02: Differential Equations & Domains Logical Foundations of Cyber-Physical Systems

Stefan Mitsch

Outline

- Learning Objectives
- Introduction
- Oifferential Equations
- 4 Examples of Differential Equations
- 5 Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

Summary

Outline

Learning Objectives

- 2 Introduction
- 3 Differential Equations
- 4 Examples of Differential Equations
- Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

Summary

continuous dynamics differential equations evolution domains first-order logic continuous operational effects

André Platzer, Stefan Mitsch (CMU)

Outline

Learning Objectives

Introduction

- 3 Differential Equations
- Examples of Differential Equations
- Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

Summary

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

Intuition:

At each point in space, plot the value of RHS f(t, y) as a vector

1111111 1122000 1111---///

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

Intuition:

At each point in space, plot the value of RHS f(t, y) as a vector

Start at initial state y_0 at initial time t_0

1111111 111111111 1111-----

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

- At each point in space, plot the value of RHS f(t, y) as a vector
- Start at initial state y_0 at initial time t_0
- Sollow the direction of the vector

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

- At each point in space, plot the value of RHS f(t, y) as a vector
- Start at initial state y_0 at initial time t_0
- Sollow the direction of the vector
- Z The diagram should really show infinitely many vectors ...

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

- At each point in space, plot the value of RHS f(t, y) as a vector
- Start at initial state y_0 at initial time t_0
- Sollow the direction of the vector
- Z The diagram should really show infinitely many vectors ...

Point mass motion ODE:
$$x' = v, v' = a$$

Example (Vector field and one solution of a differential equation) $\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$

Intuition:

- At each point in space, plot the value of RHS f(t, y) as a vector
- Start at initial state y_0 at initial time t_0
- Sollow the direction of the vector
- The diagram should really show infinitely many vectors ...

1111

Point mass motion ODE:
$$x' = v, v' = a$$

Newton's law of cooling ODE: x' = k(T - x)

Learning Objectives

2 Introduction

Oifferential Equations

4 Examples of Differential Equations

Domains of Differential Equations

- Terms
- First-Order Formulas
- Continuous Programs

Summary

The Meaning of Differential Equations

- What exactly is a vector field?
- What does it mean to describe directions of evolution at *every* point in space?
- Oculd these directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure $\xrightarrow{\sim}$

We immediately want to get into the habit of **studying the behavior and exact meaning** of all relevant aspects of CPS.

Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

 $f: D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected set). Then $Y: I \to \mathbb{R}^n$ is *solution* of initial value problem (IVP)

$$\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,

 $f: D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected set). Then $Y: I \to \mathbb{R}^n$ is *solution* of initial value problem (IVP)

$$\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,

 $f: D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected set). Then $Y: I \to \mathbb{R}^n$ is *solution* of initial value problem (IVP)

$$\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,

• defined $(t, Y(t)) \in D$

2 time-derivative Y'(t) exists and satisfies Y'(t) = f(t, Y(t)).

 $f: D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected set). Then $Y: I \to \mathbb{R}^n$ is *solution* of initial value problem (IVP)

$$\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,

• defined $(t, Y(t)) \in D$

2 time-derivative Y'(t) exists and satisfies Y'(t) = f(t, Y(t)).

(a) initial value $Y(t_0) = y_0$

 $f: D \to \mathbb{R}^n$ on domain $D \subseteq \mathbb{R} \times \mathbb{R}^n$ (i.e., open connected set). Then $Y: I \to \mathbb{R}^n$ is *solution* of initial value problem (IVP)

$$\begin{pmatrix} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{pmatrix}$$

on the interval $I \subseteq \mathbb{R}$, iff, for all times $t \in I$,

• defined $(t, Y(t)) \in D$

2 time-derivative Y'(t) exists and satisfies Y'(t) = f(t, Y(t)).

(a) initial value $Y(t_0) = y_0$

If $f \in C(D, \mathbb{R}^n)$, then $Y \in C^1(I, \mathbb{R}^n)$. If *f* continuous, then *Y* continuously differentiable.

