enhances novices’ ability to extract and articulate requirements
in prompts, leading to more goal-aligned LLM outputs; we also
notice mismatch between humans’ under-specified requirements
and LLMs’ misinterpretations is a key communication barrier (Sec-
tion 6.2). While our work made an important step toward ROPE,
several limitations remain, and there are many interesting questions
to explore. Here, we reflect on possible immediate extensions on
requirement-focused training, as well as the longer-term evolution
of the ROPE paradigm.

7.1 Limitations and Next Steps on

Requirement-Focused Training

Our training program significantly improved participants’ ability
to extract and articulate requirements, though the skill remains
challenging. Post-training assessments showed an average score
of 40%, with the top performer increasing from 24% to 63%. To
further improve the effectiveness of requirement-focued training,
we propose several next steps.

One easy extension is to make the training session longer. We
observed that the 40-minute training time was difficult for non-
native English speakers, and participants had limited opportunities
for iteration due to time constraints. Future work should explore
longer training sessions and adaptations for users with varying
language proficiencies.

In addition to extending length, broadening the scope of the
training will help improve the generalizabilty. Our study showed
that the skills gained transferred to new GPTs and game develop-
ment tasks. However, an open question remains: how well do these
skills apply to other tasks like data analysis or creative content gen-
eration? Fortunately, our ROPE interface is adaptable to different
tasks, as training can be generated based on provided reference

requirements and LLM outputs. We plan to open-source ROPE and
encourage its use for customized tasks across domains.

Besides length, our training can also be broadened for better
generalzability. Our study demonstrated that the requirement spec-
ification skills users acquired through training generalized to new
GPTs and Game development tasks. However, an open question
remains: how broadly do these requirement skills transferred to
other natural language programming tasks (e.g., data analysis or
creative content generation)? Fortunately, our ROPE interface is
adaptable to different tasks, as the training and feedback loop can
be easily generated based on provided reference requirements and
LLM outputs. We plan to open-source ROPE and encourage its use
for customized tasks across domains. Moreover, beyond human-AI
interactions, ROPE skills — such as requirement extraction, itera-
tive refinement — can be broadly applicable to fields like software
engineering and design. Future research should explore further
transfer tasks in assessments, and also how ROPE skills may en-
hance communication, problem decomposition, and computational
thinking across various fields.

Another dimension of generalizability is towards users’ different
prompting behaviors. Our study focused on reverse engineering
fixed requirements, which allowed for controlled feedback but did
not fully capture real-world prompting scenarios: users often en-
gage in one-off interactions (e.g., direct question-answering) or
iterative and open-ended prompting (e.g., chatting with LLMs on
a rough idea), etc. [30, 59]. Future studies should investigate more
self-directed tasks, compare different types of prompting, and tai-
lor training accordingly. While providing feedback without clear
requirements may be challenging, pre-generated materials on com-
mon novice approaches could offer useful scaffolding.

One primary bottleneck for broadening the scope is our lack of
automatic assessment methods for the LLM-hard tasks. Our time-
consuming manual grading effort limited our ability to conduct
more experiments by e.g., grading multiple LLM outputs per user
prompt for stability, experimenting with multiple optimizers, etc.
Future work should explore automatic assessments and their trade-
offs. For example, LLM-as-a judge paired with few-shot prompting

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

might provide reasonable estimations [79], and might be suitable
for tasks that contain substaintial numbers of requirements where
wrong gradings on a single requirement dot not drastically affect
the assessment results.

7.2 Reflection on the ROPE Paradigm

Along with prior work on requirement-oriented evaluation [30], we
believe that ROPEmoves us towards a future where requirements

serve as the central interface between AI and humans. Here,
we discuss key skills humans and LLMs need to develop to prepare
for a ROPE future.

What should humans be equipped with for ROPE? end-to-

end prompting skills. To ensure success of ROPE, multiple skills
need to be cultivated among humans. Our training successfully
helped users develop the ability to extract requirements from given
examples and express them completely and correctly, but our study
also revealed more opportunities in requirement iteration and test-
ing skills of an end-to-end prompting procedure. Specifically, users
need to identify examples to compare LLM outputs and adjust the
requirements accordingly.

