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Learning Objectives

Differential Equations & Domains

semantics of differential equations
descriptive power of differential equations
syntax versus semantics

continuous dynamics continuous operational effects
differential equations
evolution domains
first-order logic
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@ Introduction
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
(y’(t) = f(w))

y(to) = yo
Intuition:
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
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© Follow the direction of the vector eyt
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Example (Vector field and one solution of a differential equation)
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
(Fg=i R
o AT —
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infinitely many vectors ... cooLo '

Point mass motion ODE: x'=v,v' =a
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
Cio=s”) SPPMRER
o AT —
@ At each point in space, plot the value = 7 7 ! : : . :::::///
of RHS f(t, y) as a vector ,,::::\\e,//‘;';';
Q Start at initial state yp atinitial time fo = [, . .07 4
© Follow the direction of the vector S
Z The diagram should really show L ., ’,
infinitely many vectors ... cooLo '

Point mass motion ODE: x'=v,v' =a

Newton’s law of cooling ODE: x" = k(T — x)
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Intuition for Differential Equations
X

(o-i)
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Intuition for Differential Equations
X
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Intuition for Differential Equations
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Intuition for Differential Equations
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( X(t)=1x (t)) W( x(t+A) = x(t)+ 1x(H) A
x(0) =1 x(0) :=1
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Intuition for Differential Equations
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© Ditferential Equations
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The Meaning of Differential Equations

@ What exactly is a vector field?

© What does it mean to describe directions of evolution at every point in
space?

@ Could these directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure
A
We immediately want to get into the habit of
studying the behavior and exact meaning
of all relevant aspects of CPS.
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Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE) |

f: D— R" on domain D C R x R” (i.e., open connected set). Then
Y : I — R"is solution of initial value problem (IVP)

(=)

on the interval | C R, iff, for all times t € /,
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Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE) |

f: D— R" on domain D C R x R” (i.e., open connected set). Then
Y : I — R"is solution of initial value problem (IVP)

(=)

on the interval | C R, iff, for all times t € /,
@ defined (t,Y(t)) € D
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Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

f: D— R" on domain D C R x R” (i.e., open connected set). Then
Y : I — R"is solution of initial value problem (IVP)

(=)

on the interval | C R, iff, for all times t € /,
@ defined (t,Y(t)) € D
@ time-derivative Y'(t) exists and satisfies Y'(t) = f(¢, Y(t)).
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f: D— R" on domain D C R x R” (i.e., open connected set). Then
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(=)

on the interval | C R, iff, for all times t € /,
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Differential Equations & Initial Value Problems

Definition (Ordinary Differential Equation, ODE)

f: D— R" on domain D C R x R” (i.e., open connected set). Then
Y : I — R"is solution of initial value problem (IVP)

G

on the interval | C R, iff, for all times t € /,
@ defined (t,Y(t)) € D
@ time-derivative Y'(t) exists and satisfies Y'(t) = f(¢, Y(t)).
@ initial value Y (&%) = yo

If f € C(D,R™), then Y € C'(I,R").
If f continuous, then Y continuously differentiable.
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@ Examples of Differential Equations
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Example: A Constant Differential Equation

Example (Initial value problem)

X'(t) = % .
(x(O) 0 has a solution
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Example: A Constant Differential Equation

Example (Initial value problem)

X/(t) = % ) B 1
(x(o) _ 2, hasasolution x(t) = 5t 1

X 1
1}[ —1+ 1t

André Platzer, Stefan Mitsch (CMU) LFCPS/02 8/19


https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/

Example: A Constant Differential Equation

Example (Initial value problem)

X/(t) = % ) B 1
(x(o) _ 2, hasasolution x(t) = 5t 1

Check by inserting solution into ODE+IVP.