- Learning Objectives
- 2 Introduction
- 3 Differential Equations
- Examples of Differential Equations
 - Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

Summary

Example: A Constant Differential Equation

Example (Initial value problem)

$$egin{pmatrix} x'(t) = rac{1}{2} \ x(0) = -1 \end{pmatrix}$$
 has a solution

Example: A Constant Differential Equation

Example (Initial value problem)

$$egin{pmatrix} x'(t) = rac{1}{2} \ x(0) = -1 \end{pmatrix}$$
 has a solution $x(t) = rac{1}{2}t - 1$

Example: A Constant Differential Equation

Example (Initial value problem)

$$egin{pmatrix} x'(t) = rac{1}{2} \ x(0) = -1 \end{pmatrix}$$
 has a solution $x(t) = rac{1}{2}t - 1$

Check by inserting solution into ODE+IVP.

$$\begin{pmatrix} (x(t))' = (\frac{1}{2}t - 1)' = \frac{1}{2} \\ x(0) = \frac{1}{2} \cdot 0 - 1 = -1 \end{pmatrix}$$

Example: A Linear Differential Equation from before

Example (Initial value problem)

$$egin{pmatrix} x'(t) = rac{1}{4}x(t)\ x(0) = 1 \end{pmatrix}$$
 has a solution

Example: A Linear Differential Equation from before

Example (Initial value problem)

$$egin{pmatrix} x'(t) = rac{1}{4}x(t) \ x(0) = 1 \end{pmatrix}$$
 has a solution $x(t) = e^{rac{t}{4}}$

Example: A Linear Differential Equation from before

Example (Initial value problem)

$$egin{pmatrix} x'(t) = rac{1}{4}x(t) \ x(0) = 1 \end{pmatrix}$$
 has a solution $x(t) = e^{rac{t}{4}}$

Check by inserting solution into ODE+IVP.

$$\begin{pmatrix} (x(t))' = (e^{\frac{t}{4}})' = e^{\frac{t}{4}}(\frac{t}{4})' = e^{\frac{t}{4}}\frac{1}{4} = \frac{1}{4}x(t) \\ x(0) = e^{\frac{0}{4}} = 1 \end{pmatrix}$$

Example: Linear Dynamics

Example (Initial value problem)

$$\begin{pmatrix} v'(t) = w(t) \\ w'(t) = -v(t) \\ v(0) = 0 \\ w(0) = 1 \end{pmatrix}$$

has solution

Example: Rotational Dynamics

Example (Initial value problem)

$$\begin{pmatrix} v'(t) = w(t) \\ w'(t) = -v(t) \\ v(0) = 0 \\ w(0) = 1 \end{pmatrix}$$
 has solution $\begin{pmatrix} v(t) = \sin(t) \\ w(t) = \cos(t) \end{pmatrix}$

Example: Rotational Dynamics

Example (Initial value problem)

$$\begin{pmatrix} v'(t) = \boldsymbol{\omega} w(t) \\ w'(t) = -\boldsymbol{\omega} v(t) \\ v(0) = 0 \\ w(0) = 1 \end{pmatrix}$$

Example: Rotational Dynamics

Example (Initial value problem)

Example: More Dynamics

Example (Initial value problem)

$$\begin{pmatrix} x'(t) = v(t) \\ y'(t) = w(t) \\ v'(t) = \omega w(t) \\ w'(t) = -\omega v(t) \\ x(0) = x_0 \\ y(0) = y_0 \\ v(0) = v_0 \\ w(0) = w_0 \end{pmatrix}$$

Example: Planar Motion Dynamics

Example (Initial value problem)

ODE Examples

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x'=x^2, x(0)=x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x'=\frac{1}{x}, x(0)=1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
$x'(t) = tx, x(0) = x_0$	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$
$x' = 1 + x^2, x(0) = 0$	$x(t) = \tan t$
$x'(t) = \frac{2}{t^3}x(t)$	$x(t) = e^{-\frac{1}{t^2}}$ non-analytic
$x' = x^2 + x^4$???
$x'(t) = e^{t^2}$	non-elementary

ODE Examples

Solutions more complicated than ODE

ODE	Solution
$x' = 1, x(0) = x_0$	$x(t) = x_0 + t$
$x' = 5, x(0) = x_0$	$x(t) = x_0 + 5t$
$x'=x, x(0)=x_0$	$x(t) = x_0 e^t$
$x'=x^2, x(0)=x_0$	$x(t) = \frac{x_0}{1-tx_0}$
$x'=\frac{1}{x}, x(0)=1$	$x(t) = \sqrt{1+2t} \dots$
y'(x) = -2xy, y(0) = 1	$y(x) = e^{-x^2}$
$x'(t) = tx, x(0) = x_0$	$x(t) = x_0 e^{\frac{t^2}{2}}$
$x'=\sqrt{x}, x(0)=x_0$	$x(t) = \frac{t^2}{4} \pm t\sqrt{x_0} + x_0$
x' = y, y' = -x, x(0) = 0, y(0) = 1	$x(t) = \sin t, y(t) = \cos t$
$x' = 1 + x^2, x(0) = 0$	x(t) = an t
$x'(t) = \frac{2}{t^3}x(t)$	$x(t) = e^{-\frac{1}{t^2}}$ non-analytic
$x' = x^2 + x^4$???
$x'(t) = e^{t^2}$	non-elementary