For example, users should create diverse and representative exam-
ples to identify and test requirements, particularly for ambiguous or
open-ended tasks involving edge cases or complex interactions. In
our study, many users, especially those unfamiliar with games like
Connect4, missed the testing scenarios like a tie game, which led
them to omit the requirement “Display a "Tie Game!" message
if no player wins” in their prompt. This is consistent to findings
in debugging training [39] and other end-user prompt engineering
work [77], as novices often create too few test examples. Future
studies should support users to generate more testing examples.

Additionally, users should iterate requirement granularity based
on task “LLM-hardness.” This involves observing LLM failures and
refining requirements, essentially developing a theory of mind for
LLMs [65]. Some of our participants was already thinking about
“what is obvious enough for ChatGPT to already understand/per-
form well on” (S28) and adjust their prompt accordingly (although
not necessarily correctly). In our training, we introduced the con-
cept of requirement specificity in Tetris, where users generate
requirements in two levels of granularity (i.e., main steps and details,
Section 4.3). However, some tasks required even greater specificity,
such as generating non-standard Connect4 gameplay elements
“Cross out winning cells”. This ability to adjust specificity in
requirements can be influenced by domain expertise, for example,
expert developers can iterate prompts with more accurate details to
successfully generate code while students often struggle [44]. Fu-
ture studies should offer adaptive support for adjusting requirement
granularity based on task complexity and user expertise.

What should optimizers and LLMs be capable of forROPE?

support complementary task delegation. For a successfulROPE
future, optimizers and LLMs must develop complementary capabil-
ities to support human skills.

First, as humans improve on articulating good requirements,
optimizers should test different “implementations” of requirements.
This includes varied wordings, alternative expressions (e.g., zero-
shot descriptions or few-shot examples), and the order, hierarchy,

or strictness of requirement compositions. Optimizers should also
dynamically group the same requirements presented in multiple
formats to reveal which (combinations of) requirements are missing
or ambiguous.

Second, optimizers can also assist test data synthesis. More ad-
vanced optimizers need to iterate prompts on validation datasets
and automatic objective functions, similar to machine learning.
Insights from software engineering test automation [28] or NLP
approaches to extract or synthesize test cases from natural language
requirements could be helpful [22, 70, 71, 74].

Finally, LLMs or optimizers should explicitly communicate their
interpretations and reveal biases in their implementation. As we
observed in our study, optimizers can misinterpret requirements
or add unnecessary details (e.g., “interactive game” can lead to
unwanted features like Flask integration). LLMs should explicitly
communicate their understandings of user intent, such as translat-
ing ambiguous natural language requirements into more formal
specifications [37, 73], asking clarifying questions [11, 34, 51], or ex-
tracting and refining generated criteria [30, 75]. This is not a perfect
solution, as models’ translations may still reflect their biases and
models maymiss to ask about LLM-hard requirements. Nonetheless,
to correctly implement requirements in LLM outputs when what
is LLM-hard keep evolving, humans need to learn when and how
to specify requirements with more granularity, and models need
to keep communicating what requirements might be LLM-hard or
LLM-conflict.

8 CONCLUSION

In this work, we advocate for focusing prompt engineering effort
on human-centered tasks, ensuring users include all necessary re-
quirements in their prompt to achieve goals. We introduce the
Requirement-Oriented Prompt Engineering (ROPE) paradigm, and
design training materials where prompting novices practice require-
ment articulation on complex prompting tasks. We also develop
aligned assessment metrics capturing both intrinsic quality of user
prompts in terms of requirement quality, as well as the extrinsic
quality of prompt effectiveness in achieving intended outcomes.
By providing targeted feedback on requirements, our ROPE sys-
tem helps users produce higher-quality requirements and prompts
more effectively than traditional prompt engineering training. As
we look to the future, it is clear that the demand for LLM-based
applications will only grow. As LLMs become more integrated into
complex task-solving for more users, the ability to clearly articulate
requirements will be key to effectively guide LLMs. We believe that
users should be equipped with the foundational skills to prepare
for the ROPE future, and the right training will empower users to
harness the full potential of LLMs.

