Logical Foundations of Cyber-Physical Systems 01: Cyber-Physical Systems: Overview

Stefan Mitsch

Outline

CPS: Introduction

- Hybrid Systems & Cyber-Physical Systems
- Robot Labs

2 Course: Logical Foundations of Cyber-Physical Systems

- Educational Approach
- Objectives
- Outline
- Labs
- Assessment
- Resources

Outline

CPS: Introduction

- Hybrid Systems & Cyber-Physical Systems
- Robot Labs

2 Course: Logical Foundations of Cyber-Physical Systems

- Educational Approach
- Objectives
- Outline
- Labs
- Assessment
- Resources

3 Summary

Cyber-Physical Systems Analysis: Aircraft Example

Cyber-Physical Systems

CPSs combine cyber capabilities with physical capabilities to solve problems that neither part could solve alone.

André Platzer, Stefan Mitsch (CMU)

LFCPS/01: Overview

CPSs Promise Transformative Impact!

Prospects: Safe & Efficient

Driver assistance Autonomous cars Pilot decision support Autopilots / UAVs Train protection Robots near humans

Prerequisite: CPSs need to be safe

How do we make sure CPSs make the world a better place?

- Depends on how it has been programmed
- And on what will happen if it malfunctions

Depends on how it has been programmed

And on what will happen if it malfunctions

Course Rationale

- Safety guarantees require analytic foundations.
- 2 A common foundational core helps all application domains.
- Foundations revolutionized digital computer science & our society.
- Need even stronger foundations when software reaches out into our physical world.

Depends on how it has been programmed

And on what will happen if it malfunctions

Course Rationale

- Safety guarantees require analytic foundations.
- A common foundational core helps all application domains.
- Foundations revolutionized digital computer science & our society.
- Need even stronger foundations when software reaches out into our physical world.

CPSs deserve proofs as safety evidence!

CPS Analysis

Challenge (CPS)

Describe state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

CPS Analysis

Challenge (CPS)

Describe state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

Hybrid Systems Versus Cyber-Physical Systems

Technical characteristics:

Definition (Cyber-Physical Systems)

(Distributed networks of) computerized control for physical system Communication, computation, and control for physics

We will model CPSs as Hybrid Systems

Mathematical model for complex physical systems:

Definition (Hybrid Systems)

Systems with interacting discrete and continuous dynamics

✓ Design, model✓ Verify

✓ Design, model✓ Verify

- Design, model
- Verify

- Design, model
- Verify

- Design, model
- 🗸 Verify

- Design, model
- 🗸 Verify

- Design, model
- Verify

What is safety?

Never drive past the goal? Positive distance to all obstacles always? What if they are moving?

What is safety?

Never drive past the goal? Positive distance to all obstacles always? What if they are moving?

How to balance safety with achieving goals?

What is safety?

Never drive past the goal? Positive distance to all obstacles always? What if they are moving?

How to balance safety with achieving goals? What if staying put is safe but not useful? What if there are conflicting goals?

What is safety?

Never drive past the goal? Positive distance to all obstacles always? What if they are moving?

Findings of formal models relate to reinforcement learning!

What is safety?

Never drive past the goal? Positive distance to all obstacles always? What if they are moving?

Findings of formal models relate to reinforcement learning! Reward functions and reward shaping

André Platzer, Stefan Mitsch (CMU)

LFCPS/01: Overview

Outline

CPS: Introduction

- Hybrid Systems & Cyber-Physical Systems
- Robot Labs

2 Course: Logical Foundations of Cyber-Physical Systems

- Educational Approach
- Objectives
- Outline
- Labs
- Assessment
- Resources

André Platzer, Stefan Mitsch (CMU)

LFCPS/01: Overview

LFCPS/01 9 / 18

How to Learn Cyber-Physical Systems Foundations?

Onion Model

- Going outside in
- Onpeel layer by layer
- Progress when all prereqs are covered
- First study CS medskip math medskip engineering
- Talk about CPS in the big finale

Scenic Tour Model

- Start at the heart: CPS
- Go on scenic expeditions into various directions
- Explore the world around us as we find the need
- Stay on CPS the whole time
- Leverage CPS as the guiding motivation for understanding more about connected areas

Logical scrutiny, formalization, and correctness proofs are critical for CPS!

- CPSs are so easy to get wrong.
- Petrofitting CPSs for safety is not possible.
- These logical aspects are an integral part of CPS design.
- Oritical to your understanding of the intricate complexities of CPS.
- Tame complexity by a simple programming language for core aspects.