Takeaway Message

Descriptive power of differential equations

- Solutions of differential equations can be much more involved than the differential equations themselves.
- ② Representational and descriptive power of differential equations!
- Simple differential equations can describe quite complicated physical processes.
- Local description as the direction into which the system evolves.

Outline

- Learning Objectives
- 2 Introduction
- 3 Differential Equations
- 4 Examples of Differential Equations
- 5 Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

Summary

Definition (Evolution domain constraints)

A differential equation x' = f(x) with evolution domain Q is denoted by

x'=f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential equation x' = f(x) and the evolution domain Q.

Definition (Evolution domain constraints)

A differential equation x' = f(x) with evolution domain Q is denoted by

x'=f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential equation x' = f(x) and the evolution domain Q.

Definition (Evolution domain constraints)

A differential equation x' = f(x) with evolution domain Q is denoted by

x'=f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential equation x' = f(x) and the evolution domain Q.

Definition (Evolution domain constraints)

A differential equation x' = f(x) with evolution domain Q is denoted by

x'=f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential equation x' = f(x) and the evolution domain Q.

$$x' = v, v' = a, t' = 1 \& t \le \varepsilon$$

 $x' = v, v' = a, t' = 1 \& v \ge 0$
 $x' = y, y' = x + y^2 \& true$

stops at clock ε at the latest stops before velocity negative no constraint

Evolution Domain Constraints

conjunctive notation (&) signifies that the system obeys the differential equation x' = f(x) and the evolution domain Q.

$$\begin{aligned} x' &= v, v' = a, t' = 1 \& t \le \varepsilon \\ x' &= v, v' = a, t' = 1 \& v \ge 0 \\ x' &= y, y' = x + y^2 \& true \end{aligned}$$

stops at clock ε at the latest stops before velocity negative no constraint

Terms: Syntax

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

where e, \tilde{e} are terms, $x \in \mathcal{V}$ is a variable, $c \in \mathbb{Q}$ a rational number constant

Terms: Syntax

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

$$e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$$

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\omega \llbracket x \rrbracket = \omega(x)$	if $x \in \mathscr{V}$ is a variable
$\omega \llbracket c \rrbracket = c$	if ${\it c} \in {\mathbb Q}$ is a rational constant
$\omega \llbracket e + \widetilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket \widetilde{e} rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket\boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket=\boldsymbol{\omega}\llbracket\boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket\tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))^{\mathsf{T}}$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\omega[\![x]\!] = \omega(x)$	if $x \in \mathscr{V}$ is a variable
$\omega \llbracket c \rrbracket = c$	if $oldsymbol{c} \in \mathbb{Q}$ is a rational constant
$\boldsymbol{\omega}\llbracket \boldsymbol{e} + \tilde{\boldsymbol{e}} \rrbracket = \boldsymbol{\omega}\llbracket \boldsymbol{e} \rrbracket + \boldsymbol{\omega}\llbracket \tilde{\boldsymbol{e}} \rrbracket$	addition of reals
$\boldsymbol{\omega}[\![\boldsymbol{e} \cdot \tilde{\boldsymbol{e}}]\!] = \boldsymbol{\omega}[\![\boldsymbol{e}]\!] \cdot \boldsymbol{\omega}[\![\tilde{\boldsymbol{e}}]\!]$	multiplication of reals

 $\omega[[4 + x \cdot 2]] =$

if $\omega(x) = 5$

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\omega[\![x]\!] = \omega(x)$	if $x \in \mathscr{V}$ is a variable
$\omega \llbracket c \rrbracket = c$	if $oldsymbol{c} \in \mathbb{Q}$ is a rational constant
$\omega \llbracket e + \tilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket ilde{e} rbracket$	addition of reals
$\boldsymbol{\omega} \llbracket \boldsymbol{e} \cdot \tilde{\boldsymbol{e}} \rrbracket = \boldsymbol{\omega} \llbracket \boldsymbol{e} \rrbracket \cdot \boldsymbol{\omega} \llbracket \tilde{\boldsymbol{e}} \rrbracket$	multiplication of reals