ACKNOWLEDGMENTS

Thanks to all the participants for the pilot, interview, and user
study in this work. Thanks to Kelly Rivers, Michael Taylor, Michael
Hilton, Michael Xieyang Liu, Xinran Zhao, Chenyang Yang, Lauren
Sands, Austin Schick, David Kosbie, and Daniel Anderson for all
the insights, advice, and help. Thanks to CMU HCII faculty and
Ken’s lab for feedback.

Conference’17, July 2017, Washington, DC, USA Ma, et al.

REFERENCES

[1] [n. d.]. Introducing the GPT Store. https://openai.com/index/introducing-the-
gpt-store/. Accessed: 2024-9-2.

[2] [n. d.]. Llama 3. https://llama.meta.com/docs/model-cards-and-prompt-formats/
meta-llama-3/. Accessed: 2024-9-11.

[3] Meta AI. 2023. LLaMA 3: Achieving More with Less Data. (2023).
[4] Amira A Alshazly, Ahmed M Elfatatry, and Mohamed S Abougabal. 2014. De-

tecting defects in software requirements specification. Alex. Eng. J. 53, 3 (Sept.
2014), 513–527. https://doi.org/10.1016/j.aej.2014.06.001

[5] Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q
Feldman, and Carolyn Jane Anderson. 2023. StudentEval: a benchmark of
student-written prompts for large language models of code. arXiv preprint
arXiv:2306.04556 (2023).

[6] Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Ni-
hal V Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid
Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Canwen
Xu, Gunjan Chhablani, HanWang, Jason Alan Fries, Maged S Al-shaibani, Shanya
Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir Radev,
Mike Tian-Jian Jiang, and Alexander M Rush. 2022. PromptSource: An integrated
development environment and repository for natural language prompts. arXiv
[cs.LG] (Feb. 2022). arXiv:2202.01279 [cs.LG] http://arxiv.org/abs/2202.01279

[7] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[8] SondosMahmoud Bsharat, AidarMyrzakhan, and Zhiqiang Shen. 2023. Principled
instructions are all you need for questioning llama-1/2, gpt-3.5/4. arXiv preprint
arXiv:2312.16171 (2023).

[9] Santiago Castro. 2017. Fast Krippendorff: Fast computation of Krippendorff’s
alpha agreement measure. https://github.com/pln-fing-udelar/fast-krippendorff.

[10] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
[11] John Chen, Xi Lu, Michael Rejtig, David Du, Ruth Bagley, Michael S Horn, and

Uri J Wilensky. 2024. Learning Agent-based Modeling with LLM Companions:
Experiences of Novices and Experts Using ChatGPT & NetLogo Chat. arXiv
[cs.HC] (Jan. 2024). arXiv:2401.17163 [cs.HC] http://arxiv.org/abs/2401.17163

[12] Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin,
Ashish Tiwari, and Austin Z Henley. 2023. Conversational Challenges in AI-
Powered Data Science: Obstacles, Needs, and Design Opportunities. arXiv [cs.HC]
(Oct. 2023). arXiv:2310.16164 [cs.HC] http://arxiv.org/abs/2310.16164

[13] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017. Deep reinforcement learning from human preferences. InAdvances
in neural information processing systems. 4299–4307.

[14] Google DeepMind. 2023. Gemini 1 Technical Report. (2023).
[15] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie

Amarouche, Brett A Becker, and Brent N Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2024). Association for Computing Machinery, New York, NY, USA, 296–302.
https://doi.org/10.1145/3626252.3630909

[16] Michael Desmond and Michelle Brachman. 2024. Exploring prompt engineering
practices in the enterprise. arXiv [cs.HC] (March 2024). arXiv:2403.08950 [cs.HC]
http://arxiv.org/abs/2403.08950

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[18] Anna Eckerdal, Robert McCartney, Jan Erik Moström, Mark Ratcliffe, and Carol
Zander. 2006. Can graduating students design software systems? SIGCSE Bull.
38, 1 (March 2006), 403–407. https://doi.org/10.1145/1124706.1121468

[19] Molly Q Feldman and Carolyn Jane Anderson. 2024. Non-expert programmers
in the generative AI future. In Proceedings of the 3rd Annual Meeting of the
Symposium on Human-Computer Interaction for Work. ACM, New York, NY, USA.
https://doi.org/10.1145/3663384.3663393

[20] FlowGPT. [n. d.]. FlowGPT - The Ultimate Library of ChatGPT Prompts. https:
//flowgpt.com/. Accessed: 2024-9-2.

