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Learning Objectives
Differential Equations & Domains

CT

M&C CPS

semantics of differential equations
descriptive power of differential equations

syntax versus semantics

continuous dynamics
differential equations

evolution domains
first-order logic

continuous operational effects
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)(
y ′(t) = f (t,y)
y(t0) = y0

)
Intuition:

1 At each point in space, plot the value
of RHS f (t,y) as a vector

2 Start at initial state y0 at initial time t0
3 Follow the direction of the vector

The diagram should really show
infinitely many vectors . . .

Point mass motion ODE: x ′ = v ,v ′ = a

Newton’s law of cooling ODE: x ′ = k(T − x)
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Intuition for Differential Equations
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(
x(t + ∆) := x(t) + 1

4x(t)∆
x(0) := 1

)
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The Meaning of Differential Equations

1 What exactly is a vector field?
2 What does it mean to describe directions of evolution at every point in

space?
3 Could these directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure
 

We immediately want to get into the habit of
studying the behavior and exact meaning

of all relevant aspects of CPS.
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Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)
f : D→ Rn on domain D ⊆ R×Rn (i.e., open connected set). Then
Y : I→ Rn is solution of initial value problem (IVP)(

y ′(t) = f (t,y)
y(t0) = y0

)
on the interval I ⊆ R, iff, for all times t ∈ I,

1 defined (t,Y (t)) ∈ D
2 time-derivative Y ′(t) exists and satisfies Y ′(t) = f (t,Y (t)).
3 initial value Y (t0) = y0

If f ∈ C(D,Rn), then Y ∈ C1(I,Rn).
If f continuous, then Y continuously differentiable.

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 7 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)
f : D→ Rn on domain D ⊆ R×Rn (i.e., open connected set). Then
Y : I→ Rn is solution of initial value problem (IVP)(

y ′(t) = f (t,y)
y(t0) = y0

)
on the interval I ⊆ R, iff, for all times t ∈ I,

1 defined (t,Y (t)) ∈ D

2 time-derivative Y ′(t) exists and satisfies Y ′(t) = f (t,Y (t)).
3 initial value Y (t0) = y0

If f ∈ C(D,Rn), then Y ∈ C1(I,Rn).
If f continuous, then Y continuously differentiable.

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 7 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)
f : D→ Rn on domain D ⊆ R×Rn (i.e., open connected set). Then
Y : I→ Rn is solution of initial value problem (IVP)(

y ′(t) = f (t,y)
y(t0) = y0

)
on the interval I ⊆ R, iff, for all times t ∈ I,

1 defined (t,Y (t)) ∈ D
2 time-derivative Y ′(t) exists and satisfies Y ′(t) = f (t,Y (t)).

3 initial value Y (t0) = y0

If f ∈ C(D,Rn), then Y ∈ C1(I,Rn).
If f continuous, then Y continuously differentiable.

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 7 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)
f : D→ Rn on domain D ⊆ R×Rn (i.e., open connected set). Then
Y : I→ Rn is solution of initial value problem (IVP)(

y ′(t) = f (t,y)
y(t0) = y0

)
on the interval I ⊆ R, iff, for all times t ∈ I,

1 defined (t,Y (t)) ∈ D
2 time-derivative Y ′(t) exists and satisfies Y ′(t) = f (t,Y (t)).
3 initial value Y (t0) = y0

If f ∈ C(D,Rn), then Y ∈ C1(I,Rn).
If f continuous, then Y continuously differentiable.

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 7 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)
f : D→ Rn on domain D ⊆ R×Rn (i.e., open connected set). Then
Y : I→ Rn is solution of initial value problem (IVP)(

y ′(t) = f (t,y)
y(t0) = y0

)
on the interval I ⊆ R, iff, for all times t ∈ I,

1 defined (t,Y (t)) ∈ D
2 time-derivative Y ′(t) exists and satisfies Y ′(t) = f (t,Y (t)).
3 initial value Y (t0) = y0

If f ∈ C(D,Rn), then Y ∈ C1(I,Rn).
If f continuous, then Y continuously differentiable.

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 7 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Outline

1 Learning Objectives

2 Introduction

3 Differential Equations

4 Examples of Differential Equations

5 Domains of Differential Equations
Terms
First-Order Formulas
Continuous Programs

6 Summary

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 7 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Example: A Constant Differential Equation

Example (Initial value problem)(
x ′(t) = 1

2
x(0) = −1

)
has a solution

x(t) =
1
2

t−1

Check by inserting solution into ODE+IVP.(
(x(t))′ = ( 1

2 t−1)′ = 1
2

x(0) = 1
2 ·0−1 =−1

)

0 t

x

1

1

−1

x′ =
1
2

−1 + 1
2 t
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Example: A Linear Differential Equation from before

Example (Initial value problem)(
x ′(t) = 1

4x(t)
x(0) = 1

)
has a solution

x(t) = e
t
4

Check by inserting solution into ODE+IVP.(
(x(t))′ = (e

t
4 )′ = e

t
4 ( t

4 )′ = e
t
4 1

4 = 1
4x(t)

x(0) = e
0
4 = 1

)