(B4

—/
|

—1+ 1t

(I
J/
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Example: A Linear Differential Equation from before

Example (Initial value problem)

(x’(t) = 1x(1)

x(0) = 1 > has a solution
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Example: A Linear Differential Equation from before

Example (Initial value problem)

(x’(t) = 1x(1)
x(0) =1

B~

> has a solution x(t) = e

a
B~
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Example: A Linear Differential Equation from before

Example (Initial value problem)

(x’(t) = 1x(1)
x(0) =1

B~

> has a solution x(t) = e

Check by inserting solution into ODE+IVP.
((x(r))' = (et =el(ly =ei]= %x(r))

x(0) = el =1
-
O
b% ol
e
0 - f t
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Example: Linear Dynamics

Example (Initial value problem)

v:(t) = w(t)
V:/,(((g i av(t) has solution
w(0) =1
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Example: Rotational Dynamics

Example (Initial value problem)

V(1) = w(d)
D= =10 | e ssliies < v(t) = Sin(t))
v(0 g 0

w(t) = cos(t)

w
1.0
lsint w
8 051
i/ #
=
v 1
-051
_1_0,
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Example: Rotational Dynamics

Example (Initial value problem)

V' (t) = ow(t)
w'(t) = —ov(t)

v(0) =0 has solution
w(0) =1
w
\l 1.0 »
1 051
v
S y 1
-0.5¢
_1_0.
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Example: Rotational Dynamics

Example (Initial value problem)
V/(t) = ow(t)
w'(t) = —ov(t) has solution < v(t) = sin(a)t))

v(0)=0 w(t) = cos(wt)
w(0) =1
w
a) 1.0
) /A
1 0.5
= v v \W / t
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Example: More Dynamics

Example (Initial value problem)

x'(t) = v(t)
y'(t) = w(t)
V'(t) = ow(t)
w'(t) = —ov(t)

x(0) = xo
¥(0) = yo
v(0) = v
w(0) = wp
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Example: Planar Motion Dynamics

Example (Initial value problem)

x'(t) = v(t)
y'(t) = w(t)
V'(t) = ow(t)
w'(t) = —ov(t)

André Platzer, Stefan Mitsch (CMU)

x(0) = xo
y(0) = yo
v(0)=w
w(0) = wp
v
[0)
(yw) 77
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ODE Examples

ODE Solution
x'=1,x(0) = xo x(t)=xo+t
x'=5,x(0) = xo x(t) = xo +5t
x" = x,x(0) = xo x(t) = xo€'
x'=x2,x(0) = xo x(1) = 7%
X’=%,XO)=1 X(t)=m.‘.
y'(x)=—2xy,y(0) = y(x)=e*

xX'(t) = tx,x(0) = xo x(t)= xoeg
x’:ﬁx(o)_xo x(t):—zj:t\/x_o+x0

X =y, y =—x x(O) 0,y(0) =1 | x(t) =sint,y(t) = cost
x'=1+4+x2,x(0) = x(t) =tant

X (t ):% (t) x(t) = e ? non-analytic
X = X2+ x 777

X(t)=e" non-elementary
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ODE Examples

Solutions more complicated than ODE

ODE Solution
x'=1,x(0) = xo x(t)=xo+t
x'=5,x(0) = xo x(t) = xo +5t
x" = x,x(0) = xo x(t) = xo€'
x'=x2,x(0) = xo x(1) = 7%
X’=%,XO)=1 X(t)=m.‘.
y'(x)=—2xy,y(0) = y(x)=e*

xX'(t) = tx,x(0) = xo x(t)= xoeg
x’:ﬁx(o)_xo x(t):—zj:t\/x_o+x0

X =y, y =—x x(O) 0,y(0) =1 | x(t) =sint,y(t) = cost
x'=1+4+x2,x(0) = x(t) =tant

X (t ):% (t) x(t) = e ? non-analytic
X = X2+ x 777

X(t)=e" non-elementary
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Takeaway Message

Descriptive power of differential equations

@ Solutions of differential equations can be much more involved than the
differential equations themselves.

@ Representational and descriptive power of differential equations!

© Simple differential equations can describe quite complicated physical
processes.

© Local description as the direction into which the system evolves.