[21] freeCodeCamp.org. 2023. Prompt Engineering Tutorial – Master ChatGPT and
LLM Responses. https://www.youtube.com/watch?v=_ZvnD73m40o

[22] Vahid Garousi, Sara Bauer, and Michael Felderer. 2020. NLP-assisted software
testing: A systematic mapping of the literature. Inf. Softw. Technol. 126, 106321
(Oct. 2020), 106321. https://doi.org/10.1016/j.infsof.2020.106321

[23] Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. 2024. From
Complex to Simple: Enhancing Multi-Constraint Complex Instruction Following
Ability of Large Language Models. arXiv preprint arXiv:2404.15846 (2024).

[24] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the syntax and
strategies of natural language programming with generative language models. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–19.

[25] Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi,
Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. 2023. FollowBench: A Multi-
level Fine-grained Constraints Following Benchmark for Large Language Models.
arXiv [cs.CL] (Oct. 2023). arXiv:2310.20410 [cs.CL] http://arxiv.org/abs/2310.
20410

[26] Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. 2020. How can we
know what language models know? Transactions of the Association for Computa-
tional Linguistics 8 (2020), 423–438.

[27] Carlos E Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, Ofir Press,
and Karthik R Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues?. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=VTF8yNQM66

[28] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). Association for Computing Ma-
chinery, New York, NY, USA, 654–665. https://doi.org/10.1145/2635868.2635929

[29] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi,
Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. 2023.
DSPy: CompilingDeclarative LanguageModel Calls into Self-Improving Pipelines.
arXiv preprint arXiv:2310.03714 (2023).

[30] Tae Soo Kim, Yoonjoo Lee, Jamin Shin, Young-Ho Kim, and Juho Kim. 2023.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-
Defined Criteria. arXiv [cs.HC] (Sept. 2023). arXiv:2309.13633 [cs.HC] http:
//arxiv.org/abs/2309.13633

[31] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The state of the art in end-user software engineering. ACM Comput. Surv. 43, 3
(April 2011), 1–44. https://doi.org/10.1145/1922649.1922658

[32] Kenneth R Koedinger, Julie L Booth, and David Klahr. 2013. In-
structional Complexity and the Science to Constrain It. Science
342, 6161 (2013), 935–937. https://doi.org/10.1126/science.1238056
arXiv:https://www.science.org/doi/pdf/10.1126/science.1238056

[33] Terry K Koo and Mae Y Li. 2016. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J. Chiropr. Med. 15, 2 (June 2016),
155–163. https://doi.org/10.1016/j.jcm.2016.02.012

[34] Shuvendu K Lahiri, Aaditya Naik, Georgios Sakkas, Piali Choudhury, Curtis von
Veh, Madanlal Musuvathi, Jeevana Priya Inala, Chenglong Wang, and Jianfeng
Gao. 2022. Interactive code generation via test-driven user-intent formalization.
ArXiv (2022). https://doi.org/10.48550/ARXIV.2208.05950 arXiv:2208.05950

[35] A van Lamsweerde. 2009. Requirements engineering: from system goals to UML
models to software specifications. John Wiley & Sons, Ltd.

[36] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What it wants me to
say”: Bridging the abstraction gap between end-user programmers and code-
generating large language models. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1–31.