0 t

x

1

1

e
t
4

x′ =
1
4
x
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Example: Linear Dynamics

Example (Initial value problem)
v ′(t) = w(t)
w ′(t) = −v(t)
v(0) = 0
w(0) = 1

 has solution

(
v(t) = sin(t)
w(t) = cos(t)

)

v

w

w
=

co
st

v
sin t

1

ω

v

w

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0
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Example: Rotational Dynamics

Example (Initial value problem)
v ′(t) = w(t)
w ′(t) = −v(t)
v(0) = 0
w(0) = 1

 has solution
(

v(t) = sin(t)
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)

v

w

w
=

co
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v
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1

ω

v

w
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t
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Example: Rotational Dynamics

Example (Initial value problem)
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Example: More Dynamics

Example (Initial value problem)

x ′(t) = v(t)
y ′(t) = w(t)
v ′(t) = ωw(t)
w ′(t) = −ωv(t)
x(0) = x0

y(0) = y0

v(0) = v0

w(0) = w0



x

y

(v,w)

ϑ

ω

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 11 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Example: Planar Motion Dynamics

Example (Initial value problem)

x ′(t) = v(t)
y ′(t) = w(t)
v ′(t) = ωw(t)
w ′(t) = −ωv(t)
x(0) = x0

y(0) = y0

v(0) = v0

w(0) = w0



x

y

(v,w)

ϑ

ω
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ODE Examples

Solutions more complicated than ODE

ODE Solution
x ′ = 1,x(0) = x0 x(t) = x0 + t
x ′ = 5,x(0) = x0 x(t) = x0 + 5t
x ′ = x ,x(0) = x0 x(t) = x0et

x ′ = x2,x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x ,x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) =−2xy ,y(0) = 1 y(x) = e−x2

x ′(t) = tx ,x(0) = x0 x(t) = x0e
t2
2

x ′ =
√

x ,x(0) = x0 x(t) = t2

4 ± t
√

x0 + x0

x ′ = y ,y ′ =−x ,x(0) = 0,y(0) = 1 x(t) = sin t,y(t) = cos t
x ′ = 1 + x2,x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et2
non-elementary
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Takeaway Message

Descriptive power of differential equations

1 Solutions of differential equations can be much more involved than the
differential equations themselves.

2 Representational and descriptive power of differential equations!
3 Simple differential equations can describe quite complicated physical

processes.
4 Local description as the direction into which the system evolves.

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 13 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Outline

1 Learning Objectives

2 Introduction

3 Differential Equations

4 Examples of Differential Equations

5 Domains of Differential Equations
Terms
First-Order Formulas
Continuous Programs

6 Summary
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Evolution Domain Constraints

So far: follow vector field from initial values indefinitely
Now: enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation x ′ = f (x) with evolution domain Q is denoted by

x ′ = f (x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x ′ = f (x) and the evolution domain Q.

t

x

Q
ν

ω

0 r
x ′ = f (x)&Q
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Evolution Domain Constraints

So far: follow vector field from initial values indefinitely
Now: enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation x ′ = f (x) with evolution domain Q is denoted by

x ′ = f (x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x ′ = f (x) and the evolution domain Q.

x ′ = v ,v ′ = a, t ′ = 1& t ≤ ε stops at clock ε at the latest

x ′ = v ,v ′ = a, t ′ = 1&v ≥ 0 stops before velocity negative

x ′ = y ,y ′ = x + y2 & true no constraint
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Evolution Domain Constraints

So far: follow vector field from initial values indefinitely
Now: enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation x ′ = f (x) with evolution domain Q is denoted by

x ′ = f (x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x ′ = f (x) and the evolution domain Q.

x ′ = v ,v ′ = a, t ′ = 1& t ≤ ε stops at clock ε at the latest

x ′ = v ,v ′ = a, t ′ = 1&v ≥ 0 stops before velocity negative

x ′ = y ,y ′ = x + y2 & true no constraint

Define:
Terms

Define:
Formulas
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Terms: Syntax

& Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e, ẽ ::= x | c | e + ẽ | e · ẽ

Definition (Semantics of terms) ([[·]] : Trm→ (S→ R))
The value of term e in state ω : V → R is a real number denoted ω[[e]] and
is defined by induction on the structure of e:

ω[[x ]] = ω(x) if x ∈ V is a variable

ω[[c]] = c if c ∈Q is a rational constant

ω[[e + ẽ]] = ω[[e]] + ω[[ẽ]] addition of reals

ω[[e · ẽ]] = ω[[e]] ·ω[[ẽ]] multiplication of reals

Variable Constant Add Multiply

where e, ẽ are terms, x ∈ V is a variable, c ∈Q a rational number constant
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Terms: Syntax & Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e, ẽ ::= x | c | e + ẽ | e · ẽ

Definition (Semantics of terms) ([[·]] : Trm→ (S→ R))
The value of term e in state ω : V → R is a real number denoted ω[[e]] and
is defined by induction on the structure of e:

ω[[x ]] = ω(x) if x ∈ V is a variable

ω[[c]] = c if c ∈Q is a rational constant

ω[[e + ẽ]] = ω[[e]] + ω[[ẽ]] addition of reals

ω[[e · ẽ]] = ω[[e]] ·ω[[ẽ]] multiplication of reals

Variable Constant Add Multiply

ω[[4 + x ·2]] =

ω[[4]] + ω[[x ]] ·ω[[2]] = 4 + ω(x) ·2 = 14

if ω(x) = 5

André Platzer, Stefan Mitsch (CMU) LFCPS/02: Differential Equations & Domains LFCPS/02 15 / 19

https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/


Terms: Syntax & Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:
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e, ẽ ::= x | c | e + ẽ | e · ẽ

Definition (Semantics of terms) ([[·]] : Trm→ (S→ R))
The value of term e in state ω : V → R is a real number denoted ω[[e]] and
is defined by induction on the structure of e:

ω[[x ]] = ω(x) if x ∈ V is a variable

ω[[c]] = c if c ∈Q is a rational constant

ω[[e + ẽ]] = ω[[e]] + ω[[ẽ]] addition of reals

ω[[e · ẽ]] = ω[[e]] ·ω[[ẽ]] multiplication of reals

Variable Constant Add Multiply

What about x− y?

Defined as x + (−1) · y
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Terms: Syntax & Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e, ẽ ::= x | c | e + ẽ | e · ẽ

Definition (Semantics of terms) ([[·]] : Trm→ (S→ R))
The value of term e in state ω : V → R is a real number denoted ω[[e]] and
is defined by induction on the structure of e:

ω[[x ]] = ω(x) if x ∈ V is a variable

ω[[c]] = c if c ∈Q is a rational constant

ω[[e + ẽ]] = ω[[e]] + ω[[ẽ]] addition of reals

ω[[e · ẽ]] = ω[[e]] ·ω[[ẽ]] multiplication of reals

Variable Constant Add Multiply

What about xn?

Defined as x · x ·x · x · x · . . ., wait when do we stop???
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First-Order Logic Formulas: Syntax

& Semantics

Definition (Syntax of first-order logic formulas)
The formulas of FOL of real arithmetic are defined by the grammar:

P,Q ::= e ≥ ẽ | e = ẽ | ¬P | P ∧Q | P ∨Q | P→ Q | P↔ Q | ∀x P | ∃x P

Definition (Semantics of first-order logic formulas)
First-order formula P is true in state ω , written ω |= P, defined inductively:

ω |= e = ẽ iff ω[[e]] = ω[[ẽ]]
ω |= e ≥ ẽ iff ω[[e]]≥ ω[[ẽ]]
ω |= ¬P iff ω 6|= P, i.e., if it is not the case that ω |= P
ω |= P ∧Q iff ω |= P and ω |= Q
ω |= P ∨Q iff ω |= P or ω |= Q
ω |= P→ Q iff ω 6|= P or ω |= Q
ω |= ∀x P iff ωd

x |= P for all d ∈ R ωd
x (y) =

{
d if y=x

ω(y) if y 6=xω |= ∃x P iff ωd
x |= P for some d ∈ R
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First-Order Logic Formulas: Syntax & Semantics

ω |= P formula P is true in state ω
� P formula P is valid, i.e., true in all states ω , i.e., ω |= P for all ω
[[P]] = {ω : ω |= P} set of all states in which P is true

ω |=

∃y (y2 ≤ x)

but ν 6|= ∃y (y2 ≤ x)

for ω(x) = 5 and ν(x) =−5
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x (y) =

{
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Semantics of ODEs with Evolution Constraints

Definition (Semantics of differential equations)
A function ϕ : [0, r ]→S of some duration r ≥ 0 satisfies the differential
equation x ′ = f (x)&Q, written ϕ |= x ′ = f (x)∧Q, iff:

1 ϕ(z)(x ′) = dϕ(t)(x)
dt (z) exists at all times 0≤ z ≤ r

2 ϕ(z) |= x ′ = f (x) and ϕ(z) |= Q for all times 0≤ z ≤ r
3 ϕ(z) = ϕ(0) except at x ,x ′

t

x

Q

0 r
x ′ = f (x)&Q

z

x
′ =

f (x
)
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Summary: Differential Equations & Domains

Definition (Syntax of terms)
e, ẽ ::= x | c | e + ẽ | e · ẽ

Definition (Syntax of first-order logic formulas)

P,Q ::= e ≥ ẽ | e = ẽ | ¬P | P ∧Q | P ∨Q | P→ Q | P↔ Q | ∀x P | ∃x P

Definition (Syntax of continuous programs)

A differential equation x ′ = f (x) with evolution domain Q is denoted by
x ′ = f (x)&Q

t

x

Q

0 rz

x
′ =

f (x
)
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Ordinary Differential Equations.
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Philip Hartman.
Ordinary Differential Equations.
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