André Platzer, Stefan Mitsch (CMU) LFCPS/02 13/19


https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/

e Domains of Differential Equations
@ Terms
@ First-Order Formulas
@ Continuous Programs
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Evolution Domain Constraints

So far: follow vector field from initial values indefinitely
Now: enable Cyber to interact with Physics

Definition (Evolution domain constraints)
A differential equation x' = f(x) with evolution domain Q is denoted by

X' =f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x’ = f(x) and the evolution domain Q.

X
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Evolution Domain Constraints

So far: follow vector field from initial values indefinitely
Now: enable Cyber to interact with Physics

Definition (Evolution domain constraints)
A differential equation x' = f(x) with evolution domain Q is denoted by

X' =f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x’ = f(x) and the evolution domain Q.
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Evolution Domain Constraints

So far: follow vector field from initial values indefinitely
Now: enable Cyber to interact with Physics

Definition (Evolution domain constraints)
A differential equation x' = f(x) with evolution domain Q is denoted by

X' =f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x’ = f(x) and the evolution domain Q.

X =v,vV=al=1&t<c¢ stops at clock € at the latest
X=vivV=atl=1&v>0 stops before velocity negative
X =y, y =x+y*&true no constraint
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Evolution Domain Constraints
So f B ector field from initial values ind e
Terms Formulas

ble Cyber to interact with Physi
Definition (Evolution dornain constraints)
2in Q is denoted by

A differential equation x' = f(X) with evolution do

X' =f(x)&Q

conjunctive notation (&) signifies that the system obeys the differential
equation x’ = f(x) and the evolution domain Q.

X =v,vV=al=1&t<c¢ stops at clock € at the latest
X=vivV=atl=1&v>0 stops before velocity negative
X =y, y =x+y*&true no constraint
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Terms: Syntax

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

where e, € are terms, x € ¥ is a variable, ¢ € QQ a rational number constant
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Terms: Syntax

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

'Variable' 'Constant. 'Multiply.
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Terms: Syntax & Semantics

Definition (Syntax of terms) |

A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
is defined by induction on the structure of e:

o[[x] = o(x) if x € ¥ is a variable
ofc]=c if c € Q is a rational constant
wle+é] = w[e] + ofé] addition of reals
ofe-é] = o]e] - w[é] multiplication of reals
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Terms: Syntax & Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
is defined by induction on the structure of e:

o[[x] = o(x) if x € ¥ is a variable
ofc]=c if c € Q is a rational constant
wle+é] = w[e] + ofé] addition of reals
ofe-é] = o]e] - w[é] multiplication of reals
of4+x-2] = if o(x)=5
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Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:
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Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
is defined by induction on the structure of e:

o[[x] = o(x) if x € ¥ is a variable
ofc]=c if c € Q is a rational constant
wle+é] = w[e] + ofé] addition of reals
ofe-é] = o]e] - w[é] multiplication of reals
o4+ x-2] = o[4] + o][x] - o[2] =4+ o(x)-2 =14 if o(x)=5
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Terms: Syntax & Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
is defined by induction on the structure of e:

o[[x] = o(x) if x € ¥ is a variable
ofc]=c if c € Q is a rational constant
wle+é] = w[e] + ofé] addition of reals
ofe-é] = o]e] - w[é] multiplication of reals

What about x — y?
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Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
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ofc]=c if c € Q is a rational constant
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What about x — y? Defined as x +(—1) -y
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Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
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Terms: Syntax & Semantics

Definition (Syntax of terms)
A term e is a polynomial term defined by the grammar:

e,e :=x|cle+éle-&

Definition (Semantics of terms) ([1: Trm — (= R))

The value of term e in state @ : 7" — R is a real number denoted w[e] and
is defined by induction on the structure of e:

o[[x] = o(x) if x € ¥ is a variable
ofc]=c if c € Q is a rational constant
wle+é] = w[e] + ofé] addition of reals
ofe-é] = o]e] - w[é] multiplication of reals
What about x"? Defined as x-x-x-x-x-..., wait when do we stop???
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First-Order Logic Formulas: Syntax

Definition (Syntax of first-order logic formulas)
The formulas of FOL of real arithmetic are defined by the grammar:
P,Q:=e>¢é|le=8é|-P|PAQ|PVQ|P—Q|P+ Q|VxP|3xP
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First-Order Logic Formulas: Syntax