[37] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI ’23, Article 598). Association for
Computing Machinery, New York, NY, USA, 1–31. https://doi.org/10.1145/
3544548.3580817

[38] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. arXiv [cs.CL] (July 2021).
arXiv:2107.13586 [cs.CL] http://arxiv.org/abs/2107.13586

[39] Qianou Ma, Hua Shen, Kenneth Koedinger, and Sherry Tongshuang Wu. 2024.
How to teach programming in the AI era? Using LLMs as a teachable agent for
debugging. In 25th International Conference on Artificial Intelligence in Education
(AIED) (Lecture notes in computer science). Springer Nature Switzerland, Cham,
265–279. https://doi.org/10.1007/978-3-031-64302-6_19

[40] Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo, and Joyce Nakatumba-
Nabende. 2024. Prompt Engineering in Large Language Models. In Algo-
rithms for Intelligent Systems. Springer Nature Singapore, Singapore, 387–402.
https://doi.org/10.1007/978-981-99-7962-2_30

[41] Bertalan Meskó. 2023. Prompt engineering as an important emerging skill for
medical professionals: Tutorial. J. Med. Internet Res. 25, 1 (Oct. 2023), e50638.
https://doi.org/10.2196/50638

[42] Lynette I Millett, Martyn Thomas, and Daniel Jackson. 2007. Software for depend-
able systems: Sufficient evidence? National Academies Press.

[43] Lloyd Montgomery, Davide Fucci, Abir Bouraffa, Lisa Scholz, and Walid Maalej.
2022. Empirical research on requirements quality: a systematic mapping study.
Requir Eng 27, 2 (Feb. 2022), 183–209. https://doi.org/10.1007/s00766-021-00367-z

https://openai.com/index/introducing-the-gpt-store/
https://openai.com/index/introducing-the-gpt-store/
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
https://doi.org/10.1016/j.aej.2014.06.001
https://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
https://github.com/pln-fing-udelar/fast-krippendorff
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2401.17163
http://arxiv.org/abs/2401.17163
https://arxiv.org/abs/2310.16164
http://arxiv.org/abs/2310.16164
https://doi.org/10.1145/3626252.3630909
https://arxiv.org/abs/2403.08950
http://arxiv.org/abs/2403.08950
https://doi.org/10.1145/1124706.1121468
https://doi.org/10.1145/3663384.3663393
https://flowgpt.com/
https://flowgpt.com/
https://www.youtube.com/watch?v=_ZvnD73m40o
https://doi.org/10.1016/j.infsof.2020.106321
https://arxiv.org/abs/2310.20410
http://arxiv.org/abs/2310.20410
http://arxiv.org/abs/2310.20410
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/2635868.2635929
https://arxiv.org/abs/2309.13633
http://arxiv.org/abs/2309.13633
http://arxiv.org/abs/2309.13633
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1126/science.1238056
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1238056
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.48550/ARXIV.2208.05950
https://arxiv.org/abs/2208.05950
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
https://doi.org/10.1007/978-3-031-64302-6_19
https://doi.org/10.1007/978-981-99-7962-2_30
https://doi.org/10.2196/50638
https://doi.org/10.1007/s00766-021-00367-z

ROPE: Requirement-Oriented Prompt Engineering Conference’17, July 2017, Washington, DC, USA

[44] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. 2023. In-IDE Generation-based Information Support with a Large
Language Model. arXiv [cs.SE] (July 2023). arXiv:2307.08177 [cs.SE] http:
//arxiv.org/abs/2307.08177

[45] Vicente Lustosa Neto, Roberta Coelho, Larissa Leite, Dalton S Guerrero, and
Andrea P Mendonça. 2013. POPT: A Problem-Oriented Programming and Testing
approach for novice students. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 1099–1108. https://doi.org/10.1109/ICSE.2013.6606660

[46] Sydney Nguyen, Hannah Mclean Babe, Yangtian Zi, Arjun Guha, Carolyn Jane
Anderson, and Molly Q Feldman. 2024. How Beginning Programmers and Code
LLMs (Mis)read Each Other. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI ’24, Article 651). Association for Computing
Machinery, New York, NY, USA, 1–26. https://doi.org/10.1145/3613904.3642706

[47] OpenAI. 2023. GPT-4 Technical Report. (2023).
[48] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[49] Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv preprint arXiv:2308.02828 (2023).