 $\omega[\![4+x\cdot 2]\!] = \omega[\![4]\!] + \omega[\![x]\!] \cdot \omega[\![2]\!] = 4 + \omega(x) \cdot 2 = 14$

if $\omega(x) = 5$

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\boldsymbol{\omega}[\![\boldsymbol{x}]\!] = \boldsymbol{\omega}(\boldsymbol{x})$	if $x \in \mathscr{V}$ is a variable
$\omega[\![c]\!]=c$	if $\pmb{c} \in \mathbb{Q}$ is a rational constant
$\omega \llbracket e + \widetilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket \widetilde{e} rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket \boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket = \boldsymbol{\omega}\llbracket \boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket\tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

What about x - y?

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\boldsymbol{\omega}[\![\boldsymbol{x}]\!] = \boldsymbol{\omega}(\boldsymbol{x})$	if $x \in \mathscr{V}$ is a variable
$\omega[\![c]\!] = c$	if $oldsymbol{c} \in \mathbb{Q}$ is a rational constant
$\omega \llbracket e + \widetilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket \widetilde{e} rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket \boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket = \boldsymbol{\omega}\llbracket \boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket \tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

What about x - y? Defined as $x + (-1) \cdot y$

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\boldsymbol{\omega}[\![\boldsymbol{x}]\!] = \boldsymbol{\omega}(\boldsymbol{x})$	if $x \in \mathscr{V}$ is a variable
$\omega \llbracket c \rrbracket = c$	if ${m c} \in {\mathbb Q}$ is a rational constant
$\omega \llbracket e + \widetilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket \widetilde{e} rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket\boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket=\boldsymbol{\omega}\llbracket\boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket\tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

What about x^4 ?

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\boldsymbol{\omega}[\![\boldsymbol{x}]\!] = \boldsymbol{\omega}(\boldsymbol{x})$	if $x \in \mathscr{V}$ is a variable
$\omega \llbracket c \rrbracket = c$	if ${\pmb{c}} \in \mathbb{Q}$ is a rational constant
$\omega \llbracket e + \widetilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket \widetilde{e} rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket\boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket=\boldsymbol{\omega}\llbracket\boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket\tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

What about x^4 ? Defined as $x \cdot x \cdot x \cdot x$

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\boldsymbol{\omega}[\![\boldsymbol{x}]\!] = \boldsymbol{\omega}(\boldsymbol{x})$	if $x \in \mathscr{V}$ is a variable
$\omega[\![c]\!] = c$	if $oldsymbol{c} \in \mathbb{Q}$ is a rational constant
$\omega \llbracket e + ilde e rbracket = \omega \llbracket e rbracket + \omega \llbracket ilde e rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket\boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket=\boldsymbol{\omega}\llbracket\boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket\tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

What about *xⁿ*?

Definition (Syntax of terms)

A term e is a polynomial term defined by the grammar:

 $e, \tilde{e} ::= x | c | e + \tilde{e} | e \cdot \tilde{e}$

Definition (Semantics of terms)

 $(\llbracket \cdot \rrbracket : \mathsf{Trm} \to (\mathscr{S} \to \mathbb{R}))$

The value of term e in state $\omega : \mathscr{V} \to \mathbb{R}$ is a real number denoted $\omega[\![e]\!]$ and is defined by induction on the structure of e:

$\boldsymbol{\omega}[\![\boldsymbol{x}]\!] = \boldsymbol{\omega}(\boldsymbol{x})$	if $x \in \mathscr{V}$ is a variable
$\omega \llbracket c \rrbracket = c$	if ${m c} \in {\mathbb Q}$ is a rational constant
$\omega \llbracket e + ilde{e} rbracket = \omega \llbracket e rbracket + \omega \llbracket ilde{e} rbracket$	addition of reals
$\boldsymbol{\omega}\llbracket\boldsymbol{e}\cdot\tilde{\boldsymbol{e}}\rrbracket=\boldsymbol{\omega}\llbracket\boldsymbol{e}\rrbracket\cdot\boldsymbol{\omega}\llbracket\tilde{\boldsymbol{e}}\rrbracket$	multiplication of reals

What about x^n ? Defined as $x \cdot x \cdot x \cdot x \cdot x \cdot \dots$, wait when do we stop???