About Logical Foundations of Cyber-Physical Systems

- Foundations!
- Modeling & Control
 - Understand the core principles behind CPSs.
 - 2 Develop models and controls.
 - Identify the relevant dynamical aspects.
- Computational Thinking
 - Identify safety specifications and critical properties of CPSs.
 - Inderstand abstraction in system design.
 - Express pre- and postconditions for CPS models.
 - Use design-by-invariant.
 - Season rigorously about CPS models.
 - Verify CPS models of appropriate scale.
- CPS Skills
 - Understand the semantics of a CPS model.
 - 2 Develop an intuition for operational effects.
 - Identify control constraints.
 - Understand opportunities and challenges in CPS and verification.
- Byproducts
 - Well-motivated exposure to numerous math and science areas in action.

identify safety specifications for CPS rigorous reasoning about CPS understand abstraction & architectures programming languages for CPS verify CPS models at scale

M&C

cyber+physics models core principles of CPS relate discrete+continuous semantics of CPS models operational effects identify control constraints opportunities and challenges

CPS

Textbook and Course Outline

I Part: Elementary Cyber-Physical Systems

- 2. Differential Equations & Domains
- 3. Choice & Control
- 4. Safety & Contracts
- 5. Dynamical Systems & Dynamic Axioms
- 6. Truth & Proof
- 7. Control Loops & Invariants
- 8. Events & Responses
- 9. Reactions & Delays

II Part: Differential Equations Analysis

- 10. Differential Equations & Differential Invariants
- 11. Differential Equations & Proofs
- 12. Ghosts & Differential Ghosts
- 13. Differential Invariants & Proof Theory
 - III Part: Adversarial Cyber-Physical Systems
- -17. Hybrid Systems & Hybrid Games
 - IV Part: Comprehensive CPS Correctness

Logical Foundations of Cyber-Physical Systems

Robot Model Labs

- Robot on Rails
 - a Autobots, Roll Out
 - O Charging Station
- 8 Robot on Highways: Follow the Leader
 - with event-triggered control
 - with time-triggered control
- 8 Robot on Racetracks
 - stay on the circular racetrack
 - slow down to avoid collisions
- 8 Robot in a Plane
 - a with obstacle avoidance
 - Bobot vs. Roguebot: don't collide with moving obstacles
- Sobot in Star-lab: self-defined final project
- Final project presentation

Assessment

٩	TODO: Read Course Policies	► Syllabus
٩	${\approx}5\%$ Theory assignments, ${\approx}22\%$ quizzes	Due at midnight
•	pprox29% Labs, $pprox$ 22% final project	
	 Betabot in first week Veribot in second week 	Due at beginning of lecture Due at midnight
٩	Whitepaper	For final project
٩	Proposal	For final project
٩	Term paper	Due with final project
٩	Final project presentation	Fri Dec 9
٩	pprox11% Midterm I	In class
•	\approx 11% Midterm II	In class

• Partner allowed for labs only and only starting in lab 2

é Platzer, Stefan Mitsch (CMU)

Resources

Prerequisites					
15-122 Principles of Imperative Computation	if-then-else				
21-120 Differential and Integral Calculus	<i>x</i> ′				
(21-241 Matrix algebra or					
15-251 Great Theoretical Ideas in Computer Science or	Math proofs				
18-202 Mathematical Foundations of Electrical Engineering)					
Substitutes: 21-242 Matrix theory or 21-341 Linear algebra I for 21-241					

- You are expected to follow extra material in the textbook.
- Further reading and background material on the course web page
- Check course web page periodically https://www.cs.cmu.edu/~smitsch/courses/lfcps22
- KeYmaera X: aXiomatic Tactical Theorem Prover for Hybrid Systems
- Diderot, Office Hours, Ask!

Outline

CPS: Introduction

- Hybrid Systems & Cyber-Physical Systems
- Robot Labs

2 Course: Logical Foundations of Cyber-Physical Systems

- Educational Approach
- Objectives
- Outline
- Labs
- Assessment
- Resources

Logical Foundations of Cyber-Physical Systems

Logical foundations make a big difference for CPS, and vice versa

differential dynamic logic dL = DL + HP

Course content

- Analytic foundations
- Practical reasoning
- Significant applications
- Catalyze many science areas

Skills

- Model dynamical systems
- ② Combine simple dynamics
- Tame complexity
- Verification and validation

Numerous wonders remain to be discovered!

André Platzer, Stefan Mitsch (CMU)

LFCPS/01: Overview

Logical Foundations of Cyber-Physical Systems

Logical foundations make a big difference for CPS, and vice versa

differential dynamic logic

 $\mathsf{dL}=\mathsf{DL}+\mathsf{HP}$

KeYmaera X

	ara X Model				Help -		
Pro Pro	positional -	 Normalize Hybrid Program 	D Step back ms - Differe	ntial Equa	tions -	=	
Base case 4		Use case 5		Induction step 6			
loop	• • x≥0 • v≥0	⊢ ' [x:=x+1	; ∪ {x'=v}] x≥0	[U] [a	∪ b]P ⊷[a]F	P∧[b]P	
B 1000	x≥0,v≥0	⊢ [{x:=x+	l; ∪ {x'=v}}*] x	≥0			
→R	•	⊢ x≥0∧v≥	$0 \rightarrow [\{x:=x+1;$	∪ {x'=v∧t	rue}}*] x≥	0	_

Numerous wonders remain to be discovered!

Course content

- Analytic foundations
- Practical reasoning
- Significant applications
- Catalyze many science areas

André Platzer, Stefan Mitsch (CMU)

LFCPS/01: Overview