[50] Savvas Petridis, Benjamin D Wedin, James Wexler, Mahima Pushkarna, Aaron
Donsbach, Nitesh Goyal, Carrie J Cai, and Michael Terry. 2024. Constitution-
maker: Interactively critiquing large language models by converting feedback
into principles. In Proceedings of the 29th International Conference on Intelligent
User Interfaces. 853–868.

[51] Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong
Zhang, Jie Zhou, Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2024. Tell Me
More! Towards Implicit User Intention Understanding of Language Model Driven
Agents. arXiv [cs.CL] (Feb. 2024). arXiv:2402.09205 [cs.CL] http://arxiv.org/abs/
2402.09205

[52] Cheng Qian, Xinran Zhao, and Sherry Tongshuang Wu. 2023. “merge conflicts!”
exploring the impacts of external distractors to parametric knowledge graphs.
arXiv [cs.CL] (Sept. 2023). arXiv:2309.08594 [cs.CL] http://arxiv.org/abs/2309.
08594

[53] Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang
Wang, Xuansheng Wu, Fei Liu, Pengfei Liu, and Dong Yu. 2024. InFoBench:
Evaluating Instruction Following Ability in Large Language Models. arXiv
[cs.CL] (Jan. 2024). arXiv:2401.03601 [cs.CL] http://arxiv.org/abs/2401.03601

[54] Alex Radermacher, Gursimran Walia, and Dean Knudson. 2014. Investigating the
skill gap between graduating students and industry expectations. In Companion
Proceedings of the 36th International Conference on Software Engineering (ICSE
Companion 2014). Association for Computing Machinery, New York, NY, USA,
291–300. https://doi.org/10.1145/2591062.2591159

[55] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. 2015. Composi-
tional program synthesis from natural language and examples. In Proceedings of
the 24th International Conference on Artificial Intelligence (IJCAI’15). AAAI Press,
792–800. https://doi.org/10.5555/2832249.2832359

[56] Jekaterina Rogaten, Bart Rienties, Rhona Sharpe, Simon Cross, Denise Whitelock,
Simon Lygo-Baker, and Allison Littlejohn. 2019. Reviewing affective, behavioural
and cognitive learning gains in higher education. Assessment & Evaluation in
Higher Education 44, 3 (April 2019), 321–337. https://doi.org/10.1080/02602938.
2018.1504277

[57] Douglas C Schmidt, Jesse Spencer-Smith, Quchen Fu, and Jules White. 2024.
Towards a catalog of prompt patterns to enhance the discipline of prompt en-
gineering. ACM SIGAda Ada Lett. 43, 2 (June 2024), 43–51. https://doi.org/10.
1145/3672359.3672364

[58] Inbal Shani. 2023. Survey reveals AI’s impact on the developer experi-
ence. https://github.blog/news-insights/research/survey-reveals-ais-impact-on-
the-developer-experience/. Accessed: 2024-9-2.

[59] Shreya Shankar, Haotian Li, Parth Asawa, Madelon Hulsebos, Yiming Lin, J D
Zamfirescu-Pereira, Harrison Chase, Will Fu-Hinthorn, Aditya G Parameswaran,
and Eugene Wu. 2024. SPADE: Synthesizing Data Quality Assertions for Large
Language Model Pipelines. arXiv [cs.DB] (Jan. 2024). arXiv:2401.03038 [cs.DB]
http://arxiv.org/abs/2401.03038

[60] Shreya Shankar, J D Zamfirescu-Pereira, Björn Hartmann, Aditya G
Parameswaran, and Ian Arawjo. 2024. Who Validates the Validators? Align-
ing LLM-Assisted Evaluation of LLM Outputs with Human Preferences. arXiv
[cs.HC] (April 2024). arXiv:2404.12272 [cs.HC] http://arxiv.org/abs/2404.12272

[61] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, EricWallace, and Sameer Singh.
2020. Autoprompt: Eliciting knowledge from language models with automatically
generated prompts. arXiv preprint arXiv:2010.15980 (2020).