First-Order Logic Formulas: Syntax

Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:

 $P,Q ::= e \geq \tilde{e} \mid e = \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P$

First-Order Logic Formulas: Syntax

Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:

 $P,Q ::= e \geq \tilde{e} \mid e = \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P$

Definition (Syntax of first-order logic formulas)

The formulas of FOL of real arithmetic are defined by the grammar:

 $P,Q ::= e \geq \tilde{e} \mid e = \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P$

Definition (Semantics of first-order logic formulas)

$$\begin{split} \omega &\models e = \tilde{e} & \text{iff } \omega[\![e]\!] = \omega[\![\tilde{e}]\!] \\ \omega &\models e \ge \tilde{e} & \text{iff } \omega[\![e]\!] \ge \omega[\![\tilde{e}]\!] \\ \omega &\models \neg P & \text{iff } \omega \not\models P, \text{ i.e., if it is not the case that } \omega \models P \\ \omega &\models \neg A & \text{iff } \omega \models P \text{ and } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \models P \text{ or } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \not\models P \text{ or } \omega \models Q \\ \omega &\models \forall x P & \text{iff } \omega_x^d \models P \text{ for all } d \in \mathbb{R} \\ \omega &\models \exists x P & \text{iff } \omega_x^d \models P \text{ for some } d \in \mathbb{R} \end{split}$$

- $\omega \models P$ formula *P* is true in state ω
- \models *P* formula *P* is *valid*, i.e., true in all states ω , i.e., $\omega \models$ *P* for all ω
- $\llbracket P \rrbracket = \{ \omega : \omega \models P \}$ set of all states in which P is true

Definition (Semantics of first-order logic formulas)

$$\begin{split} \omega &\models e = \tilde{e} & \text{iff } \omega[\![e]\!] = \omega[\![\tilde{e}]\!] \\ \omega &\models e \ge \tilde{e} & \text{iff } \omega[\![e]\!] \ge \omega[\![\tilde{e}]\!] \\ \omega &\models \neg P & \text{iff } \omega \not\models P, \text{ i.e., if it is not the case that } \omega \models P \\ \omega &\models \neg P & \text{iff } \omega \not\models P \text{ and } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \models P \text{ or } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \not\models P \text{ or } \omega \models Q \\ \omega &\models \forall x P & \text{iff } \omega_x^d \models P \text{ for all } d \in \mathbb{R} \\ \omega &\models \exists x P & \text{iff } \omega_x^d \models P \text{ for some } d \in \mathbb{R} \end{split} \qquad \omega_x^d(y) = \begin{cases} d & \text{if } y = x \\ \omega(y) & \text{if } y \neq x \end{cases}$$

- $\omega \models P$ formula *P* is true in state ω
- \models *P* formula *P* is *valid*, i.e., true in all states ω , i.e., $\omega \models$ *P* for all ω
- $\llbracket P \rrbracket = \{ \omega : \omega \models P \}$ set of all states in which P is true

$$\exists y \, (y^2 \leq x)$$
 for $\omega(x) = 5$ and $v(x) = -5$

Definition (Semantics of first-order logic formulas)

$$\begin{split} \omega &\models e = \tilde{e} & \text{iff } \omega[\![e]\!] = \omega[\![\tilde{e}]\!] \\ \omega &\models e \ge \tilde{e} & \text{iff } \omega[\![e]\!] \ge \omega[\![\tilde{e}]\!] \\ \omega &\models \neg P & \text{iff } \omega \not\models P, \text{ i.e., if it is not the case that } \omega \models P \\ \omega &\models \neg A & \text{iff } \omega \models P \text{ and } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \models P \text{ or } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \not\models P \text{ or } \omega \models Q \\ \omega &\models \forall x P & \text{iff } \omega_x^d \models P \text{ for all } d \in \mathbb{R} \\ \omega &\models \exists x P & \text{iff } \omega_x^d \models P \text{ for some } d \in \mathbb{R} \end{split}$$

 $\omega \models P$ formula *P* is true in state ω

 \models *P* formula *P* is *valid*, i.e., true in all states ω , i.e., $\omega \models$ *P* for all ω

 $\llbracket P \rrbracket = \{ \omega : \omega \models P \}$ set of all states in which P is true

 $\omega \models \exists y (y^2 \le x) \text{ but } v \not\models \exists y (y^2 \le x)$ for $\omega(x) = 5$ and v(x) = -5