Definition (Syntax of first-order logic formulas)
The formulas of FOL of real arithmetic are defined by the grammar:
P,Q:=e>¢é|le=8é|-P|PAQ|PVQ|P—Q|P+ Q|VxP|3xP

| \ \
'Greater-or-equal. 'And. 'Imply. 'EqUiV.
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First-Order Logic Formulas: Syntax & Semantics

Definition (Syntax of first-order logic formulas)
The formulas of FOL of real arithmetic are defined by the grammar:

P.Q:=e>éle=¢e|-P|PANQ|PVQ|P—Q|P+ Q|VxP|3xP

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state m, written @ |= P, defined inductively:

oE=e=¢ iff ofe] =o[é]

oE=e>e iffoe] > o[é]

okE=-P iff 0 [~ P, i.e., if it is not the case that w = P
woE=EPAQ iffo=Pandol=Q

0o=PVQ ffol=PoroE=Q

0EP—Q ifforPorol=Q

o E=VxP  iffol=PforaldeR grn_)d
oF=3IxP  iffof = Pforsome d R wx(y)—{

o(y) if y#x

if y=x
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First-Order Logic Formulas: Syntax & Semantics

o = P formula P is true in state @
E P formula Pis valid, i.e., true in all states , i.e., ® = P for all ®
[Pl = {o : o= P} setof all states in which P is true

Definition (Semantics of first-order logic formulas)

First-order formula P is true in state w, written @ |= P, defined inductively:
oE=e=¢ iff ofe] =o[é]

oEe>eé iffo[e] > o[é]

oE=-P iff o [~ P, i.e., if it is not the case that w = P

0E=EPAQ iffo=Pandol=Q

0oE=PVQ ffol=EPoroE=Q

0EP—-Q iffoPorol=Q

oE=VxP  iffol=PforaldeR grn_)d if y=x
o= 3IxP iff ®¢ |= P for some d € R wx(y)_{w(y) if y=£x
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First-Order Logic Formulas: Syntax & Semantics

o = P formula P is true in state @
E P formula Pis valid, i.e., true in all states , i.e., ® = P for all ®
[Pl = {o : o= P} setof all states in which P is true

Jy (y2 < x) for ®(x) =5and v(x) = -5

Definition (Semantics of first-order logic formulas) |

First-order formula P is true in state w, written @ |= P, defined inductively:
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og(y) = {

o= 3IxP iff ¢ |= P for some d € R o(y) if y#x
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Semantics of ODEs with Evolution Constraints

Definition (Semantics of differential equations)
A function ¢ : [0, r] — .# of some duration r > 0 satisfies the differential
equation x' = f(x) & Q, written ¢ = x’ = f(x) A Q, iff:

Q ¢(2)(x) = 22N () exists at all times 0 < z < r

Q o(2)EX= f(x) and ¢(z) = Qforalltimes0 <z <r

Q ¢(2) = ¢(0) except at x, x’

X =f(x)&Q
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© summary
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Summary: Differential Equations & Domains

Definition (Syntax of terms)
e,ée :=x|cle+él|e-&

Definition (Syntax of first-order logic formulas)
P,Q:=e>éle=8é|-P|PANQ|PVQ|P—Q|P+ Q|VxP|3xP

Definition (Syntax of continuous programs)

A differential equation x' = f(x) with evolution domain Q is denoted by
X' =f(x)&Q

André Platzer, Stefan Mitsch (CMU) LFCPS/02 18/19


https://doi.org/10.1007/978-3-319-63588-0_2
https://www.cs.cmu.edu/~smitsch/courses/lfcps22/

Further Reading |

Wolfgang Walter.
Ordinary Differential Equations.
Springer, Berlin, 1998.
doi:10.1007/978-1-4612-0601-9.
Philip Hartman.

Ordinary Differential Equations.
John Wiley, Hoboken, 1964.

William T. Reid.
Ordinary Differential Equations.
John Wiley, Hoboken, 1971.

Gerald Teschl.
Ordinary Differential Equations and Dynamical Systems.
AMS, Providence, 2012.
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