[62] Arnav Singhvi, Manish Shetty, Shangyin Tan, Christopher Potts, Koushik Sen,
Matei Zaharia, and Omar Khattab. 2023. DSPy Assertions: Computational Con-
straints for Self-Refining Language Model Pipelines. arXiv [cs.CL] (Dec. 2023).
arXiv:2312.13382 [cs.CL] http://arxiv.org/abs/2312.13382

[63] Dongxun Su, Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang. 2024.
Gpt store mining and analysis. arXiv preprint arXiv:2405.10210 (2024).

[64] Gursimran SinghWalia and Jeffrey C Carver. 2009. A systematic literature review
to identify and classify software requirement errors. Information and Software
Technology 51, 7 (July 2009), 1087–1109. https://doi.org/10.1016/j.infsof.2009.01.
004

[65] Qiaosi Wang, Sarah Walsh, Mei Si, Jeffrey Kephart, Justin D. Weisz, and Ashok K.
Goel. 2024. Theory of Mind in Human-AI Interaction. In Extended Abstracts of
the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA ’24).
Association for Computing Machinery, New York, NY, USA, Article 493, 6 pages.
https://doi.org/10.1145/3613905.3636308

[66] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[67] Grant P Wiggins and Jay McTighe. 2005. Understanding by Design. ASCD.
https://play.google.com/store/books/details?id=N2EfKlyUN4QC

[68] Ben Wodecki. 2024. Devin: AI Software Engineer that Codes Entire Projects from
Single Prompt. https://aibusiness.com/automation/ai-software-engineer-devin-
codes-entire-projects-from-single-prompt. Accessed: 2024-9-2.

[69] Yue Wu, Yewen Fan, So Yeon Min, Shrimai Prabhumoye, Stephen McAleer,
Yonatan Bisk, Ruslan Salakhutdinov, Yuanzhi Li, and Tom Mitchell. 2024. Agen-
tKit: Flow Engineering with Graphs, not Coding. arXiv [cs.AI] (April 2024).
arXiv:2404.11483 [cs.AI] http://arxiv.org/abs/2404.11483

[70] Chenyang Yang, Rishabh Rustogi, Rachel Brower-Sinning, Grace Lewis, Christian
Kaestner, and Tongshuang Wu. 2023. Beyond Testers’ Biases: Guiding Model
Testing with Knowledge Bases using LLMs. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 13504–13519.
https://doi.org/10.18653/v1/2023.findings-emnlp.901

[71] Chenyang Yang, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Yining Hong, Grace A.
Lewis, Tongshuang Wu, and Christian Kaestner. 2024. What Is Wrong with My
Model? Identifying Systematic Problems with Semantic Data Slicing. In the 39th
IEEE/ACM International Conference on Automated Software Engineering.

[72] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. 2024. SWE-agent: Agent-Computer Inter-
faces Enable Automated Software Engineering. (2024). arXiv:2405.15793 [cs.SE]

[73] Pradyumna Ym, Vinod Ganesan, Dinesh Kumar Arumugam, Meghna Gupta,
Nischith Shadagopan, Tanay Dixit, Sameer Segal, Pratyush Kumar, Mohit Jain,
and Sriram Rajamani. 2023. PwR: Exploring the role of representations in con-
versational programming. arXiv [cs.HC] (Sept. 2023). arXiv:2309.09495 [cs.HC]
http://arxiv.org/abs/2309.09495

[74] Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay
Krishna, Jiaming Shen, and Chao Zhang. 2024. Large language model as attrib-
uted training data generator: A tale of diversity and bias. Advances in Neural
Information Processing Systems 36 (2024).

[75] Weizhe Yuan, Pengfei Liu, and Matthias Gallé. 2024. LLMCRIT: Teach-
ing Large Language Models to Use Criteria. arXiv [cs.CL] (March 2024).
arXiv:2403.01069 [cs.CL] http://arxiv.org/abs/2403.01069

[76] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos
Guestrin, and James Zou. 2024. TextGrad: Automatic “Differentiation” via Text.
arXiv [cs.CL] (June 2024). arXiv:2406.07496 [cs.CL] http://arxiv.org/abs/2406.
07496

[77] J D Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23, Article 437). Association for Computing Machinery,
New York, NY, USA, 1–21. https://doi.org/10.1145/3544548.3581388

[78] Zejun Zhang, Li Zhang, Xin Yuan, Anlan Zhang, Mengwei Xu, and Feng Qian.
2024. A first look at gpt apps: Landscape and vulnerability. arXiv preprint
arXiv:2402.15105 (2024).