Definition (Semantics of first-order logic formulas)

$$\begin{split} \omega &\models e = \tilde{e} & \text{iff } \omega[\![e]\!] = \omega[\![\tilde{e}]\!] \\ \omega &\models e \ge \tilde{e} & \text{iff } \omega[\![e]\!] \ge \omega[\![\tilde{e}]\!] \\ \omega &\models \neg P & \text{iff } \omega \not\models P, \text{ i.e., if it is not the case that } \omega \models P \\ \omega &\models \neg A & \text{iff } \omega \models P \text{ and } \omega \models Q \\ \omega &\models P \lor Q & \text{iff } \omega \models P \text{ or } \omega \models Q \\ \omega &\models P \to Q & \text{iff } \omega \not\models P \text{ or } \omega \models Q \\ \omega &\models \forall x P & \text{iff } \omega_x^d \models P \text{ for all } d \in \mathbb{R} \\ \omega &\models \exists x P & \text{iff } \omega_x^d \models P \text{ for some } d \in \mathbb{R} \end{split}$$

Definition (Semantics of differential equations)

A function $\varphi : [0, r] \to \mathscr{S}$ of some duration $r \ge 0$ satisfies the differential equation x' = f(x) & Q, written $\varphi \models x' = f(x) \land Q$, iff:

- $\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z)$ exists at all times $0 \le z \le r$
- **2** $\varphi(z) \models x' = f(x)$ and $\varphi(z) \models Q$ for all times $0 \le z \le r$
- 3 $\varphi(z) = \varphi(0)$ except at x, x'

Definition (Semantics of differential equations)

A function $\varphi : [0, r] \to \mathscr{S}$ of some duration $r \ge 0$ satisfies the differential equation x' = f(x) & Q, written $\varphi \models x' = f(x) \land Q$, iff:

- $\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z)$ exists at all times $0 \le z \le r$
- 2 $\varphi(z) \models x' = f(x)$ and $\varphi(z) \models Q$ for all times $0 \le z \le r$

3 $\varphi(z) = \varphi(0)$ except at x, x'

Definition (Semantics of differential equations)

A function $\varphi : [0, r] \to \mathscr{S}$ of some duration $r \ge 0$ satisfies the differential equation x' = f(x) & Q, written $\varphi \models x' = f(x) \land Q$, iff:

- $\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z)$ exists at all times $0 \le z \le r$
- **2** $\varphi(z) \models x' = f(x)$ and $\varphi(z) \models Q$ for all times $0 \le z \le r$
- 3 $\varphi(z) = \varphi(0)$ except at x, x'

Definition (Semantics of differential equations)

A function $\varphi : [0, r] \to \mathscr{S}$ of some duration $r \ge 0$ satisfies the differential equation x' = f(x) & Q, written $\varphi \models x' = f(x) \land Q$, iff:

- $\varphi(z)(x') = \frac{d\varphi(t)(x)}{dt}(z)$ exists at all times $0 \le z \le r$
- **2** $\varphi(z) \models x' = f(x)$ and $\varphi(z) \models Q$ for all times $0 \le z \le r$
- 3 $\varphi(z) = \varphi(0)$ except at x, x'

Outline

- Learning Objectives
- 2 Introduction
- 3 Differential Equations
- 4 Examples of Differential Equations
- Domains of Differential Equations
 - Terms
 - First-Order Formulas
 - Continuous Programs

Summary

Summary: Differential Equations & Domains

Definition (Syntax of terms)

$$e, \tilde{e} ::= x \mid c \mid e + \tilde{e} \mid e \cdot \tilde{e}$$

Definition (Syntax of first-order logic formulas)

 $P,Q ::= e \geq \tilde{e} \mid e = \tilde{e} \mid \neg P \mid P \land Q \mid P \lor Q \mid P \rightarrow Q \mid P \leftrightarrow Q \mid \forall x P \mid \exists x P$

Definition (Syntax of continuous programs)

A differential equation x' = f(x) with evolution domain Q is denoted by x' = f(x) & Q

Further Reading I

Wolfgang Walter.

Ordinary Differential Equations.

Springer, Berlin, 1998.

doi:10.1007/978-1-4612-0601-9.

Philip Hartman. Ordinary Differential Equations. John Wiley, Hoboken, 1964.

William T. Reid.

Ordinary Differential Equations. John Wiley, Hoboken, 1971.

Gerald Teschl. Ordinary Differential Equations and Dynamical Systems. AMS, Providence, 2012.