[79] L Zhao, W Alhoshan, A Ferrari, K J Letsholo, and others. 2021. Natural language
processing for requirements engineering: A systematic mapping study. ACM
Computing (2021). https://dl.acm.org/doi/abs/10.1145/3444689

[80] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu,
Yi Luan, Denny Zhou, and Le Hou. 2023. Instruction-following evaluation for
Large Language Models. arXiv [cs.CL] (Nov. 2023). arXiv:2311.07911 [cs.CL]
https://github.com/google-research/

https://arxiv.org/abs/2307.08177
http://arxiv.org/abs/2307.08177
http://arxiv.org/abs/2307.08177
https://doi.org/10.1109/ICSE.2013.6606660
https://doi.org/10.1145/3613904.3642706
https://arxiv.org/abs/2402.09205
http://arxiv.org/abs/2402.09205
http://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2309.08594
http://arxiv.org/abs/2309.08594
http://arxiv.org/abs/2309.08594
https://arxiv.org/abs/2401.03601
http://arxiv.org/abs/2401.03601
https://doi.org/10.1145/2591062.2591159
https://doi.org/10.5555/2832249.2832359
https://doi.org/10.1080/02602938.2018.1504277
https://doi.org/10.1080/02602938.2018.1504277
https://doi.org/10.1145/3672359.3672364
https://doi.org/10.1145/3672359.3672364
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://arxiv.org/abs/2401.03038
http://arxiv.org/abs/2401.03038
https://arxiv.org/abs/2404.12272
http://arxiv.org/abs/2404.12272
https://arxiv.org/abs/2312.13382
http://arxiv.org/abs/2312.13382
https://doi.org/10.1016/j.infsof.2009.01.004
https://doi.org/10.1016/j.infsof.2009.01.004
https://doi.org/10.1145/3613905.3636308
https://play.google.com/store/books/details?id=N2EfKlyUN4QC
https://aibusiness.com/automation/ai-software-engineer-devin-codes-entire-projects-from-single-prompt
https://aibusiness.com/automation/ai-software-engineer-devin-codes-entire-projects-from-single-prompt
https://arxiv.org/abs/2404.11483
http://arxiv.org/abs/2404.11483
https://doi.org/10.18653/v1/2023.findings-emnlp.901
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2309.09495
http://arxiv.org/abs/2309.09495
https://arxiv.org/abs/2403.01069
http://arxiv.org/abs/2403.01069
https://arxiv.org/abs/2406.07496
http://arxiv.org/abs/2406.07496
http://arxiv.org/abs/2406.07496
https://doi.org/10.1145/3544548.3581388
https://dl.acm.org/doi/abs/10.1145/3444689
https://arxiv.org/abs/2311.07911
https://github.com/google-research/

	Abstract
	1 Introduction
	2 Related Works
	2.1 Current Prompt Engineering Practices and Challenges
	2.2 Instruction Following for Foundation Models
	2.3 Requirements in Programming and Software Engineering

	3 The ROPE Paradigm
	4 Training and Evaluation Design for ROPE
	4.1 Task Design: LLM-Hard Prompt Programs for Replication
	4.2 Assessment Design: Requirement-Focused Intrinsic and Extrinsic Evaluation
	4.3 Interactive Training Mechanism: Dedicated Practice and Feedback on Requirement Defects

	5 User Study Design
	6 User Study Results
	6.1 Learning Gain: Requirement-focused Training Helps Students Instruct LLMs
	6.2 In-depth Analysis: The Validity of ROPE Paradigm

	7 Discussion
	7.1 Limitations and Next Steps on Requirement-Focused Training
	7.2 Reflection on the ROPE Paradigm

	8 Conclusion
	Acknowledgments
	References

